首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments are performed in a 13-m cylindrical tank to study the generation of interfacial internal waves by barotropic sinusoidal waves passing over a slope. At each tidal cycle, there are two waves generated, one propagating onshore and the other propagating offshore. The amplitude of the waves increases with increasing forcing and evolves as nonlinear waves if the shelf width is smaller than the wavelength of the baroclinic tide. Rotation does not modify the generating mechanism but the amplitude of the generated waves decreases with increasing rotation rate; also no internal waves are generated when the forcing period is larger than the inertial period, and at high rotation rate, there are only dispersive waves propagating from the shelf break region. The experiments covered a large range of internal Froude number, Rossby number and temporal Rossby number and compare well with in situ observations.  相似文献   

2.
In this paper, we investigate the meridional propagation of a forced Rossby wave packet towards a critical layer in a zonal shear flow by solving the linearized barotropic vorticity equation. The forcing is applied north of the critical layer. Two approaches are employed for solving this problem. First, an analytic solution valid for large time is derived, using Fourier and Laplace transform techniques and asymptotic approximations. This solution exhibits the modification due to the wave packet of the solution obtained by Warn and Warn (1976) [Warn, T., Warn H., 1976. On the development of a Rossby wave critical level. J. Atmos. Sci., 33, 2021–2024.] in the monochromatic case. A numerical investigation is then carried out using a finite difference scheme and a time-dependent radiation condition. It is found that the forced wave packet is absorbed at the critical layer and the total momentum transferred to the mean flow as a result of the absorption is observed to be proportional to the length scale of the wave packet. We also consider the case of a north–south mean flow with a longitudinally propagating wave packet forced to the east or west of the critical layer. The monochromatic version of this problem has been used before (Geisler, J.E., Dickinson, R.E., 1975. Critical level absorption of barotropic Rossby waves in a north–south flow. J. Geophys. Res., 80, 3805–3811.) to examine the interaction of western boundary currents and oceanic Rossby waves.  相似文献   

3.
青藏高原东北侧干旱的数值试验   总被引:4,自引:1,他引:3  
用谱方法(T42)求解半球球面无辐散正压涡度方程,采用实际的干旱环流资料,分别在有地形和无地形的情况下,求出其对应的干旱环流型的强迫场,模拟了在强迫场的作用下干旱环流的形成、维持情况及在强迫场消失后干旱环流型的崩溃情况。结果表明:(1)强迫场在干旱环流型的形成、维持及崩溃过程中起重要作用;(2)青藏高原的存在使其东北侧干旱形成和崩溃均加快。  相似文献   

4.
Shin  Hyun-Geun  Khouider  Boualem 《Climate Dynamics》2021,56(11):3749-3773

The effect of equatorially trapped waves on the movement of tropical cyclones (TC) is studied numerically based on a two-dimensional barotropic model in a beta-plane approximation. According to recent studies, equatorially trapped waves contribute to the genesis of TCs. It is thus natural to assume that these waves affect also the movement of the TC. The effect of three types of equatorially trapped waves, namely Kelvin, Rossby, and n = 0 eastward inertio-Gravity (EIG) waves, on the TC trajectory is investigated with a focus on the sensitivity on some key physical parameters such as the wavenumber and wavespeed. Using a simple barotropic model forced by a prescribed baroclinic flow, the barotropic response to equatorially trapped waves is simulated for a period of 50 days, under various wave parameter configurations. This response is then used as a background flow where TC’s can evolve and propagate. TC-like flows are injected into this wavefield background at arbitrary times during the simulation, and the TC trajectories are tracked and recorded for 48h after the injection time. The resulting TC trajectory patterns with respect to the injection times and wave parameters appear to be stochastic and the mean paths and the associated standard deviations are calculated and reported here. The statistics are different for different wave types. Kelvin waves make shorter length of TC trajectories and small divergence of direction. On the contrary, Rossby waves cause rather dramatic changes in the TC path and yield longer trajectories. Meanwhile, TCs in EIG waves maintain fairly the same direction and typically have longer trajectories though less dramatic. A robustness test using a random forcing instead has also been conducted.

