首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The present work is about the interpretation of the linear polarization of the O VI D2 (λ1032) coronal line observed by SUMER/SoHO. We take into account the effect of the Doppler redistribution due to the scattering ions motion. We consider the cases of isotropic and anisotropic velocity field distributions. The latter can be interpreted by the ioncyclotron effect that affects heavy ions in the solar corona. The comparison of the numerical results with the observations yields constraints on the solar wind outflow speed and on the velocity field distribution of the O5+ ions at low coronal altitudes in the polar holes.  相似文献   

2.
3.
The temperature anomaly of the terrestrial lower troposphere, inferred from the Microwave Sounding Unit (MSU) radiometers, is found to be inversely correlated with the area of the Sun covered by coronal holes. The correlation between the monthly time series of global tropospheric temperature anomaly and total coronal hole area from January 1979 to April 1998 has a Pearson coefficient of −0.46, which is different from zero at a 95% confidence level. Physical reasonings for the explained and unexplained parts of the correlation are discussed. The coronal hole area is a physical proxy for both the global-scale, 22-yr geometrical and shorter-term, dynamical components of the cosmic ray modulation, as well as the corpuscular emission of the Sun. Other solar parameters that may indicate a solar radiative effect on climate are also evaluated. It is concluded that variable fluxes either of solar charged particles or cosmic rays modulated by the solar wind, or both, may influence the terrestrial tropospheric temperature on timescale of months to years.  相似文献   

4.
堵锦生 《天文学进展》1997,15(2):112-119
简要介绍了在1988-1995年期间冕洞观测研究的主要进展。文中共分五个方面:1.冕洞磁场观测研究的新进展;2.冕洞在太阳活动周不同位相时的规律性;3.冕洞区高速太阳风观测的新结果;4.冕洞加热问题;5.存在问题。  相似文献   

5.
We investigate the effect of the plume/interplume lane (PIPL) structure of the solar polar coronal hole (PCH) on the propagation characteristics of ion-cyclotron waves (ICW). The gradients of physical parameters determined by SOHO and TRACE satellites both parallel and perpendicular to the magnetic field are considered with the aim of determining how the efficiency of the ICR process varies along the PIPL structure of PCH. We construct a model based on the kinetic theory by using quasi-linear approximation. We solve the Vlasov equation for O VI ions and obtain the dispersion relation of ICW. The resonance process in the interplume lanes is much more effective than in the plumes, agreeing with the observations which show the source of fast solar wind is interplume lanes. The solution of the Vlasov equation in PIPL structure of PCH, the physical parameters of which display gradients along and perpendicular direction to the external magnetic field, is thus obtained in a more general form than the previous investigations.  相似文献   

6.
Anita Joshi 《Solar physics》2001,198(1):149-161
The correlation between the presence of coronal holes and flare indices has been investigated for the period from 1976 to 1995. The analysis shows that in the cases of 227 Carrington rotations (CRs) backward time lags yield the highest correlation between the coronal holes and flare indices. The maximum correlations were found at time lags of 222 and 142 CRs for polar and equatorial coronal holes, respectively. The period of study covers the past two solar cycles (21 and 22). Correlation analysis of both solar cycles has also been studied individually. The correlation analysis reveals that there is in general a forward shift in the maximum correlation for polar coronal holes, but it cannot be recommended to use polar coronal hole numbers for forecasting the next solar cycle.  相似文献   

7.
The plasma conditions in the solar atmosphere and, in particular, in coronal holes are summarized, before space-borne instrumentation for observing these regions in vacuum-ultraviolet light is briefly introduced with the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer on the Solar and Heliospheric Observatory (SOHO) as example. Spectroscopic measurements of small plasma jets are then analyzed in detail. Magnetic reconnection is thought to be responsible for heating the corona of the Sun as well as accelerating the solar wind by converting magnetic energy into thermal and kinetic energies. The continuous outflow of the fast solar wind from coronal holes on ‘open’ field lines, which reach out into interplanetary space, then requires many reconnection events of very small scale sizes – most of them probably below the resolution capabilities of present-day instruments. Our observations of such an event have been obtained with the Solar and Heliospheric Observatory (SOHO) providing both high-resolution imaging and spectral information for structural and dynamical studies. We find whirling or rotating motions as well as jets with acceleration along their propagation paths in close spatial and temporal vicinity to the coronal jet. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
G. de Toma 《Solar physics》2011,274(1-2):195-217
We analyze coronal holes present on the Sun during the extended minimum between Cycles 23 and 24, study their evolution, examine the consequences for the solar wind speed near the Earth, and compare it with the previous minimum in 1996. We identify coronal holes and determine their size and location using a combination of EUV observations from SOHO/EIT and STEREO/EUVI and magnetograms. We find that the long period of low solar activity from 2006 to 2009 was characterized by weak polar magnetic fields and polar coronal holes smaller than observed during the previous minimum. We also find that large, low-latitude coronal holes were present on the Sun until 2008 and remained important sources of recurrent high-speed solar wind streams. By the end of 2008, these low-latitude coronal holes started to close down, and finally disappeared in 2009, while smaller, mid-latitude coronal holes formed in the remnants of Cycle 24 active regions shifting the sources of the solar wind at the Earth to higher latitudes.  相似文献   

