首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《Continental Shelf Research》1999,19(14):1755-1770
Ammonium regeneration by size-fractionated plankton was measured for 1 year at a coastal station in the shallow well-mixed waters of the western English Channel. Rates of ammonium regeneration in the <200 μm fraction varied from 0.6 to 27 nmol N l−1 h−1. On the seasonal scale, these rates were relatively low (<7 nmol N l−1 h−1) in autumn and winter, increased steadily from March to attain a maximum (27 nmol N l−1 h−1) at the end of May and thereafter decreased steadily to the seasonal minimum in December. This pattern is distinctly different from that observed in deep well-mixed waters where the peak ammonium regeneration occurs in summer (Le Corre et al., 1996, Journal of Plankton Research, 18, 355–370). Total ammonium regenerated in a year by the microheterotrophs was 15 g N m−2, equivalent to about 60% of the total nitrogen uptake. Microplankton (200–15 μm) accounted for about 50% of the regeneration measured between early spring and late summer. Percent contribution of nanoplankton to total ammonium regeneration varied considerably between the seasons, from very high (83–88%) levels in winter to very low (2–13%) levels in summer. Contribution by picoplankton (<1 μm) was high (20–45%) in summer but was less than 20% in other seasons. Ammonium regeneration in micro- and nanoplankton fractions was mainly associated with ciliates and in the picoplankton fraction with bacteria. Macrozooplankton dynamics appears to regulate ammonium regeneration by ciliates and bacteria. Low macrozooplankton biomass in spring may favour a high growth of ciliates and an associated high in ammonium regeneration. In summer, the increase in macrozooplankton may exert a grazing pressure on ciliates. This, coupled with the fact that most of the flagellates are autotrophs, would, in turn, lower the grazing pressure on the bacteria, thus favouring their development and increasing the importance of their role in ammonium regeneration. This situation, where the macrozooplankton dynamics apparently regulates ammonium regeneration in nano- and picoplankton fractions, appears to be different from that in deep well-mixed waters. Here, the relative contribution of ciliates and bacteria to ammonium regeneration shows little variation with an increase in macrozooplankton biomass.  相似文献   

2.
《Marine pollution bulletin》2009,58(6-12):313-324
This study investigated the seasonal and spatial dynamics of nutrients and phytoplankton biomass at 12 stations in Hong Kong (HK) waters during a three year period from 2004 to 2006 after upgraded sewage treatment and compared these results to observations before sewage treatment. Pearl River estuary (PRE) discharge significantly increased NO3 and SiO4 concentrations, particularly in western and southern waters when rainfall and river discharge was maximal in summer. Continuous year round discharge of sewage effluent resulted in high NH4 and PO4 in Victoria Harbour (VH) and its vicinity. In winter, spring and fall, the water column at all stations was moderately mixed by winds and tidal currents, and phytoplankton biomass was relatively low compared to summer. In summer, the mean surface phytoplankton chl biomass was generally >9 μg L−1 in most areas as a result of thermohaline stratification, and high nutrients, light, and water temperature. In summer, the potential limiting nutrient is PO4 in the most productive southern waters and it seldom decreased to limiting levels (∼0.1 μM), suggesting that phytoplankton growth may be only episodically limiting. The mean bottom dissolved oxygen (DO) remained >3.5 mg L−1 at most stations, indicating that the eutrophication impact in HK waters was not as severe as expected for such a eutrophic area. After the implementation of chemically enhanced primary sewage treatment in 2001, water quality in VH improved as indicated by a significant decrease in NH4 and PO4 and an increase in bottom DO. In contrast, there were an increase in chl a and NO3, and a significant decrease in bottom DO in southern waters in summer, suggesting that hypoxic events are most likely to occur in this region if phytoplankton biomass and oxygen consumption keep increasing and exceed the buffering capacity of HK waters maintained by monsoon winds, tidal mixing and zooplankton grazing. Therefore, future studies on the long-term changes in nutrient loading from PRE and HK sewage discharge will be crucial for developing future strategies of sewage management in HK waters.  相似文献   