  相似文献   

5.
In summer, the Yellow Sea Cold Water Mass (YSCWM) is a stable water mass of low temperature lying at the bottom of the central Yellow Sea (YS). It is fringed by some typical tidal fronts, which separate deep, stratified water on the offshore side from the well-mixed, shallow water on the inshore side. Three striking fronts--Subei Bank Front (SBF), Shandong Peninsula Front (SPF), and Mokpo Front (MKF; a front off the southwestern tip of the Korean Peninsula)--have been iden- tified by various studies from both satellite observations and model results. Tide plays an important role in the formation and maintenance of these fronts. However, it is still a matter of debate as to the roles these two kinds of mechanisms of upwelling and tidal mixing play, and how importance they are in the maintenance processes of the above three fronts. Basing a nested high-resolution model HYCOM (the Hybrid Coordinate Ocean Model), this study focuses on the different mechanisms of tidal effects on the thermal fronts in the YS in summertime. Through comparative experiments with and without tidal forcing, the results indicate that the MKF is mainly driven by tide-induced upwelling. For the SPF, tidal mixing is the dominant factor, when lower cold water is stirred upwards along the sloping topography of the western YS. Meanwhile, the combined effect of upwelling and tidal mixing is the main cause of the formation of the SBF. Diagnostic analysis of thermal balance shows that horizontal nonlinear advection induced by strong tidal currents also contributes to the thermal balance of frontal areas.  相似文献   

6.
7.
Laboratory experiments are conducted on a physical system in which an oscillatory, along-shore, free stream flow of a homogeneous fluid occurs in the vicinity of a long coastline with vertical slope; the model sea-floor is horizontal. Particular attention is given to the resulting rectified (mean) current which is along the coastline with the shore on the right, facing downstream. In the lateral far field region defined by (1), where y is the offshore coordinate and H is the depth of the fluid, the motion field is approximately independent of the lateral distance from the coast. The vertical structure of the cross-stream motion in this region consists of Ekman layers near the sea-floor and interior adjustment flows, both periodic in time. In the near field, defined by (1), the motion is strongly dependent on the cross-stream coordinate as well as time, and rectified currents are observed. The mechanism responsible for the rectification is a complex nonlinear coupling between laterally directed adjustment flows driven by the transport in the bottom Ekman layers, and the free stream motion field. The rectified current is found to be substantially wider than the Stewartson layer thickness but much narrower than the Rossby deformation radius. The characteristic width, δy, of the rectified current is shown to scale as , where Ro is the Rossby number Rot is the temporal Rossby number and E is the Ekman number. Experiments are presented which support this scaling.  相似文献   

8.
李志锦  纪立人 《气象学报》1996,54(4):398-408
对线性定常强迫问题,本文发展了具有能量意义的内积空间中建立一组完备正交强迫模的动力学方法,其中这组正交强迫模是正定对称阵的特征矢量,相应的特征值则决定了强迫模产生的大气响应强度。以冬季300hPa气候平均流为基本状态进行具体计算。结果表明,有实际意义的遥相关型只是由很少几个使大气产生大响应的最有效强迫模产生。这些最有效的强迫模产生的大气响应同实际观测到的遥相关型有很好的对应关系。能量分析表明,有利强迫模建立遥相关型,基本流向大气响应提供的动能比强迫产生的动能更大。所以,强迫建立遥相关型不只依赖于外源产生的动能的传播,更主要依赖于大气响应能否从基本流吸取动能。  相似文献   

9.
《大气与海洋》2013,51(2):132-146
Abstract

This paper presents a hydrodynamic study of the St. Lawrence Estuary's estuarine transition zone, a 100 km region where fresh water from the river mixes with salt water from the estuary. The circulation of the estuarine transition zone is driven by strong tides, a large river flow, and well‐defined salinity gradients. For this study, a three‐dimensional hydrodynamic model was applied to the estuarine transition zone of the St. Lawrence Estuary and used to examine stratification and density‐driven baroclinic flow. The model was calibrated to field observations and subsequently predicted water level elevations, along‐channel currents, and salinity with mean errors of less than 9%, 11%, and 17%, respectively. The baroclinic density‐driven currents were distinguished from the tidal barotropic currents by using principal component analysis. Stratification and baroclinic flow were observed to vary throughout the estuarine transition zone on tidal and subtidal spring‐neap time scales. On a semidiurnal tidal time scale, stratification was periodic, and baroclinic flow was represented by pulses of sheared exchange flow, suggesting that neither buoyancy forcing nor turbulent mixing is dominant at this scale. On a subtidal spring‐neap time scale, stratification and baroclinic flow varied inversely with tidal energy, increasing on weak neap tides and decreasing on strong spring tides.  相似文献   

