首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu  Chin-Chun  Dryer  Murray 《Solar physics》1997,173(2):391-408
A fully three-dimensional (3D), time-dependent, MHD interplanetary model has been used, for the first time, to study the relationship between one form of solar activity and transient variations of the north–south component, Bz, of the interplanetary magnetic field (IMF) at 1 AU during the active period of a representative solar cycle. Four cases of initial steady-state solar wind conditions, with different tilt angles of the heliospheric current sheet/plasma sheet (HCS/HPS) which is known to be inclined at solar maximum, are used to study the relationship between the location of solar activity and transient variations of the north–south IMF Bz component at 1 AU. We simulated the initialization of the disturbance as a density pulse at different locations near the solar surface for each case of initial steady-state condition and observed the simulated IMF evolution of B (= –Bz) at 1 AU. The results show that, for a given density pulse, the orientation of the corresponding transient variation of Bz has a strong relationship to the location of the density pulse and the initial conditions of the IMF. A recipe for prediction of the initial Bz turning direction is also presented in this study.In previous studies that used this recipe with only a flat HCS/HPS that was coincident with the solar equatorial plane, we found a prediction accuracy of 83% from a data set of 73 events during solar maximum. The present study that incorporates more realistic HCS/HPS tilt angles confirms the earlier work.Our study leads us to suggest that significant Bz values, associated with substantial post-shock temporal periods of hours at 1 AU, could be achieved if large energies (say, 10 32–10 33 erg) were released at the Sun in a flare or helmet de-stabilization process.  相似文献   

2.
Predicting the Arrival Time of Shock Passages at Earth   总被引:1,自引:0,他引:1  
The purpose of this parametric study is to predict the arrival time at Earth of shocks due to disturbances observed on the Sun. A 3D magnetohydrodynamic (MHD) simulation code is used to simulate the evolution of these disturbances as they propagate out to 1 AU. The model in Han, Wu and Dryer (1988) uses solar data for input at 0.08 AU (18 solar radii). The initial shock speed (ISS) is assumed to be constant from the corona to 0.08 AU. We investigate how variations of this ISS affect the arrival times of the shock at Earth. This basic parametric study, however, does not consider inhomogeneous background solar wind structures such as corotating interaction regions and their precursor stream–stream interactions, nor interplanetary manifestations of complex coronal mass ejecta such as magnetic clouds. In the latter case, only their associated shocks are considered. Because the ambient (pre-existing background) solar wind speed is known to affect the shock arrival time at 1 AU, we also simulated events with various background solar wind speeds (BSWS) to investigate this effect. The results show that the shock arrival time at Earth depends on the BSWS, the speed of solar disturbances, their size, and their source location at the Sun. However, it is found that for a sufficiently large momentum input, the shock arrival time at Earth is not significantly affected by the pre-existing solar wind speed.  相似文献   

3.
Z. Smith  M. Dryer 《Solar physics》1991,131(2):363-383
A parametric study of the evolution within, and signatures at, 1 AU of high-speed streams is performed with the use of a MHD, 21/2-D, time-dependent model. This study is an extension of an earlier one by Smith and Dryer (1990) who examined the ecliptic plane consequences of relatively short-duration, energetic solar disturbances. The present study examines both the erupting and corotating parts of long-duration, high-speed streams characteristic of coronal hole flows. By examining the variation of the simulated plasma velocity, density, temperature, and magnetic field at 1 AU, as well as the location of the solar coronal hole sources relative to the observer at 1 AU, we are able to provide some insight into the identification of the solar sources of interplanetary disturbances. We present and discuss two definitions for angle locating the solar source of interplanetary disturbances at 1 AU.We apply our results to the suggestion by Hewish (1988) that low-latitude coronal holes are suitably positioned to be the sources of major geomagnetic storms when the holes are in the eastern half of the solar hemisphere at the time of the commencement of the storm. Our results indicate that, for these cases, the streams emanating from within the hole must be very fast, greater than 1000 km s–1, or very wide, greater than 60°, at the inner boundary of 18 solar radii in our simulation.  相似文献   

