首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of nitrogen in landfill leachate has received considerable attention recently because of the relatively low levels at which some nitrogen species (i.e., NH3) can be toxic to aquatic life forms. This study reports on the results of a three-year, pilot-scale field trial demonstrating the use of infiltration bed and nitrate barrier technology to achieve nitrogen removal in landfill leachate. The infiltration bed comprises an unsaturated sand layer overlying a saturated layer of waste cellulose solids (sawdust), which acts as a carbon source for heterotrophic denitrification. When loaded at a rate of 1 to 3 cm/day, the infiltration bed was successful at lowering leachate inorganic nitrogen (NH4++ NO3-) levels averaging 24.8 mg/L N by 89%, including 96% in the third year of operation. The surface water discharge criteria for un-ionized ammonia (NH3) were met on all occasions in the treated leachate during the second and third years of operation. Nitrogen attenuation is presumed to occur by a two-step process in which leachate NH4+ is first oxidized to NO3- in the unsaturated sand layer and then is converted to nitrogen gas (N2) by denitrification occurring in the underlying sawdust layer. Mass balance calculations suggest that the sawdust layer has sufficient carbon to allow denitrification to proceed for long periods (1.0 to 30 years) without replenishment. Because this technology is simple to construct and is relatively maintenance free, it should be attractive for use at smaller landfills where the installation of conventional treatment plants may not be feasible.  相似文献   

2.
Machida I  Lee SH 《Ground water》2008,46(4):532-537
We observed long-term changes in the concentrations of dissolved ions in ground water caused by leachate from new volcanic ejecta deposited on the ground surface of the volcanic Miyakejima Island, Japan. Water samples were collected from nine wells and two rain collectors over a period of more than 10 years, and samples of runoff water were collected periodically. The samples were analyzed for temperature, pH, alkalinity, Cl, and SO42−; some of the samples were also analyzed for δ13C. Because the leachate from the volcanic ejecta contained sulfate, we recorded an increase in SO42 concentrations in the (unconfined) well water. The increase in SO42 was initially detected between less than 1.4 and 5.2 years after the eruption, showing peak concentrations from 2.4 to 6.4 years after the eruption. This delayed response reflects the transit time of downward-moving SO42 in the vadose zone, corresponding to an apparent movement rate of 0.4 to 7.2 cm/d. The rate relates to the mean recharge, represented as a fraction of local mean rainfall, and is calculated using the Cl balance method. The magnitude of the recorded increases reflects the volume of volcanic mudflow on the ground surface within the basin. For the management of ground water after an eruption, it is therefore important to know the chemical properties of the volcanic ejecta and the spatial distribution of mudflow to estimate the magnitude of the effect of ejecta on ground water quality.  相似文献   

3.
A large number of ground water samples (360) was collected from 60 stations over six consecutive seasons to study the influence of the main sewerage drain on shallow ground water table beneath the municipal area of Cuttack, India. A majority of the samples collected from stations close to the drain exceeded the maximum permissible limits set by the World Health Organization (WHO). Almost all the samples near the drain exceeded the WHO limit for NO3- and Na+. However, the concentrations decreased as the distance from the drain increased. The winter season registered the maximum concentrations of NH4+, NO3-, and SO42- ions whereas the minimum values always coincided with the rainy season. R-mode factor analysis was conducted to find relationships amongst the 16 chemical parameters studied. Fluoride showed a negative correlation with Cl-, Na+, NO3-, SO42-, and PO43-. The concentration of F- may be lower in raw waste water than naturally occurs in the ground water. Therefore, a decrease in the concentration of F- near the drain may be attributed to dilution by contributions of waste water to the ground water. The rest of the parameters were found to be directly related to the distance of collection points to the sewerage. The distribution of nutrients is strongly affected by leaching of waste water into the ground water.  相似文献   