10.
Abstract

The eddy flux of a conservative scalar in a time‐dependent rotary velocity field may have a component that is normal to the scalar gradient. This component is the “skew flux”, which consists of the scalar transport by the Stokes velocity and a part that is always non‐divergent (and hence does not affect scalar evolution). Since tidal velocity fields usually have rotary features, tidal‐band eddy scalar fluxes may include a skew component that can be useful in indicating the occurrence of non‐linear current interactions.

The skew temperature flux associated with the semidiurnal tide in a continental shelf region is demonstrated using simple models, and moored current and temperature observations from Georges Bank. The observed fluxes on the Bank are largely directed along isobaths, with apparent contributions from the topographic rectification of the barotropic tidal current over the Bank's side and from the rotary tidal ellipses in a frontal region. Simple models indicate that the weaker cross‐isobath fluxes can arise through the influence of frictionally induced vertical structure on topographic tidal rectification, a baroclinic tidal current interaction, or the interaction of baroclinic and barotropic tidal currents. In some cases, the simple models show qualitative agreement with the observed fluxes and currents but, in general, more realistic models and better estimates of the background mean temperature field are required to obtain quantitative estimates of the relative importance of these interactions and other processes. Nevertheless, the observations and models suggest that non‐linear interactions involving both barotropic and baroclinic tidal currents are occurring on Georges Bank.  相似文献   

11.
The physical modeling of topographic Rossby normal modes carried out at the “Coriolis” Rotating Platform (Grenoble), is presented. The basic feature of the bottom topography is a linear slope of 4.3 m×2 m delimited by two lateral walls. Since the studied motions are essentially barotropic, homogeneous water was used. Unsheared currents were generated by a simple movement of a wavemaker located in front of the topographic barrier. The conservation of potential vorticity for the currents flowing onto the channel slope produced Rossby waves: reflections at the lateral boundaries then led to the formation of propagating barotropic Rossby normal modes, whose frequencies and spatial structures were selected by the physical system. The currents were measured through the correlation imaging velocimetry (CIV) method, which allowed an extremely detailed synoptic map of the horizontal velocities in an area (13 m2) including the slope to be obtained every 30 s.A variety of experiments were performed in order to provide a complete process study in which the effect of different channel lengths and rotation periods could be tested. Two different lengths of the linear slope, 4.3 and 3.3 m, and rotation periods ranging from 30 to 50 s were considered. The qualitative analysis of the 2D current patterns, and the good agreement found between the measured eigenperiods and the periods obtained by means of a simple analytical model, show that in all cases the first Rossby normal mode was generated. Moreover, numerical simulations based on the shallow-water equations, for a geometry and paddle movements that match closely the experimental setup, allow to calibrate the analytical model and provide useful information on a discrepancy found between experimental and analytical eigenperiods due to an oscillation of the normal mode trajectory.  相似文献   

12.
欧阳首承  兰伟 《高原气象》1990,9(3):277-283
本文利用相当正压层方法,分析了亚欧及北太平洋中纬度地区47个站点的相当正压层高度,其结果与文献[1]类似。计算表明:亚欧及北太平洋的相当正压层高度平均位于359hPa,略去高原站点后,平原地区的平均高度为374hPa。相当正压层是一个波动很大的不同气压的曲面,并随地区和季节变化较大。高原和西风急流的强弱可能都是其影响因子,尤其是高原的作用值得进一步探讨。数值模拟也证实了300hPa上Rossby波比500hPa效果好。  相似文献   