3.
《Marine pollution bulletin》2014,78(1-2):274-281
Nine macroalgal blooms were studied in five coastal lagoons of the SE Gulf of California. The nutrient loads from point and diffuse sources were estimated in the proximity of the macroalgal blooms. Chlorophyll a and macroalgal biomass were measured during the dry, rainy and cold seasons. Shrimp farms were the main point source of nitrogen and phosphorus loads for the lagoons. High biomasses were found during the dry season for phytoplankton at site 6 (791.7 ± 34.6 mg m−2) and during the rainy season for macroalgae at site 4 (296.0 ± 82.4 g m−2). Depending on the season, the phytoplankton biomass ranged between 40.0 and 791.7 mg m−2 and the macroalgal biomass between 1 and 296.0 g m−2. The bulk biomass (phytoplankton + macroalgal) displayed the same tendency as the nutrient loads entering the coastal lagoons. Phytoplankton and macroalgal biomass presented a significant correlation with the atomic N:P ratio.  相似文献   

4.
《Marine pollution bulletin》2012,64(5-12):523-527
Concentrations of trace metals (Zn, Cr, Cu, V, Cd and Pb), total organic carbon (TOC), black carbon (BC) and their granulometry were examined in 25 surface sediment samples from the northern Bering Sea, Chukchi Sea and adjacent areas. Trace metal concentrations in the sediments varied from 21.06–168.21 mg kg−1 for Zn, 8.91–46.94 mg kg−1 for Cr, 2.69–49.39 mg kg−1 for Cu, 32.46–185.54 mg kg−1 for V, 0.09–0.92 mg kg−1 for Cd, and 0.95–15.25 mg kg−1 for Pb. The geoaccumulation index (Igeo) indicated that trace metal contamination (Zn and Cd) existed in some stations of the study area. The distribution of grain size plays an important role in influencing the distribution of trace metals (Zn, Cr, Cu, V, and Pb) in sediments from the Chukchi Sea and adjacent areas.  相似文献   

5.
《Marine pollution bulletin》2009,58(6-12):349-356
This study examined the phosphorus retention and release characteristics of sediments in the eutrophic Mai Po Marshes in Hong Kong. Results of chemical fractionation show that the sum of inorganic P pools exceeded 50% of the total sediment P content, with the redox-sensitive iron-bound P (Fe(OOH)  P) being the dominant P fraction. Given the considerable average Fe(OOH)  P concentration of 912 μg g−1, Mai Po sediments demonstrated a great potential to release bioavailable P under low sediment redox potentials. This was further supported by the high mean anaerobic P flux of 31.8 mg m−2 d−1 recorded in Mai Po sediment cores, indicating the role of bottom sediments as a net P source. Although sediments in Mai Po had appreciable Langmuir adsorption maxima (1642–3582 mg kg−1), the high zero equilibrium P concentrations (0.02–0.51 mg L−1) obtained suggest that sediment sorption processes would contribute to sustaining the eutrophic conditions in overlying water column even with a further reduction in external P load. Concerted efforts should be made to reduce internal loading of P, especially under reducing conditions, to complement the implementation of zero discharge policy for Deep Bay for effective eutrophication abatement and long-term water quality improvement in the Mai Po Marshes.  相似文献   

6.
《Continental Shelf Research》2008,28(18):2594-2600
We analyzed the temporal and vertical distribution of biogenic (BSi) and lithogenic (LSi) silica, and diatom abundance in the upwelling center off Concepción, Chile, from April 2004 to May 2005. Measurements were performed at the FONDAP COPAS Time Series Station 18 (36°30.8′S, 73°07.7′W; 88 m water depth), and were combined with primary production estimates and river runoff data to assess the relationships between water column BSi and primary production, and between LSi and river runoff. Throughout the sampling period, water-column-integrated (0–80 m) BSi averaged 252±287 mmol m−2, and was about six times higher than average LSi (44±30 mmol m−2). The highest water column BSi observed during the upwelling season (786±281 mmol m−2) coincided with increments in total diatom abundance, and high integrated chlorophyll a concentration and primary production. In contrast, LSi was nearly two times higher in winter (85±43 mmol m−2) than the annual average, in agreement with the period of substantial discharges from the Itata and Bio-Bio rivers. The observed temporal patterns in BSi and LSi are coincident with primary production-related factors and riverine outflow, respectively, suggesting that the BSi and LSi pools are separate. With respect to the vertical distribution in the water column, most of the BSi and diatoms were found in surface waters (0–30 m depth), whereas LSi was most abundant at depth. Our study attempts to make an inventory of both BSi and LSi in the water column off Concepción, and gives the present-day background information necessary to assess potential future changes in the hydrological cycle that, in turn, may induce modifications in the Si path from the watersheds to the ocean.  相似文献   