4.
Masumi  Sakaguchi  Hideo  Ishizuka 《Island Arc》2008,17(3):305-321
Abstract   The mineral assemblages of the pumpellyite–actinolite facies such as pumpellyite + actinolite + epidote + chlorite or actinolite + epidote + hematite + chlorite occur in the Sanbagawa low-grade metamorphic region, central Shikoku, southwest Japan. Chemical compositions of these minerals from the eight newly studied areas were analyzed in order to evaluate the areal extent and thermal structure of the region. In the buffered assemblage of pumpellyite + actinolite + epidote + chlorite, the Fe3+/(Fe3+ + Al) values of epidote decrease slightly with decreasing Fe2+/(Fe2+ + Mg) values for chlorite. The changes in these values show a general correlation with temperature. The presence of this relationship implies that the Fe3+/(Fe3+ + Al) values of epidote can be used to divide the Sanbagawa low-grade metamorphic region into low-, medium- and high-grade subzones. The areal distribution of these subzones indicates that: (i) the temperature seems to decrease in the same sense as envisaged by the zonal mapping of the higher-grade pelitic schists; and (ii) there is no significant gap of metamorphic conditions through the boundary between the two structural units (Besshi and Oboke units). It follows that the Sanbagawa low-grade metamorphic region decreases in temperature going up the structural section, and tectonic discontinuities have not affected the thermal structure.  相似文献   

5.
Eloctromigraiion offers a potential tool for remediating ground water contaminated with highly soluble components, such as Na+, Cl, NO3 and SO4. A field experiment was designed to lest the efficacy of electromigration for preconcontrating dissolved SO42 in ground water associated with a fossil-fuel power plant. Two shallow wells, 25 feel apart (one 25 feel deep, the other 47 feet deep), were constructed in the upper portion of an unconfined alluvial aquifer. The wells were constructed with a double-wall design, with an outer casing of 4-inch PVC and an inner lube of 2-inch FVC; both were fully slotted (0.01 inch). Electrodes were constructed by wrapping the inner lulling with a 100-foot length of rare-earth metal oxide/copper wire. An electrical potential of 10.65 volts DC Was applied, and tests were run for periods of 12, 44, and 216 hours. Results showed large changes in the pH from the initial pH of ground water of about 7.5 to values of approximately 2 and 12 at the anode and cathode, respectively. Despite the fact that the test conditions were far from ideal, dissolved SO42-; was significantly concentrated at the anode. Over a period of approximately nine days, the concentration of SO42- at the anode reached what appeared to he a steady-state value of 2200 mg/L. compared lo the initial value in ground water of approximately 1150 mg/L. The results of this field lest should encourage further investigation of electromigration as a tool in the remediation of contaminated ground water.  相似文献   

6.
Currently, vadose zone monitoring is required under the Resource Conservation and Recovery Act (RCRA) only at land treatment facilities. Contaminant leak detection through ground water monitoring is very important, but it is considered to be after the fact. Remedial action costs can be reduced considerably by monitoring the vadose zone for compounds that exhibit high rates of movement. Volatile organic compounds (VOCs) exhibit this property and are present at many municipal landfills, recycling facilities, and treatment storage and disposal facilities (TSDFs). Through the authors'personal experience, it has been noted that gaseous phase transport of VOCs through the vadose zone is at least an order of magnitude greater than advective transport of VOCs in ground water. Therefore, VOCs in soil gas are an effective early warning leak detection parameter. Downward movement of leachate can be intercepted by porous cup lysimeters. Attenuation in the vadose zone slows the apparent movement of contaminants; however, it is only a matter of time before leachate reaches the water table. The authors believe that soil-gas and pore-water monitoring should and eventually will be required at all RCRA sites. If vadose zone monitoring becomes an additional requirement under RCRA, both the facility owner and the taxpayer will benefit. During the interim, facility owners can benefit by employing vadose zone monitoring techniques coupled with either qualitative or quantitative chemical analyses.  相似文献   

7.
Sorption of dissolved Fe2+ on bentonite was studied using a batch technique. The distribution coefficient, Kd , was evaluated for a bentonite-iron system as a function of contact time, pH, sorbent and sorbate concentrations, and temperature. Sorption results were interpreted in terms of Freundlich's and Langmuir's equations. Thermodynamic parameters for the sorption system were determined at three temperatures: 298°, 308°, and 318°K. The values of ΔH°(-4.0 kjmol−1) and ΔG°(-2.46 Kjmol−1) at 298°K (25°C) suggest that sorption of iron on bentonite is an exothermic and a spontaneous process. The ΔG° value became less negative at higher temperatures and, therefore, less iron was sorbed at higher temperatures. The desorption studies with 0.01 M CaCl2 and deionized water at iron loading on bentonite showed that more than 90 wt% of the iron is irreversibly sorbed, probably due to the fixation of the iron by isomorphous replacement in the crystal lattice of the sorbent.  相似文献   