4.
This paper presents the average three-dimensional configuration of solar flare- or disappearing filament-associated interplanetary disturbances on the basis of IPS (interplanetary scintillation) and spacecraft observations in 1978–1981. The angular distribution of the propagation speed at 1 AU is largely isotropic over the range of 110° in solar longitude centered at the normal of the solar source. In the latitudinal direction, the characteristic angular extent is about 60°. Thus the three-dimensional shape of an interplanetary disturbance can be approximated by a half of an ellipsoid having an axial ratio of about 1.8.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

5.
We utilize a 21/2-D MHD time-dependent model to perform a parametric study of interplanetary shock propagation to 1 AU. The input conditions are represented by the following variables:(1) initial shock velocity, (2) duration of the driving pulse, and (3) width of the pulse at the near-Sun position (18 solar radii). The total net energy added to the solar wind was calculated for each pulse. The forward shock's travel time to, and the peak dynamic pressure at, 1 AU as a function of location along the shock front have been studied over a range of total input pulse energies from 1029 to 1032 ergs. For input pulses with modest angular width and temporal duration, we find that the propagation of the resulting interplanetary fast forward shock waves depends primarily upon the net input energy. The dependence of the transit time upon energy is a power law with a -1/3 index which corresponds to the classical, piston driven case. Reverse shocks are also formed behind all but the lowest energy shocks. Their properties, although also a function of input energy, depend upon the specific values of the input pulse shock velocity, width and duration. We also briefly discuss the propagation of the shocks out to 1 AU, and the conditions for which the interplanetary shocks depart from being symmetric about the input pulse central meridian due to magnetic and dynamic effects.  相似文献   

6.
Gothoskar  Pradeep  Rao  A.P. 《Solar physics》1999,185(2):361-390
Scattering of radio waves by density fluctuations in the solar wind leads to rapid variation in the intensity of compact radio sources. This phenomenon, known as Interplanetary Scintillation (IPS), provides a simple method to study interplanetary activity in the inner heliosphere. During the solar maximum of cycle 22, we carried out extensive, high-time-resolution IPS observations of fast moving interplanetary plasma clouds (IPCs). The observations were done using the Ooty Radio Telescope (ORT) and covered the region between 0.2 AU and 0.8 AU around the Sun. We detected 33 IPCs having velocities of 600 to 1400 km s–1. A two-component model of scattering by time-varying solar wind was developed to analyse these IPCs. The model enabled us to estimate the mass, energy and geometry of each disturbance and to associate them with solar-geomagnetic activity.Detailed analysis suggests that these IPCs were interplanetary signatures of massive and energetic Solar Mass Ejections (SMEs). The SMEs were found to have average mass and kinetic energy of 5.3×1016 g, 2.4×1032 ergs. The average span and width of the SME was found to be 42° and 8×106 km. Association of these disturbances with solar-geomagnetic activity shows that about 80% of them are associated with Long-Duration X-ray Events (LDXE) and Solar Mass Ejections (SMEs). Only 50% of the events were associated with geomagnetic activity. The present experiment has demonstrated that continuous IPS monitoring is an effective technique to detect mass ejections in the interplanetary medium and to study their evolution through the inner heliosphere.  相似文献   

7.
A global 3-D simulation of interplanetary dynamics in June 1991   总被引:3,自引:0,他引:3  
The global dynamics of the solar wind and interplanetary magnetic field in June 1991 is simulated based on a fully three-dimensional, time-dependent numerical MHD model. The numerical simulation includes eight transient disturbances associated with the major solar flares of June 1991. The unique features of the present simulation are: (i) the disturbances are originated at the coronal base (1R s) and their propagation through inhomogeneous ambient solar wind is simulated out to 1.5 AU; (ii) as a background for the transients, the global steady-state solar wind structure inferred from the 3-D steady-state model (Usmanov, 1993c) is used. The parameters of the initial pulses are prescribed in terms of the near-Sun shock velocities (as inferred from the metric Type II radio burst observations) relative to the preshock steady-state flow parameters at the flare sites. The computed parameters at the Earth's location for the period 1–18 June, 1991 are compared with the available observations of the interplanetary magnetic field, solar wind velocity, density, and with variation of the geomagnetic activityK pindex.  相似文献   