9.
The cyclic evolution of the heliospheric plasma parameters is related to the time-dependent boundary conditions in the solar corona. “Minimal” coronal configurations correspond to the regular appearance of the tenuous, but hot and fast plasma streams from the large polar coronal holes. The denser, but cooler and slower solar wind is adjacent to coronal streamers. Irregular dynamic manifestations are present in the corona and the solar wind everywhere and always. They follow the solar activity cycle rather well. Because of this, the direct and indirect solar wind measurements demonstrate clear variations in space and time according to the minimal, intermediate and maximal conditions of the cycles. The average solar wind density, velocity and temperature measured at the Earth’s orbit show specific decadal variations and trends, which are of the order of the first tens per cent during the last three solar cycles. Statistical, spectral and correlation characteristics of the solar wind are reviewed with the emphasis on the cycles.  相似文献   

10.
林元章 《天文学进展》1995,13(4):325-334
主要论述宁静日冕洞,以及日冕加热问题的研究现状。讨论了宁静日冕的理论模型、观测模型和混合模型,以及冕洞区大气模型和太阳风加热问题。最后对计划中的日冕空间探测作了简要介绍。  相似文献   

11.
The solar wind ions flowing outward through the solar corona generally have their ionic fractions freeze-in within 5 solar radii. The altitude where the freeze-in occurs depends on the competition between two time scales: the time over which the wind flows through a density scale height, and the time over which the ions achieve ionization equilibrium. Therefore, electron temperature, electron density, and the velocity of the ions are the three main physical quantities which determine the freeze-in process, and thus the solar wind ionic charge states. These physical quantities are determined by the heating and acceleration of the solar wind, as well as the geometry of the expansion. In this work, we present a parametric study of the electron temperature profile and velocities of the heavy ions in the inner solar corona. We use the ionic charge composition data observed by the SWICS experiment on Ulysses during the south polar pass to derive empirically the electron temperature profile in the south polar coronal hole. We find that the electron temperature profile in the solar inner corona is well constrained by the solar wind charge composition data. The data also indicate that the electron temperature profile must have a maximum within 2 solar radii. We also find that the velocities of heavy ions in their freeze-in regions are small (<100 km s-1) and different elements must flow at different velocities in the inner corona.  相似文献   

12.
I. Dorotovič 《Solar physics》1996,167(1-2):419-426
The correlation between the size of polar coronal holes and sunspot numbers has been investigated for the last five solar cycles. The area of polar coronal holes over the period from 1939 to 1993 was derived from ground-based observations of the green coronal line at 530.3 nm (Fe xiv). Correlation analysis revealed that there is no general shift in the maxima of the curves of these two solar indices. The analysis showed the same shift in months in cycles 21 and 22 when the best correlation between the indices is reached; the time shift found in cycle 20 is slightly different from that in cycle 18; in cycle 19, there is found a shift with a value between the values in cycles 18, 20 and 21, 22. The time between succesive peaks of smoothed polar hole size and smoothed sunspot number is different in each cycle.  相似文献   

13.
We investigate the effect of viscosity and magnetic diffusivity on the oblique propagation and dissipation of Alfvén waves with respect to the normal outward direction, making use of MHD equations, density, temperature and magnetic field structure in coronal holes and underlying magnetic funnels. We find reduction in the damping length scale, group velocity and energy flux density as the propagation angle of Alfvén waves increases inside the coronal holes. For any propagation angle, the energy flux density and damping length scale also show a decrement in the source region of the solar wind (< 1.05 R) where these may be one of the primary energy sources, which can convert the inflow of the solar wind into the outflow. In the outer region (> 1.21 R), for any propagation angle, the energy flux density peaks match with the peaks of MgX 609.78 Å and 624.78 Å linewidths observed from the Coronal Diagnostic Spectrometer (CDS) on SOHO and the non-thermal velocity derived from these observations, justify the observed spectroscopic signature of the Alfvén wave dissipation.  相似文献   