8.
Abstract Peridotite xenoliths from the subarc mantle, which have been rarely documented, are described from Iraya volcano of the Luzon arc, the Philippines, and are discussed in the context of wedge-mantle processes. They are mainly harzburgite, with subordinate dunite, and show various textures from weakly porphyroclastic (C-type) to extremely fine-grained equigranular (F-type). Textural characteristics indicate a transition from the former to the latter by recrystallization. The F-type peridotite has inclusion-rich fine-grained olivine and radially aggregated orthopyroxene, being quite different in texture from ordinary mantle-derived peridotites previously documented. Despite their strong textural contrast, the two types do not show any systematic difference in modal composition. The harzburgite of C-type has ordinary mantle peridotite mineralogy; olivine is mostly Fo91–92 and chromian spinel mostly has Cr#s (= Cr/[Cr + Al] atomic ratios) from 0.3 to 0.6. Olivine is slightly more Fe-rich (Fo89–91) and spinel is more enriched in Cr (the Cr#, 0.4–0.8) and Fe3+ in F-type peridotites than in C-type harzburgite. Orthopyroxene in F-type peridotites is relatively low in CaO (<1 wt%), Al2O3 (<2 wt%) and Cr2O3 (<0.4 wt%). The F-type peridotite was possibly formed from the C-type one by recrystallization including local dissolution and precipitation of orthopyroxene assisted by fluid (or melt) of subduction origin. Textural characteristics, however, indicate a deserpentinization origin from abyssal serpentinite of which protolith was a C-type peridotite. In this scenario the initial abyssal serpentinite was possibly dehydrated due to an initiation of magmatic activity beneath an incipient oceanic arc like Batan Island. The F-type peridotite is characteristic of the upper mantle of island arc, especially of incipient arc.  相似文献   

9.
Abstract The talc (Tlc) + phengite (Phn) + albite (Ab) assemblage is newly confirmed in MnOtotal-rich (1.65 wt% in average) piemontite-quartz schists from the intermediate- and high-grade part of the Sanbagawa belt, central Shikoku, Japan. Talc is in direct contact with Phn, Ab and chlorite (Chl) with sharp boundaries, suggesting that these four phases mutually coexist. Other primary constituents of the Tlc-bearing piemontite-quartz schist are spessartine, braunite, hematite (Ht), crossite/barroisite and dolomite. Phlogopite (Phl) rarely occurs as a later stage mineral developing along the rim of Phn. The studied piemontite-quartz schist has mg# (= Mg/(Mg + Fe2+)) ~ 1.0, because of its high oxidation state. Schreinemakers' analysis in the KNMASH system and the mineral assemblage in the Sanbagawa belt propose a possible petrogenetic grid, in which the Tlc–Phn assemblage is stable in a P-T field surrounded by the following reactions: lower-pressure limit by Chl + Phl + quartz (Qtz) = Phn + Tlc + H2O as proposed by previous workers; higher-pressure limit by glaucophane + Qtz = Tlc + Ab + H2O; and higher-temperature limit by Tlc + Phn + Ab = Phl + paragonite + Qtz + H2O. Thermodynamic calculation based on the database of Holland & Powell (1998) , however, suggests that the Tlc–Phn stability field defined by these reactions is unrealistically limited around 580–600 °C at 11.6–12.0 (± 0.7) kbar. Schreinemakers' analysis in the KNMA-Fe3+-SH system and the observed mineral assemblage predict that Chl + crossite = Tlc + Ab + Ht + H2O is a preferable Tlc-forming reaction in the intermediate-grade part of the Sanbagawa belt and that excess Ab + hematite narrows the stability field of the Tlc–Phn assemblage.  相似文献   

10.
Abstract Self-potential variations were measured to estimate the magnitude of electrokinetic and hydrological parameters (zeta potential and permeability) of the Nojima Fault zone in Awaji, Japan. The study observed self-potential variations that seemed to be associated with water flow from the injection well to the fracture zone, which were induced by turning the injection on and off. Amplitudes of the variations were a few to 0.03 V across 320–450 m dipoles. These variations can be explained well with an electrokinetic model. The quantity k/ζ (permeability/zeta potential) is in the range 1.6 × 10−13− 5.4 × 10−13 m2/V. Permeability of the Nojima fault zone can be estimated as approximately 10−16–10−15 m2 on the assumption that the zeta potential is in the range –0.01 to –0.001 V.  相似文献   