8.
We report observations made from several interplanetary spacecraft, of the large low-energy particle event of 23–27 April, 1979 associated with solar filament activity. We discuss the intensity, spectral and directional evolution of the event as observed in the energy range 35–1600 keV on ISEE-3, located ~ 0.99 AU from the Sun upstream of the Earth. We demonstrate that the shock disturbance propagating through the interplanetary medium and observed at ISEE-3 on 24/25 April strongly controls the particle event. From a comparison of the ISEE-3 observations with those on other spacecraft, in particular on Helios-2, located at 0.41 AU heliocentric distance near the Sun-Earth line, we identify the solar filament erupting on late 22 April near central meridian as the trigger for the propagating shock disturbance. This disturbance which comprises a forward shock and a reverse shock at the orbit of ISEE-3 is found to be the main source of the energetic proton population observed.  相似文献   

9.
A subset of CMEs, called interplanetary magnetic clouds (MCs), are observed to have systematic rotation [northward to southward (NS) or southward to northward (SN)] in their field structures. These MCs identified in the heliospheric plasma and field data at 1 AU may have different features associated with them. These structures (NS/SN) may be isolated MC moving with the ambient solar wind. MCs (NS/SN) may also be associated with shock/sheath region, formed due to compression of the ambient plasma/field ahead of them. A fraction from each of these four types of MCs have additional features, being ‘pushed’ by fast solar wind streams from coronal holes, forming interaction region (IR) between MCs and high-speed solar wind streams (HSS). Using these different sets of MCs, we have done a detailed study of the geoeffectiveness of NS and SN turning MCs and their associated features (shock/sheath, IR and HSS). To study the process that produces the geomagnetic disturbances and influences its amplitude/duration, we have utilized the interplanetary plasma and field parameters, namely, plasma velocity, density, temperature, pressure, field strength and its north-south component, during the passage of these structures with different associated properties. Differences in the geoeffectiveness of MCs with different structural and dynamical properties have been identified. The possible role of high-speed stream in influencing the recovery time (and hence duration) of geomagnetic disturbance has also been investigated. A best-fit equation representing the relation between level of the geomagnetic activity (due to MCs) and interplanetary plasma/field parameter has been obtained.  相似文献   

10.
The ground-based radio astronomy method of interplanetary scintillations (IPS) and spacecraft observations have shown, in the past 25 years, that while coronal holes give rise to stable, reclining high speed solar wind streams during the minimum of the solar activity cycle, the slow speed wind seen more during the solar maximum activity is better associated with the closed field regions, which also give rise to solar flares and coronal mass ejections (CME’s). The latter events increase significantly, as the cycle maximum takes place. We have recently shown that in the case of energetic flares one may be able to track the associated disturbances almost on a one to one basis from a distance of 0.2 to 1 AU using IPS methods. Time dependent 3D MHD models which are constrained by IPS observations are being developed. These models are able to simulate general features of the solar-generated disturbances. Advances in this direction may lead to prediction of heliospheric propagation of these disturbances throughout the solar system.  相似文献   

11.
We discuss the effects of certain dynamic features of space environment in the heliosphere, the geo-magnetosphere, and the earth’s atmosphere. In particular, transient perturbations in solar wind plasma, interplanetary magnetic field, and energetic charged particle (cosmic ray) fluxes near 1 AU in the heliosphere have been discussed. Transient variations in magnetic activity in geo-magnetosphere and solar modulation effects in the heliosphere have also been studied. Emphasis is on certain features of transient perturbations related to space weather effects. Relationships between geomagnetic storms and transient modulations in cosmic ray intensity (Forbush decreases), especially those caused by shock-associated interplanetary disturbances, have been studied in detail. We have analysed the cosmic ray, geomagnetic and interplanetary plasma/field data to understand the physical mechanisms of two phenomena namely, Forbush decrease and geomagnetic storms, and to search for precursors to Forbush decrease (and geomagnetic storms) that can be used as a signature to forecast space weather. It is shown that the use of cosmic ray records has practical application for space weather predictions. Enhanced diurnal anisotropy and intensity deficit of cosmic rays have been identified as precursors to Forbush decreases in cosmic ray intensity. It is found that precursor to smaller (less than 5%) amplitude Forbush decrease due to weaker interplanetary shock is enhanced diurnal anisotropy. However, larger amplitude (greater than 5%) Forbush decrease due to stronger interplanetary shock shows loss cone type intensity deficit as precursor in ground based intensity record. These precursors can be used as inputs for space weather forecast.  相似文献   