7.
《Marine pollution bulletin》2011,62(7-12):367-374
The distribution of zooplanktonic prey of fish larvae was examined in three bays and two lagoonal stations in the Southwest lagoon of New Caledonia. Water column conditions were characterized by increasing chlorophyll a and particulate organic matter (POM) concentrations from the lagoon to the estuarine bay. The mean zooplankton settled volume and total density were significantly higher in the estuarine bay, reaching 35.1 mL m−3 and 3.5 × 105 individuals m−3, respectively. The total zooplankton density also progressively increased along the sampling period. The composition of assemblages differed between the lagoon and the bays, and was similar in the three bays. Wind speed, surface temperature, chlorophyll a and POM explained these variations, as revealed by a co-inertia analysis (COIA). The prey preferred by fish larvae, i.e. small crustaceans and small copepods, were more abundant in bays. Sheltered bays, most influenced by terrigenous inputs, are likely to provide the best feeding conditions.  相似文献   

8.
Soda lakes and pans represent saline ecosystems with unique chemical composition, occurring on all continents. The purpose of this study was to identify and characterise the main environmental gradients and trophic state that prevail in the soda pans (n = 84) of the Carpathian Basin in Central Europe. Underwater light conditions, dissolved organic matter, phosphorus and chlorophyll a were investigated in 84 pans during 2009–2010. Besides, water temperature was measured hourly with an automatic sensor throughout one year in a selected pan. The pans were very shallow (median depth: 15 cm), and their extremely high turbidity (Secchi depth median: 3 cm, min: 0.5 cm) was caused by high concentrations of inorganic suspended solids (median: 0.4 g L−1, max: 16 g L−1), which was the dominant (>50%) contributing factor to the vertical attenuation coefficient in 67 pans (80%). All pans were polyhumic (median DOC: 47 mg L−1), and total phosphorus concentration was also extremely high (median: 2 mg L−1, max: 32 mg L−1). The daily water temperature maximum (44 °C) and fluctuation maximum (28 °C) were extremely high during summertime. The combination of environmental boundaries: shallowness, daily water temperature fluctuation, intermittent hydroperiod, high turbidity, polyhumic organic carbon concentration, high alkalinity and hypertrophy represent a unique extreme aquatic ecosystem.  相似文献   

9.
In April 2010, volcanic ash from the Eyjafjalla volcano in Iceland strongly impacted aviation in Europe. In order to prevent a similar scenario in the future, a threshold value for safe aviation based on actual mass concentrations was introduced (2 mg m−3 in Germany). This study contrasts microphysical and optical properties of volcanic ash and mineral dust and assesses the detectability of potentially dangerous ash layers (mass concentration larger than 2 mg m−3) from a pilot’s perspective during a flight. Also the possibility to distinguish between volcanic ash and other aerosols is investigated. The visual detectability of airborne volcanic ash is addressed based on idealized radiative transfer simulations and on airborne observations with the DLR Falcon gathered during the Eyjafjalla volcanic ash research flights in 2010 and during the Saharan Mineral Dust Experiments in 2006 and 2008. Mineral dust and volcanic ash aerosol both show an enhanced coarse mode (>1 μm) aerosol concentration, but volcanic ash aerosol additionally contains a significant number of Aitken mode particles (<150 nm) not present in mineral dust. Under daylight clear-sky conditions and depending on the viewing geometry, volcanic ash is visible already at mass concentrations far below what is currently considered dangerous for aircraft engines. However, it is not possible to visually distinguish volcanic ash from other aerosol layers or to determine whether a volcanic ash layer is potentially dangerous (mass concentration larger or smaller than 2 mg m−3). Different appearances due to microphysical differences of both aerosol types are not detectable by the human eye. Nonetheless, as ash concentrations can vary significantly over distances travelled by an airplane within seconds, this visual threat evaluation may contribute greatly to the short-term response of pilots in ash-contaminated air space.  相似文献   