14.
Coronal holes and interplanetary disturbances are important aspects of the physics of the Sun and heliosphere. Interplanetary disturbances are identified as an increase in the density turbulence compared with the ambient solar wind. Erupting stream disturbances are transient large-scale structures of enhanced density turbulence in the interplanetary medium driven by the high-speed flows of low-density plasma trailing behind for several days. Here, an attempt has been made to investigate the solar cause of erupting stream disturbances, mapped by Hewish & Bravo (1986) from interplanetary scintillation (IPS) measurements made between August 1978 and August 1979 at 81.5 MHz. The position of the sources of 68 erupting stream disturbances on the solar disk has been compared with the locations of newborn coronal holes and/or the areas that have been coronal holes previously. It is found that the occurrence of erupting stream disturbances is linked to the emergence of new coronal holes at the eruption site on the solar disk. A coronal hole is indicative of a radial magnetic field of a predominant magnetic polarity. The newborn coronal hole emerges on the Sun, owing to the changes in magnetic field configuration leading to the opening of closed magnetic structure into the corona. The fundamental activity for the onset of an erupting stream seems to be a transient opening of pre-existing closed magnetic structures into a new coronal hole, which can support highspeed flow trailing behind the compression zone of the erupting stream for several days.  相似文献   

15.
Polar Coronal Holes During Cycles 22 and 23   总被引:3,自引:0,他引:3  
Harvey  Karen L.  Recely  Frank 《Solar physics》2002,211(1-2):31-52
The National Solar Observatory/Kitt Peak synoptic rotation maps of the magnetic field and of the equivalent width of the He i 1083 nm line are used to identify and measure polar coronal holes from September 1989 to the present. This period covers the entire lifetime of the northern and southern polar holes present during cycles 22 and 23 and includes the disappearance of the previous southern polar coronal hole in 1990 and and formation of the new northern polar hole in 2001. From this sample of polar hole observations, we found that polar coronal holes evolve from high-latitude (60° ) isolated holes. The isolated pre-polar holes form in the follower of the remnants of old active region fields just before the polar magnetic fields complete their reversal during the maximum phase of a cycle, and expand to cover the poles within 3 solar rotations after the reversal of the polar fields. During the initial 1.2–1.4 years, the polar holes are asymmetric about the pole and frequently have lobes extending into the active region latitudes. During this period, the area and magnetic flux of the polar holes increase rapidly. The surface areas, and in one case the net magnetic flux, reach an initial brief maximum within a few months. Following this initial phase, the areas (and in one case magnetic flux) decrease and then increase more slowly reaching their maxima during the cycle minimum. Over much of the lifetime of the measured polar holes, the area of the southern polar hole was smaller than the northern hole and had a significantly higher magnetic flux density. Both polar holes had essentially the same amount of magnetic flux at the time of cycle minimum. The decline in area and magnetic flux begins with the first new cycle regions with the holes disappearing about 1.1–1.8 years before the polar fields complete their reversal. The lifetime of the two polar coronal holes observed in their entirety during cycles 22 and 23 was 8.7 years for the northern polar hole and 8.3 years for the southern polar hole.  相似文献   

16.
The declining phases of solar cycles are known for their high speed solar wind streams that dominate the geomagnetic responses during this period. Outstanding questions about these streams, which can provide the fastest winds of the solar cycle, concern their solar origins, persistence, and predictability. The declining phase of cycle 23 has lasted significantly longer than the corresponding phases of the previous two cycles. Solar magnetograph observations suggest that the solar polar magnetic field is also ~?2?–?3 times weaker. The launch of STEREO in late 2006 provided additional incentive to examine the origins of what is observed at 1 AU in the recent cycle, with the OMNI data base at the NSSDC available as an Earth/L1 baseline for comparisons. Here we focus on the year 2007 when the solar corona exhibited large, long-lived mid-to-low latitude coronal holes and polar hole extensions observed by both SOHO and STEREO imagers. STEREO provides in situ measurements consistent with rigidly corotating solar wind stream structure at up to ~?45° heliolongitude separation by late 2007. This stability justifies the use of magnetogram-based steady 3D solar wind models to map the observed high speed winds back to their coronal sources. We apply the WSA solar wind model currently running at the NOAA Space Weather Prediction Center with the expectation that it should perform its best at this quiet time. The model comparisons confirm the origins of the observed high speed streams expected from the solar images, but also reveal uncertainties in the solar wind source mapping associated with this cycle’s weaker solar polar fields. Overall, the results illustrate the importance of having accurate polar fields in synoptic maps used in solar wind forecast models. At the most fundamental level, they demonstrate the control of the solar polar fields over the high speed wind sources, and thus one specific connection between the solar dynamo and the solar wind character.  相似文献   