11.
Gasoline constituents were detected in unsaturated soil and rock during abandonment of a leaky underground storage tank (UST). The unsaturated sequence beneath the former UST consists of 90 feet of silty till, fractured dolomite, and friable sand-stone. Pore gas probes were installed in each of the unsaturated units, both in the source area and in a background on-site location. Pore gas samples were collected to evaluate the nature, extent, and fate of residual hydrocarbons in the vadose zone. Pore gas from the till and dolomite in the source area was enriched in petroleum hydrocarbons and carbon dioxide, and was depleted in oxygen, relative to pore gas from the background area. During two years of ground water monitoring at the site, methyl tertiary butyl ether was periodically detected in the ground water beneath the source area as pulses of recharge passed through the unsaturated zone, but no other gasoline constituents were detected. Apparently, the most degradable fraction of the gasoline (aromatic hydrocarbons) is being attenuated in the vadose zone before the water table is reached.  相似文献   

12.
Sampling of soil pore moisture in the vadose zone underneath land disposal facilities (landfills and surface impoundments) for hazardous waste has been suggested as an "early warning system" to detect leakage from these facilities. Some states require vadose zone moisture sampling at such sites. Given a leak of a particular size, mathematical models can estimate the necessary moisture sample volume collection times and lysimeter spacings to guarantee detection of the leak in a homogeneous medium. Examination of 47 hazardous waste sites existing in 1984 indicated the most were located in areas with water tables too shallow to permit vadose zone detection monitoring. Several of the 47 sites had soils that could be described as loamy sand, silt loam or silty clay. Using these three soils as examples, the process of lysimeter leak-detector network design has been illustrated. For a particular loamy sand with a saturates hydraulic conductivity of 10-6 cm/ sec, the maximum ceramic lysimeter spacing is 15.5 feet at a depth of 30 feet to collec a moisture sample of 10 mL in one week from a 1 ft2 leak. For a silt loam, maximum lysimeter spacing would be 17 feet at depth of 15 feet. For silty clays, the maximum lysimeter spacing is 7 feet at a depth of 2 feet; maximum emplacement depth is about 9 feet. Calculations show that in some soils, suction lysimeters will not be able to collect usable moisture samples. Since soil properties vary widely and lysimeter spacing is strongly dependent on soil-moisture characteristics appropriate soil measurements and modeling must be performed at each disposal facility to estimate lysimete performance and to select locations for emplacement.  相似文献   

13.
At a utility service center, gasoline from an underground storage tank had leaked into subsurface vadose zone soils for several years. To remediate the site, a soil vapor extraction (SVE) system was installed and operated. At the completion of the SVE operation, gasoline-containing residues in several confirmation soil borings exceeded agency-mandated cleanup levels. Rather than continue with SVE, a risk-based approach was developed to evaluate what levels of gasoline-containing residues could be left in the soil and still protect human health. The risk-based approach consisted of simulating the fate of chemical residues through the vadose zone and then into both the ground water and atmosphere. Receptor point concentrations were predicted, and health risks were assessed. The risk assessment concluded that ingestion of contaminated ground water and inhalation of air while showering were the largest potential contributors to risk, and that risks associated with inhalation of vapor-containing ambient air are small. However, all predicted risks are below the acceptable risk levels of 10−6 individual cancer risk probability and 1.0 hazard index. Therefore, the lead agency accepted the recommendation that the site requires no further remediation. The service center continues normal operations today.  相似文献   

14.
A conceptual model of eolian transport is proposed to address the widely distributed, high concentrations of hexavalent chromium (Cr+6) observed in ground water in the Emirate of Abu Dhabi, United Arab Emirates. Concentrations (30 to more than 1000 μg/L Cr+6) extend over thousands of square kilometers of ground water systems. It is hypothesized that the Cr is derived from weathering of chromium-rich pyroxenes and olivines present in ophiolite sequence of the adjacent Oman (Hajar) Mountains. Cr+3 in the minerals is oxidized to Cr+6 by reduction of manganese and is subsequently sorbed on iron and manganese oxide coatings of particles. When the surfaces of these particles are abraded in this arid environment, they release fine, micrometer-sized, coated particles that are easily transported over large distances by wind and subsequently deposited on the surface. During ground water recharge events, the readily soluble Cr+6 is mobilized by rain water and transported by advective flow into the underlying aquifer. Chromium analyses of ground water, rain, dust, and surface (soil) deposits are consistent with this model, as are electron probe analyses of clasts derived from the eroding Oman ophiolite sequence. Ground water recharge flux is proposed to exercise some control over Cr+6 concentration in the aquifer.  相似文献   