10.
The seasonal cycle of chlorophyll concentration in the Bay of Biscay and western English Channel has been examined using satellite data (chlorophyll, sea surface temperature (SST), photosynthetically available radiation (PAR) and wind) along the line of the ferry Pride of Bilbao (Bilbao to Portsmouth). The spring phytoplankton bloom develops regularly in the oceanic region of the Bay of Biscay from mid March to the beginning of May with peak chlorophyll concentrations ranging 2–4 mg m?3. Low wind turbulence is a major factor allowing the development of productivity pulses in the Bay of Biscay during spring. Exceptional blooms of phytoplankton take place in summer (July–August) in the western English Channel with chlorophyll concentrations as high as 40 mg m?3. Some environmental factors (SST, wind, pressure and tide) are examined. Autumn blooms of phytoplankton (1–2 mg m?3) are also detected in the northern Bay of Biscay, shelf-break and Celtic Sea in October. A 11 years pluri-annual synthesis of SeaWiFS satellite measurements is presented.  相似文献   

11.
The tropical riparian zone has a high diversity of plant species that produce a wide variety of chemical compounds, which may be released into streams. However, in recent decades there has been an extensive replacement of tropical native vegetation by Eucalyptus monocultures. Our objective was to compare fungal colonization of Eucalyptus camaldulensis leaves with fungal colonization of native plant species from riparian zones in Brazilian Cerrado (savannah) streams. The fungal colonization and enzymatic activity significantly influenced leaf litter decomposition. Fungal sporulation rates from leaf litter varied significantly with leaf species, with E. camaldulensis showing the highest sporulation rate (1226 conidia mg−1AFDM day−1) and leaf mass loss (23.2 ± 0.9%). This species has the lowest lignin content and highest N concentration among the studied species. Among the studied native species, we observed the highest sporulation rate for Protium spruceanum (271 conidia mg−1AFDM day−1), Maprounea guianensis (268 conidia mg−1AFDM day−1) and Copaifera langsdorffii (196 conidia mg−1AFDM day−1). Overall, native plant species of the Brazilian Cerrado exhibited recalcitrant characteristics and a higher lignin:N ratio. Therefore, variations in the physical and chemical characteristics of the leaf litter could explain the higher decay rate and reproductive activity observed for E. camaldulensis. However, the detritus of this species were colonized almost exclusively by Anguillospora filiformis (99.6 ± 0.4%) and exhibited a reduction in aquatic hyphomycetes species diversity. Our results suggest that the disturbance in the composition of riparian vegetation and consequently, in the diversity of leaf litter input into streams, could change the patterns and rates of leaf litter utilization by microbial decomposers. These changes may have important consequences in the processing of organic matter and, consequently, in the functioning of freshwater ecosystems.  相似文献   