13.
Chen  Lilan  Fang  Jiabei  Yang  Xiu-Qun 《Climate Dynamics》2020,55(9-10):2557-2577

While recent observational studies have shown the critical role of atmospheric transient eddy (TE) activities in midlatitude unstable air-sea interaction, there is still a lack of a theoretical framework characterizing such an interaction. In this study, an analytical coupled air-sea model with inclusion of the TE dynamical forcing is developed to investigate the role of such a forcing in midlatitude unstable air-sea interaction. In this model, the atmosphere is governed by a barotropic quasi-geostrophic potential vorticity equation forced by surface diabatic heating and TE vorticity forcing. The ocean is governed by a baroclinic Rossby wave equation driven by wind stress. Sea surface temperature (SST) is determined by mixing layer physics. Based on detailed observational analyses, a parameterized linear relationship between TE vorticity forcing and meridional second-order derivative of SST is proposed to close the equations. Analytical solutions of the coupled model show that the midlatitude air-sea interaction with atmospheric TE dynamical forcing can destabilize the oceanic Rossby wave within a wide range of wavelengths. For the most unstable growing mode, characteristic atmospheric streamfunction anomalies are nearly in phase with their oceanic counterparts and both have a northeastward phase shift relative to SST anomalies, as the observed. Although both surface diabatic heating and TE vorticity forcing can lead to unstable air-sea interaction, the latter has a dominant contribution to the unstable growth. Sensitivity analyses further show that the growth rate of the unstable coupled mode is also influenced by the background zonal wind and the air–sea coupling strength. Such an unstable air-sea interaction provides a key positive feedback mechanism for midlatitude coupled climate variabilities.

  相似文献   

14.
下垫面强迫对京津冀大暴雨作用的数值研究   总被引:8,自引:0,他引:8  
使用MM4对1992年7月23日发生在京津冀地区的大暴雨过程进行了数值模拟;利用模拟得到的高时空分辨率资料,通过使用Mass模式所进行的几组试验以及用MM4所做的敏感性试验,说明了在该次大暴雨过程中下垫面的动力及热力强迫作用。指出:下垫面强迫所导致的辐合上升运动是这次暴雨过程的触发机制。  相似文献   

15.
Laboratory models of rapidly rotating geophysical flows often show significant asymmetries with respect to the sign of the gyre forcing. In this paper we focus on the instability of separated boundary currents and the resulting transition to time-dependent motion in a slightly sliced cylinder driven by a differentially rotating lid. This transition occurs more readily for cyclonic (co-rotating) gyre forcing, when compared with that observed for anticyclonic forcing, even though the system Rossby number is very small. Quasi-geostrophic models are invariant to changes in the sign of the forcing, so a more accurate theoretical framework must be used to capture the observed asymmetries. An intermediate model, which includes a second-order nonlinear Ekman suction relation, is proposed and integrated numerically. The results are in significantly better agreement with the laboratory observations, and simple diagnostics illustrate which of the higher-order physical effects are responsible for the enhanced instability of cyclonically forced gyres.  相似文献   

16.
A series of climate ensemble experiments using the climate model from National Centers for Environmental Prediction (NCEP) were performed to exam impact of sea surface temperature (SST) on dynamics of El-Nino/South-crn Oscillation (ENSO).A specific question addressed in this paper is how important the mean stationary wave influences anomalous Rossby wave trains or teleconnection patterns as often observed during ENSO events.Evidences from those ensemble simulations argue that ENSO anomalies,especially over Pacific-North America (PNA) region,appear to be a result of modification for climatological mean stationary wave forced by persistent tropical SST anomalies Therefore,the role of SST forcing in maintaining climate basic state is emphasized.In this argument,the interaction between atmospheric internal dynamics and external forcing,such as SST is a key element to understand and ultimately predict ENSO.  相似文献   