17.
The investigation of the dynamics of magnetic fields from small scales to the large scales is very important for the understanding of the nature of solar activity. It is also the base for producing adequate models of the solar cycle with the purpose to predict the level of solar activity. Since December 1995 the Michelson Doppler Imager (MDI) on board of the Solar and Heliospheric Observatory (SOHO) provides full disk magnetograms and synoptic maps which cover the period of solar cycle 23 and the current minimum. In this paper, I review the following important topics with a focus on the dynamics of the solar magnetic field. The synoptic structure of the solar cycle; the birth of the solar cycle (overlapping cycles 23 and 24); the relationship of the photospheric magnetic activity and the EUV solar corona, polar magnetic fields and dynamo theory (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We present a brief review of predictions of solar cycle maximum amplitude with a lead time of 2 years or more. It is pointed out that a precise prediction of the maximum amplitude with such a lead-time is still an open question despite progress made since the 1960s. A method of prediction using statistical characteristics of solar cycles is developed: the solar cycles are divided into two groups, a high rising velocity (HRV) group and a low rising velocity (LRV) group, depending on the rising velocity in the ascending phase for a given duration of the ascending phase. The amplitude of Solar Cycle 24 can be predicted after the start of the cycle using the formula derived in this paper. Now, about 5 years before the start of the cycle, we can make a preliminary prediction of 83.2-119.4 for its maximum amplitude.  相似文献   

19.
The time variations in the latitudinal distribution of the rotation of active regions and coronal holes are investigated. The synoptic maps obtained from observations in the He I 1083 nm line at Kitt Peak Observatory over almost three solar cycles are used as observational data. A Fourier analysis of the time series constructed from synoptic maps has yielded the following results. The rotation of active regions differs significantly from the rotation of coronal holes in all parameters: the set of the most significant rotation periods, their latitudinal distribution, and time variations. The rotation of active regions and coronal holes is characterized by variations from cycle to cycle, a time-varying north-south asymmetry. The power spectra for consecutive cycles of solar activity differ significantly for both epochs of high activity and minima. Analysis of the total power of the spectra within four selected intervals of periods from 21 to 33 days has shown that the total power is highest in the intervals of periods 24–27 and 27–30 days. This is valid for both active regions and coronal holes. The correlation between the total powers in the above intervals of periods changes noticeably with time. Long-lived or successively appearing active regions with rotation periods in the range 24–30 days are typical of the time of a sharp decrease in the total equivalent width of active regions. This includes not only the decline time of the 11-year cycles, but also the minima between recurrent activity maxima during one cycle. A predominance of long-lived coronal holes as their total equivalent width decreases is noticeable for coronal holes with rotation periods in the interval 30–33 days. All of the above results suggest that the rotation of solar structures is determined mainly by the subphotospheric sources of specific structures, not by the rotation of the main volumes of solar plasma of the quiet Sun.  相似文献   

20.
An analysis of solar polar coronal hole (PCH) areas since the launch of the Solar Dynamics Observatory (SDO) shows how the polar regions have evolved during Solar Cycle 24. We present PCH areas from mid-2010 through 2013 using data from the Atmospheric Imager Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) instruments onboard SDO. Our analysis shows that both the northern and southern PCH areas have decreased significantly in size since 2010. Linear fits to the areas derived from the magnetic-field properties indicate that, although the northern hemisphere went through polar-field reversal and reached solar-maximum conditions in mid-2012, the southern hemisphere had not reached solar-maximum conditions in the polar regions by the end of 2013. Our results show that solar-maximum conditions in each hemisphere, as measured by the area of the polar coronal holes and polar magnetic field, will be offset in time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号