12.
《Continental Shelf Research》2006,26(17-18):2241-2259
The Amazon River spawns a vast mobile mudbelt extending ∼1600 km from the equator to the Orinoco delta. Deposits along the Amazon–Guianas coastline are characterized by some of the highest Corg remineralization rates reported for estuarine, deltaic, or shelf deposits, however, paradoxically, except where stabilized by mangroves or intertidal algal mats, they are usually suboxic and nonsulfidic. A combination of tides, wind-driven waves, and coastal currents forms massive fluid muds and mobile surface sediment layers ∼0.5–2 m thick which are dynamically refluxed and frequently reoxidized. Overall, the seabed functions as a periodically mixed batch reactor, efficiently remineralizing organic matter in a gigantic sedimentary incinerator of global importance. Amazon River material entering the head of this dynamic dispersal system carries an initial terrestrial sedimentary Corg loading of ∼ 0.7 mg C m−2 particle surface area. Total Corg loading is lowered to ∼ 0.2 mg C m−2 in the proximal delta topset, ∼60–70% of which remains of terrestrial origin. Loading decreases further to 0.12–0.14 mg C m−2 (∼60% terrestrial) in mudbanks ∼600 km downdrift along French Guiana, values comparable to those found in the oligotrophic deepsea. DOC/ΣCO2 ratios in pore waters of French Guiana mudbanks indicate that >90% of metabolized organic substrates are completely oxidized. Within the Amazon delta topset at the head of the dispersal system, both terrestrial and marine organic matter contribute substantially to early diagenetic remineralization, although reactive marine substrate dominates (∼60–70%). The conditional rate constant for terrestrial Corg in the delta topset is ∼0.2 a−1. As sedimentary Corg is depleted during transit, marine sources become virtually the exclusive substrate for remineralization except very near the mangrove shoreline. The δ13C and Δ14C values of pore water ΣCO2 in mudbanks demonstrate that the primary source of remineralized organic matter within ∼1 km of shore is a small quantity of bomb signature marine plankton (+80‰). Thus, fresh marine organic material is constantly entrained into mobile deposits and increasingly drives early diagenetic reactions along the transit path. Relatively refractory terrestrial Corg is lost more slowly but steadily during sedimentary refluxing and suboxic diagenesis. Amazon Fan deposits formed during low sea level stand largely bypassed this suboxic sedimentary incinerator and stored material with up to ∼3X the modern high stand inner shelf Corg load (Keil et al., 1997b. Proceedings of the Ocean Drilling Program, Scientific Results. Vol. 155. pp. 531–537). Sedimentary dynamics, including frequency and magnitude of remobilization, and the nature of dispersal systems are clearly key controls on diagenetic processes, biogeochemical cycling, and global C storage along the continental margins.  相似文献   

13.
《Continental Shelf Research》1999,19(9):1113-1141
Relationships among primary production, chlorophyll, nutrients, irradiance and mixing processes were examined along the salinity gradient in the Mississippi River outflow region. A series of six cruises were conducted during 1988–1992 at various times of year and stages of river discharge. Maximum values of biomass and primary production were typically observed at intermediate salinities and coincided with non-conservative decreases in nutrients along the salinity gradient. Highest values of productivity (>10 gC m−2 d−1) and biomass (>30 mg chlorophyll a m−3) were observed in April 1988, July–August 1990 and April–May 1992; values were lower in March and September 1991. Rates of primary production were apparently constrained by low irradiance and mixing in the more turbid, low salinity regions of the plume, and by nutrient limitation outside the plume. Highest values of primary production occurred at stations where surface nutrient concentrations exhibited large deviations from conservative mixing relationships, indicating that depletion of nutrients was related to phytoplankton uptake. Mixing and advection were important in determining the location and magnitude of primary production maxima and nutrient depletion. In addition to growth within plume surface waters, enhanced growth and/or retention of biomass may have occurred in longer residence time waters at the plume edge and/or beneath the surface plume. Vertical structure of some plume stations revealed the presence of subsurface biomass maxima in intermediate salinity water that was depleted in nutrients presumably by uptake processes. Exchange between subsurface water and the surface plume apparently contributed to the reduction in nutrients at intermediate salinities in the surface layer. DIN (=nitrate+nitrite+ammonium) : PO4 (=phosphate) ratios in river water varied seasonally, with high values in winter and spring and low values in late summer and fall. Periods of high DIN : PO4 ratios in river nutrients coincided with cruises when surface nutrient concentrations and their ratios indicated a high probability for P limitation. N limitation was more likely to occur at high salinities and during late summer and fall. Evidence for Si limitation was also found, particularly in spring.  相似文献   