15.
To investigate the hydrogeochemical characteristics of groundwater 23 shallow, 30 intermediate and 38 deep wells samples were collected from Sylhet district of Bangladesh, and analyzed for temperature, pH, Eh, EC,DO, DOC, Na^+, K^+, Ca2+, Mg2+, Cl^-, SO_42-, NO_3^-,HCO_3^-, SiO_2^-, Fe, Mn and As. Besides, 12 surface water samples from Surma and Kushiyara Rivers were also collected and analyzed to understand the influence into aquifers. Results revealed that, most of the groundwater samples are acidic in nature, and Na–HCO_3 is the dominant groundwater type. The mean value of temperature, EC,Na^+, K^+, Ca2+, Mg2+, Cl^-, NO_3^- and SO_42- were found within the range of permissible limits, while most of the samples exceeds the allowable limits of Fe, Mn and As concentrations. However, relatively higher concentration of Fe and Mn were found in deep water samples and reverse trend was found in case of As. The mean concentrations of As in shallow, intermediate and deep wells were 39.3, 25.3and 21.4 lg/L respectively, which varied from 0.03 to148 lg/L. From spatial distribution, it was found that Fe,Mn and As concentrations are high but patchy in northern,north-western, and south-western part of Sylhet region. The most influential geochemical process in study area were identified as silicate weathering, characterized by active cation exchange process and carbonate weathering, which thereby can enhance the elemental concentrations in groundwater. Pearson's correlation matrix, principal component analysis and cluster analysis were also employed to evaluate the controlling factors, and it was found that, both natural and anthropogenic sources were influencing the groundwater chemistry of the aquifers. However, surface water has no significant role to contaminate the aquifers,rather geogenic factors affecting the trace elemental contamination. Thus it is expected that, outcomes of this study will provide useful insights for future groundwater monitoring and management of the study area.  相似文献   

16.
Tomokazu  Tokada 《Island Arc》1998,7(4):609-620
The Ina district of the Ryoke Belt is divided into two mineral zones, based on the mineral parageneses of the pelitic and psammitic rocks at the peak metamorphism. A biotite–muscovite zone (quartz + plagioclase + biotite + muscovite with or without K-feldspar) constitutes the northwestern part, and a biotite–cordierite–K-feldspar zone (quartz + plagioclase + biotite + cordierite + K-feldspar) comprises the central to southern and eastern parts. The isograd reaction between two mineral zones is defined by a divariant reaction: Mg-rich biotite + muscovite + quartz = Fe-rich biotite + cordierite + K-feldspar + H2O (1), which, in the K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) system, occurs at ∼ 590 °C at 0.2 GPa and 660 °C at 0.4 GPa. Fibrolite accompanied by andalusite porphyroblasts in aluminous pelitic rocks of the biotite–muscovite zone and the low-grade part of the biotite–cordierite–K-feldspar zone, suggests that sillimanite was the stable aluminosilicate at the peak metamorphic condition throughout the area. In the high-grade part of the biotite–cordierite–K-feldspar zone, fibrolite mostly occurs as inclusions in cordierite or in plagioclase. The phase relations and the compositional zoning of plagioclase in relation to fibrolite inclusions suggest that fibrolite was formed under relatively high-pressure conditions, and that partial melting took place.  相似文献   

17.
The impact on groundwater imparted by the infiltration of high dissolved organic carbon (DOC) leachate from capped, unlined landfills can be attenuated by biogeochemical reactions beyond the waste source, although such reactive loss in the aquifer is difficult to distinguish from conservative advective dispersion. Compound-specific measurement of δ(13)C in carbon species, including CH(4), dissolved inorganic carbon (DIC), and the major DOC compounds (acetate, humic acid, and fulvic acid) provides a constraint in this assessment that can assist in exercises of modeling and prediction of leachate transport. The Trail Road municipal landfill near Ottawa, Ontario, Canada, hosts an unlined sector which produces a highly enriched leachate (DOC >4500 mg/L) that provides a good site to examine reactive attenuation within the receptor aquifer. Acetate, a sentinel component of leachate DOC (~1000 mg C/L), is absent in impacted groundwater. Mass balance calculations together with reaction modeling suggest continued acetate fermentation with calcite control on DIC and δ(13)C(DIC) evolution. In groundwater within 50 m of the landfill, methane concentrations are elevated (~10 mg/L), consistent with acetate fermentation, whereas δ(13)C(CH4) measurements in deeper groundwater range down to -51‰ compared with -60‰ in the landfill demonstrating oxidative loss. DOC in the deep aquifer is remarkably depleted to values less than -40‰ suggesting methanotrophic bacteria selectively consume isotopically light CH(4) to fix carbon. Continued reaction of leachate DOC in groundwater is demonstrated by evolution away from conservative mixing lines on diagrams of δ(13)C vs. concentrations of DIC and DOC.  相似文献   