12.
The interplanetary magnetic field has been mapped between 0.4 and 1.2 AU in the ecliptic plane, extrapolating from satellite measurements at 1 AU. The structure within sectors and the evolution of sectors are discussed. The development of a solar active region appears to produce magnetic loops in the interplanetary medium that result in the formation of a new sector.  相似文献   

13.
Numerous mass ejections from the Sun have been detected with orbiting coronagraphs. Here for the first time we document and discuss the direct association of a coronagraph observed mass ejection, which followed a 2B flare, with a large interplanetary shock wave disturbance observed at 1 AU. Estimates of the mass (2.4 × 1016 g) and energy content (1.1 × 1032 erg) of the coronal disturbance are in reasonably good agreement with estimates of the mass and energy content of the solar wind disturbance at 1 AU. The energy estimates as well as the transit time of the disturbance are also in good agreement with numerical models of shock wave propagation in the solar wind.  相似文献   

14.
The current solar cycle minimum seems to have unusual properties that appear to be related to weak solar polar magnetic fields. We investigate signatures of this unusual polar field in the ecliptic near-Earth interplanetary magnetic field (IMF) for the STEREO period of observations. Using 1 AU OMNI data, we find that for the current solar cycle declining phase to minimum period the peak of the distribution for the values of the ecliptic IMF magnitude is lower compared to a similar phase of the previous solar cycle. We investigate the sources of these weak fields. Our results suggest that they are related to the solar wind stream structure, which is enhanced by the weak polar fields. The direct role of the solar field is therefore complicated by this effect, which redistributes the solar magnetic flux at 1 AU nonuniformly at low to mid heliolatitudes.  相似文献   

15.
Observations of accelerated particle beams are used to probe the coronal and interplanetary magnetic field structures over large distances from the Sun on the order of a few AU and for various heliolatitudes. It is shown that the propagation of low energy particles is very much controled by discrete interplanetary magnetic field structures. These discrete magnetic structures are sometimes embedded within interplanetary solar wind plasma disturbances, commonly called CMEs. The connection between the corona and the interplanetary medium is discussed. These observations lead to new insights on the origin of accelerated particles detected in association with CMEs.  相似文献   

16.
A new class of disturbance in the interplanetary magnetic field has been discovered. This disturbance consists of an enhancement in the magnetic field strength lasting tens of minutes to hours. The strength of the enhancement is variable ranging up to over double the background field strength. The peak field pressure can be as high as 10% of the solar wind dynamic pressure. These events occur randomly with respect to the position of the spacecraft relative to Venus but not randomly with respect to Venus solar ecliptic longitude. There is a significant tendency for these events to cluster near certain ecliptic longitudes. The field distortion is often greater in the direction perpendicular to the solar wind flow rather than along it. These characteristics suggest that the source of the disturbances are weakly outgassing objects, possibly dispersed along their orbits such as in meteor streams.  相似文献   

17.
At present, it is widely believed that coronal mass ejections (CMEs) rather than solar flares, as assumed previously, are the sources of sporadic interplanetary disturbances. CMEs are an integral part of the powerful nonstationary processes that in many cases give rise to long-decay flares (LDFs). We numerically simulate the energy balance in a giant loop that forms during a LDF. For geoefficient disk flares, we show that maintaining the observed X-ray flux requires a prolonged input of a substantial amount of energy into this loop from above, from the region of primary energy release (probably, from a vertical current sheet). Part of the energy from this region propagates outward both at the onset of the process, with plasmoid ejections, and during the prolonged dynamic phase, thereby enhancing the CME. Using the series of LDFs in March 1993 as an example, we consider the role of flares in producing the corresponding interplanetary disturbances. The large amplitude of the Forbush effect and the strong interplanetary disturbance on March 8–10 near the Earth and on March 15 at a heliocentric distance of about 5 AU (Ulysses) are shown to have been associated with the long-duration flare of March 6, 1993. The March 1993 events give a typical example of CME and magnetic-configuration opening that result in post-CME energy release. This is accompanied by the appearance of new arch systems inside the active region and/or by the development of giant loop systems outside. Such a process enhances CME and increases its geoefficiency.  相似文献   