14.
《Marine pollution bulletin》2012,65(12):2857-2859
Baseline Hg concentration in bycatch fish from the SE Gulf of California were determined in muscle and liver of 19 species. Levels of Hg in muscle were compared with legal limits of this element in national and international legislation. Considering all fish species, mean concentrations in liver (2.458 ± 1.997 μg g−1) were significantly higher (p < 0.05) than in muscle (0.993 ± 0.670 μg g−1). The sequence of averaged Hg concentrations in most ichthyofauna was liver > muscle. Highest level of Hg in muscle (2.556 μg g−1) and liver (7.515 μg g−1) corresponded to Diapterus peruvianus and Ophioscion strabo, respectively. Considering muscle samples, none of the species had levels of Hg above the limit (1.0 μg g−1 wet weight) in the Mexican legislation; with respect to the Japanese (0.4 μg g−1 wet weight) and British (0.3 μg g−1 wet weight) legislations, 26.3% and 31.6% of the species respectively, were above the corresponding limits.  相似文献   

15.
《Marine pollution bulletin》2009,58(6-12):280-286
The effects of prolonged exposure to reduced oxygen levels (3.0 and 1.5 mg O2 l−1) on marine scavenging gastropods Nassarius festivus were studied for 8 weeks. The percentages of individuals engaged in feeding and amount of food consumed were reduced as oxygen level decreased; absorption efficiency, however, did not vary significantly with oxygen level. Oxygen consumption rates and specific oxygen consumption rates were lower at reduced oxygen levels. Reproduction occurred at all oxygen levels with less egg capsules being produced at lower oxygen levels. Egg size and number of eggs per capsule, however, were not significantly affected by oxygen level. The increase in shell length was 12%, 6% and 5% at 6.0 mg O2 l−1 (normoxia), 3.0 mg O2 l−1 and 1.5 mg O2 l−1, respectively. At the end of the experiment, the amount of energy allocated to growth and reproduction decreased at reduced oxygen levels with values obtained at 3.0 mg O2 l−1 and 1.5 mg O2 l−1 being 48% and 70% lower than those at 6.0 mg O2 l−1. At all oxygen levels, most of the accumulated energy was allocated to shell growth and reproduction, and the amount allocated to somatic growth was relatively insignificant. The reduction in energy allocated to reproduction was greater than that to shell growth as the oxygen level was reduced, indicating a strategic energy allocation of marine scavengers under stressful conditions to enhance survival.  相似文献   

16.
《Marine pollution bulletin》2012,64(5-12):402-411
Iron (Fe) plaque formed on mangrove root increased with wastewater discharge, but the extent was species-specific. For Bruguiera gymnorrhiza, Fe plaque concentration was 0.80 mg g−1 root d.wt at Day 0 and increased to 4.59, 6.84 and 7.52 mg g−1 at Day 75 in the fresh water control (FW), synthetic wastewater with pollutant concentrations five times of municipal sewage (5SW) and double of 5SW (10SW) treatments, respectively; the respective increases in Excoecaria agallocha were from 0.70 to 2.37, 10.73 and 13.21 mg g−1. For Acanthus ilicifolius, similar increase was found in 5SW, but all of the plants were dead in 10SW at Day 75. The concentrations of heavy metals and phosphorus immobilized were positively correlated with the amounts of Fe plaque formed, but the regression coefficients varied among species. The performance of mangrove plants in wastewater treatments was related to the Fe plaque formed and its immobilized wastewater-borne pollutants.  相似文献   

17.
《Marine pollution bulletin》2012,65(12):2867-2870
The discharge of sewage into the Antarctic marine environments by scientific stations has resulted in local changes in these pristine sites. To assess the distribution and concentration of sewage indicators from the Brazilian Antarctic station, sediments were sampled during the 2009/10 austral summer at four points (water depth of 20 and 60 m). Concentrations of faecal sterols and linear alkylbenzenes (LABs) ranged from <0.01 to 0.17 μg g−1 and <1.0 to 46.5 ng g−1 dry weight, respectively. Maximum concentration of faecal sterols was similar to the value previously calculated as the background level for this area (0.19 μg g−1), and it is lower than the concentration observed in previous studies (1997–2008), whereas the LABs concentrations remained practically constant (35 ng g−1). Despite the low concentrations of sewage markers, the permanent human activities in the region require monitoring programs to determine continuing trends and prevent the increase of anthropogenic impacts.  相似文献   