18.
Abstract Elemental and isotopic compositions of noble gases extracted from the bore hole water in Osaka plain, central Japan were examined. The water samples were collected from four shallow bore holes (180-450 m) and seven deep bore holes (600-1370 m) which have been used for an urban resort hot spring zone. The water temperatures of the deep bore holes were 22-50°C and that of the shallow bore holes, 13-23°C. The elemental abundance patterns show the progressive enrichment of the heavier noble gases compared with the atmospheric noble gas composition except for He, which is heavily enriched in deep bore hole water samples. 3He/4He ratios from the bore holes reaching the Ryoke granitic basement were higher than the atmospheric value (1.4 × 10−6), indicating a release of mantle He through the basement. The highest value of 8.2 × 10−6 is in the range of arc volcanism. On the other hand, the bore holes in sedimentary rocks overlying the basement release He enriched in radiogenic 4He, resulted in a low 3He/4He ratio of 0.5 × 10−6. 4He/20Ne and 40Ar/36Ar ratios indicate that the air contamination is generally larger in shallow bore holes than in deep ones from each site. The helium enriched in mantle He is compatible with the previous work which suggested up-rising magma in 'Kinki Spot', the area of Osaka and western Wakayama, in spite of no volcanic activity in the area. A model to explain an initiation of magma generation beneath this area is presented.  相似文献   

19.
A 5-year-old wood particle reactor treating agricultural tile drainage in southern Ontario was monitored for its ongoing ability to treat both nitrate (NO3) and perchlorate (ClO4). Prior to sampling undertaken in the fifth year of operation, a highway safety flare containing ClO4 was immersed in the inlet pipe elevating influent ClO4 concentrations to up to 33.7 μg/L. ClO4 removal rates were inhibited in the presence of more than 1 to 2 mg/L NO3-N, but increased rapidly to about 60 μg/L/d upon NO3 depletion. Nitrate removal rates, measured subsequently in the sixth and seventh years of operation, varied with temperature in the range of 2 to 16 mg N/L/d, but remained similar to rates measured in the second year. Additionally, no deterioration in the hydraulic conductivity (K) of the coarse core layer (0.5 3 removal rates and can remain highly permeable over a number of years. The media can also provide high removal rates for other redox sensitive contaminants such as ClO4. The ability to directly measure the reactor flow rate, in this case via an outlet pipe, greatly simplified the task of estimating hydraulic properties and reaction rates.  相似文献   

20.
Most vegetated land surfaces contain macropores that may have a significant effect on the rate of infiltration of water under ponded conditions on the ground surface. Owing to the small-scale variations of the land topography (microtopography), only portions of the land area may get ponded during the process of overland flow. As the macropores transmit water at much higher rates than the primary soil matrix, higher macropore activation in ponded areas produces larger effective infiltration rates into the soil. Therefore, overland flow and infiltration into the macroporous vadose zone are interrelated. Representing the microtopographic variation of the land surface by a simple sine wave function, a method was developed to relate the ponding area to the average ponding depth which was determined by overland flow. A numerical model coupling overland flow and infiltration into the macroporous vadose zone was developed. Overland flow was simulated using the St. Venant equations with the inertia terms neglected. A single macropore model was used to simulate the infiltration into the macroporous vadose zone. The interaction between overland flow and the infiltration into the macroporous vadose zone was analyzed for a hypothetical watershed. The sensitivity analysis revealed that the interaction of macropore flow and overland flow is significant. For the conditions tested, the macropore flow and the overland flow were found to be more sensitive to the macroporosity and less sensitive to the microtopographic surface variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号