18.
A time-dependent, nonplanar, two-dimensional magnetohydrodynamic computer model is used to simulate a series, separately examined, of solar flare-generated shock waves and their subsequent disturbances in interplanetary space between the Sun and the Earth's magnetosphere. The ‘canonical’ or ansatz series of shock waves include initial velocities near the Sun over the range 500 to 3500 km s?1. The ambient solar wind, through which they propagate, is taken to be a steady-state homogeneous plasma (that is, independent of heliolongitude) with a representative set of plasma and magnetic field parameters. Complete sets of solar wind plasma and magnetic field parameters are presented and discussed. Particular attention is addressed to the MHD model's ability to address fundamental operational questions vis-à-vis the long-range forecasting of geomagnetic disturbances. These questions are: (i) will a disturbance (such as the present canonical series of solar flare shock waves) produce a magnetospheric and ionospheric disturbance, and, if so, (ii) when will it start, (iii) how severe will it be, and (iv) how long will it last? The model's output is used to compute various solar wind indices of current interest as a demonstration of the model's potential for providing ‘answers’ to these questions.  相似文献   

19.
Coronal holes and interplanetary disturbances are important aspects of the physics of the Sun and heliosphere. Interplanetary disturbances are identified as an increase in the density turbulence compared with the ambient solar wind. Erupting stream disturbances are transient large-scale structures of enhanced density turbulence in the interplanetary medium driven by the high-speed flows of low-density plasma trailing behind for several days. Here, an attempt has been made to investigate the solar cause of erupting stream disturbances, mapped by Hewish & Bravo (1986) from interplanetary scintillation (IPS) measurements made between August 1978 and August 1979 at 81.5 MHz. The position of the sources of 68 erupting stream disturbances on the solar disk has been compared with the locations of newborn coronal holes and/or the areas that have been coronal holes previously. It is found that the occurrence of erupting stream disturbances is linked to the emergence of new coronal holes at the eruption site on the solar disk. A coronal hole is indicative of a radial magnetic field of a predominant magnetic polarity. The newborn coronal hole emerges on the Sun, owing to the changes in magnetic field configuration leading to the opening of closed magnetic structure into the corona. The fundamental activity for the onset of an erupting stream seems to be a transient opening of pre-existing closed magnetic structures into a new coronal hole, which can support highspeed flow trailing behind the compression zone of the erupting stream for several days.  相似文献   

20.
We analyze a series of complex interplanetary events and their solar origins that occurred between 19 and 23 May 2007 using observations by the STEREO and Wind satellites. The analyses demonstrate the new opportunities offered by the STEREO multispacecraft configuration for diagnosing the structure of in situ events and relating them to their solar sources. The investigated period was characterized by two high-speed solar wind streams and magnetic clouds observed in the vicinity of the sector boundary. The observing satellites were separated by a longitudinal distance comparable to the typical radial extent of magnetic clouds at 1 AU (fraction of an AU), and, indeed, clear differences were evident in the records from these spacecraft. Two partial-halo coronal mass ejections (CMEs) were launched from the same active region less than a day apart, the first on 19 May and the second on 20 May 2007. The clear signatures of the magnetic cloud associated with the first CME were observed by STEREO B and Wind while only STEREO A recorded clear signatures of the magnetic cloud associated with the latter CME. Both magnetic clouds appeared to have interacted strongly with the ambient solar wind and the data showed evidence that they were a part of the coronal streamer belt. Wind and STEREO B also recorded a shocklike disturbance propagating inside a magnetic cloud that compressed the field and plasma at the cloud’s trailing portion. The results illustrate how distant multisatellite observations can reveal the complex structure of the extension of the coronal streamer into interplanetary space even during the solar activity minimum. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号