18.
Three shallow basins in Huizhou West Lake, China, were compared with respect to phosphorus (P) cycling between sediment and water, binding forms of P in sediment, and macrophyte biomass. The basins had similar sediments and similar depths, but two of the basins were restored by carp fish removal and macrophyte transplantation. These two basins have had clear water, low Chl.a and high macrophyte coverage for seven and ten years, whilst the unrestored control basin had turbid water and higher Chl.a. Judged by diffusive ammonium efflux, sediments in restored basins had higher mineralization rates than the unrestored basin, but the release of total dissolved P were more similar. However, sediments of restored basins released primarily dissolved organic P, while the sediment from the unrestored basin only released dissolved inorganic P. One third of the P release in the unrestored basin occurred from resuspended sediment, while this pathway contributed less than 3% in restored basins where resuspension rates were 10 times lower and the surface sediments affinity for phosphate higher. Besides from the presence of carps in the unrestored basin, the main differences were a large pool of P (700–850 mg P m−2) in macrophyte biomass and a smaller pool (∼150 mg m−2) as loosely adsorbed P in the sediment of restored basins than in the unrestored (0 in macrophytes and 350 mg P m−2 as loosely adsorbed). Also, a tendency of higher concentrations of oxidized iron was observed in the surface sediment from restored basins. The study underlines the potential of trophic structure changes to alter internal nutrient cycling in shallow lakes.  相似文献   

19.
In Brazil, where reefs occur in markedly turbid environments, the relationship between sedimentation/organic matter and corals is poorly known. Thus, the ex situ effects of sediment with and without organic matter over the ΔF/Fm and physical state of Mussismilia braziliensis were analyzed. The ΔF/Fm and coral physical state, evaluated through the susceptibility index to sedimentation (SI), were measured in seven colonies exposed to sedimentation (0–450 mg cm−2 day−1) free of organic matter after 45 days of exposure, and in 12 colonies exposed to sedimentation (0–500 mg cm−2 day−1) with organic matter content (10%), in which case ΔF/Fm was measured after 72 h and SI after 120 h. In both cases there were effects of increasing sedimentation on the SI with no effect on ΔF/Fm. Despite the tolerance to high sedimentation rates shown by this coral, we noted that the presence of organic matter might reduce its tolerance to sedimentation stress.  相似文献   

20.
The spectral attenuation of solar irradiation was measured during summer in two types of coastal waters in southern Chile, a north Patagonian fjord (Seno Reloncaví) and open coast (Valdivia). In order to relate the light availability with the light requirements of upper subtidal seaweeds, the saturating irradiance for photosynthesis (Ek) from PI curves was measured. In addition the UV risk was assessed. Based on the z1% of PAR, the lower limit of the euphotic zone in the studied systems averaged 21 m (Kd 0.24 m?1) in Seno Reloncaví and 18 m (Kd 0.27 m?1) in the coast of Valdivia. Photosynthesis of the studied seaweeds was saturated at markedly lower irradiances than found in their natural depths at the time of the study. Solar radiation penetrating into these depths at both locations largely supports the light requirements for the photosynthesis of subtidal species: 50–160 μmol m?2 s?1 for seaweeds from Seno Reloncaví (7 m tidal range) and 20–115 μmol m?2 s?1 for Valdivia assemblages (2 m tidal range). Optimal light conditions to saturate photosynthesis (Ek) were present at 10–16 m water depth. The attenuation of solar irradiation did not vary significantly between the fjord and coastal sites of this study. However, the underwater light climates to which seaweeds are exposed in these sites vary significantly because of the stronger influence of tidal range affecting the fjord system as compared with the open coastal site. The patterns of UV-B penetration in these water bodies suggest that seaweeds living in upper littoral zones such as the intertidal and shallow subtidal (<3 m) may be at risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号