17.
Interannual variations of subsurface influence on SST in the Indian Ocean show strong seasonality. The subsurface influence on SST confines to the southern Indian Ocean (SIO) in boreal winter and spring; it is observed on both sides of the equator in boreal summer and fall. Interannual long Rossby waves are at the heart of this influence, and contribute significantly to the coupled climate variability in the tropical Indian Ocean (TIO). Principal forcing mechanism for the generation of these interannual waves in the Indian Ocean and the relative influence of two dominant interannual signals in the tropics, namely El Niño and Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD), are also discussed. Two distinct regions dominated by either of the above climate signals are identified. IOD dominates the forcing of the off-equatorial Rossby waves, north of 10°S, and the forcing comes mainly from the anomalous Ekman pumping associated with the IOD. However, after the demise of IOD activity by December, Rossby waves are dominantly forced by ENSO, particularly south of 10°S.It is found that the subsurface feedback in the northern flank of the southern Indian Ocean ridge region (north of 10°S) significantly influences the central east African rainfall in boreal fall. The Indian Ocean coupled process further holds considerable capability of predicting the east African rainfall by one season ahead. Decadal modulation of the subsurface influence is also noticed during the study period. The subsurface influence north of 10°S coherently varies with the IOD, while it varies coherently with the ENSO south of this latitude.  相似文献   

18.
黄海夏季潮汐锋区环流的数值研究   总被引:6,自引:0,他引:6  
基于Blumberg&Mellor三维非线性环流模型(ECOM)并结合Mellor&Yamada的湍封闭模型,对黄海M2分潮、密度环流、锋区环流等进行了的数值模拟:潮汐模拟结果较好的体现了黄、渤海M2潮波传播系统,验证了模型的可行性;模拟密度环流的量阶和方向均与夏季实测环流保持一致,体现了密度环流是夏季总环流的重要组成部分;两个断面锋区环流的模拟结果显示锋区位置不同环流特征也不相同,锋区对应的上升流特征与锋区表面通常观测到冷水现象吻合,锋区上层水体沿潮汐锋方向流速较强。另外,数值试验结果显示了地形和潮混合对潮汐锋的形成及锋区环流有重要影响。  相似文献   

19.
夏季北极海冰激发的500hPa遥相关型   总被引:11,自引:0,他引:11  
本文应用统计方法,分析7月、8月北极海冰与北半球500hPa位势高度场的相关场,7月、8月500hPa基点相关图,多冰年与少冰年的1000—500hPa厚度差图等,得到如下结论: 夏季极冰冷源的存在,可激发北半球大气产生遥相关型,这种遥相关型可以看成二维Rossby波列,具有相当正压结构,在西风带中沿着固定的波导自高纬向低纬分布,从而影响北美的环流和天气。表现为极冰偏多年份,极涡加强而偏心,加拿大高压脊和北美大槽亦同时加强;反之,极冰偏少年份,上述系统均减弱。  相似文献   

20.
The early stages in the adjustment of a mid-latitude abyssal basin with realistic geometry are studied using an inverted one and one-half layer model of the Eastern Mediterranean Sea as a natural test basin. The model is forced with a localized sidewall mass source and a compensating distributed mass sink. A flat bottom basin is investigated for comparison with existing theories on abyssal gyral spin-up, and as a precursor to a study with realistic topography. As in existing theories, the early adjustment is dominated by sub-inertial Kelvin and Rossby waves. Obstacles and the varying coastal geometry do not impede the passage of the Kelvin wave, though the circuit time of the main Kelvin wave signal is reduced by an aggregate 6% for the abyssal Eastern Mediterranean basin. The scattering of the Kelvin wave due to small-scale variations in the coastline is also shown not to be significant to the adjustment. The relatively short period of time needed to reach a statistical steady state is attributed to western boundary current formation in response to local Kelvin wave dynamics. Upon cessation of the sidewall forcing, sub-inertial motion controls the spin-down adjustment with basin-scale Rossby waves becoming the most pronounced feature of the flow. Two dynamical issues of particular interest emerge in these simulations: the retardation of Kelvin wave propagation around the abyssal basin and the roles of detrainment and sidewall forcing in the interior vorticity balance. An idealized simulation using an elliptical basin is used to illustrate that the mechanism for Kelvin wave retardation is a geometrically induced dispersion due to large-scale variations in the coastline. A dynamical analysis of the interior circulation shows that detrainment alone does not develop a Sverdrup response. Both the localized sidewall injection and the detrainment are needed to describe the interior dynamics, with both poleward and equatorward flows developing during the adjustment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号