首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
汉诺坝地区上地幔尖晶石—石榴石相转变带温压条件   总被引:8,自引:1,他引:7  
根据汉诺坝尖晶石石榴石二辉辉石岩包体矿物成分新资料和前人的尖晶石石榴石二辉橄榄岩包体矿物成分资料,运用斜方辉石Ca溶解度温度计和斜方辉石-石榴石Al分配压力计,计算了尖晶石—石榴石相转变带的温度和压力条件,首次获得了汉诺坝地区的新生代古地温曲线。尖晶石石榴石二辉辉石岩包体代表的温度范围为930~978℃,压力范围为142~165GPa:尖晶石石榴石二辉橄榄岩包体代表的温度范围为991~1110℃,压力范围为158~216GPa,与最新的实验结果基本吻合。地温曲线沿大洋地温曲线(曲线方程为t=2524+897478p-18308p2)上方近平行延伸。推测汉诺坝玄武岩的起源深度至少为70km。二辉辉石岩包体来自较冷的岩石圈,而二辉橄榄岩来自岩石圈与软流圈的过渡带,并且表明后者的地温梯度以对流热地温梯度为主。  相似文献   

2.
The paper discusses the results of mineralogical and petrographic studies of spinel lherzolite xenoliths and clinopyroxene megacrysts in basalt from the Jixia region related to the central zone of Cenozoic basaltic magmatism of southeastern China. Spinel lherzolite is predominantly composed of olivine (Fo89.6–90.4), orthopyroxene (Mg# = 90.6–92.7), clinopyroxene (Mg# = 90.3–91.9), and chrome spinel (Cr# = 6.59–14.0). According to the geochemical characteristics, basalt of the Jixia region is similar to OIB with asthenospheric material as a source. The following equilibrium temperatures and pressures were obtained for spinel peridotite: 890–1269°C and 10.4–14.8 kbar. Mg# of olivine and Cr# of chrome spinel are close to the values in rocks of the enriched mantle. It is evident from analysis of the textural peculiarities of spinel lherzolite that basaltic melt interacted with mantle rocks at the xenolith capture stage. Based on an analysis of the P–T conditions of the formation of spinel peridotite and clinopyroxene megacrysts, we show that mantle xenoliths were captured in the course of basaltic magma intrusion at a significantly lower depth than the area of partial melting. However, capture of mantle xenoliths was preceded by low-degree partial melting at an earlier stage.  相似文献   

3.
1.Introduction  Thethermalstateandrheologyoftheuppermantleareofgreatimportanceinunderstandingthestructureanddynamicsofthelithosphere,andevenforits3dimensionalor4dimensionalmapping(O’ReillyandGriffin,1985;O’Reillyetal.,1996;Xuetal.1995;Xuetal.,199…  相似文献   

4.
Oxidation state of mantle xenoliths from British Columbia,Canada   总被引:3,自引:0,他引:3  
Mössbauer spectra for 17 spinels separated from mantle xenoliths from six different eruptive centers in southern British Columbia, Canada were measured in an effort to accurately determine their Fe3+/total Fe ratios, and to examine lateral and vertical variations in oxygen fugacities (f o2's) calculated for these samples using published thermobarometric methods. Spectra acquired at 298 and 77 K suggest that both Fe2+ and Fe3+ are tetrahedrally coordinated in lherzolite spinels from this alkaline province. Calculatedf o2's for spinel lherzolites from British Columbia range from about 0.5 to 1.5 log units below the fayalite-magnetite-quartz (FMQ) oxygen buffer at 15 kbar using the thermobarometric method of O'Neill and Wall. Thesef o2's are on average more reducing than those reported for the upper mantle beneath the Massif Central and Japanese Arc and fall within the range for fresh MORB glasses and for lherzolite xenoliths from the southwestern United States and Mongolia. Significant variations inf o2 between samples from different eruptive centers with varying ages are absent, indicating that the oxidation state of the upper mantle was not affected by Cenozoic magmatism within this alkaline province.  相似文献   

5.
 Ultramafic xenoliths are found in Kishyuku Lava, Fukue-jima, Southwest Japan. These include spinel lherzolite, harzburgite and dunite, as well as pyroxenite. The compositions of the constituent minerals of the peridotite xenoliths are in the range of upper mantle peridotites. Variable Cr/(Cr+Al) ratios (0.1–0.5) of spinel, together with a limited range in olivine composition (Fo90–Fo92), indicate that the xenoliths are derived from slightly to highly depleted residual mantle. The combination of previously published clinopyroxene-olivine geothermobarometry and clinopyroxene-orthopyroxene geothermometry applied to the xenoliths yields a high geotherm of 1070° C at 1.0 GPa up to 1200° C at 2.2 GPa. Existence of such depleted upper mantle is compatible with the existing model of asthenospheric injection during the rifting of the Northeast China and the Japan Sea. The high geotherm is caused by thermal perturbation due to the injection of the hot asthenosphere and/or post-rifting uprise of mantle diapirs since 11 Ma. Received: 15 May 1995 / Accepted: 3 January 1996  相似文献   

6.
Leander Franz  Rolf L. Romer 《Lithos》2010,114(1-2):30-53
Petrologic, geochemical and isotopic investigations on two ultramafic xenoliths with metasomatic veins from the TUBAF Seamount in the Bismarck Archipelago NE of Papua New Guinea reveal different styles of metasomatic overprinting. The first xenolith, a clinopyroxene–poor spinel lherzolite, was part of the depleted upper mantle. It contains an orthopyroxene-rich vein that formed by hydrous metasomatism at ~ 980 °C and ~ 1.5 GPa. The second xenolith is a clinopyroxene-dominated spinel olivine websterite that formed as a magmatic cumulate at the transition of the upper mantle to the oceanic crust. The websterite contains a vein with orthopyroxenes and clinopyroxenes, which give evidence for high-temperature crystallization at ~ 1300 °C and < 0.36 GPa. Both xenoliths were transported to the seafloor by a Quaternary trachybasalt in a fore-arc position. The vein minerals show a strong affinity to a supra-subduction zone or island arc setting. The REE pattern of the vein in the clinopyroxene–poor lherzolite strongly resembles the one from the host trachybasalt, with a high enrichment of the LREE and a strong to moderate enrichment of the MREE and HREE. Although broadly similar in shape, the REE pattern of the vein in the websterite shows a much weaker enrichment. The same applies to the trace-element patterns, although there are significant differences in the Eu, Zr, Hf and Nb concentrations. The isotope signatures of both veins suggest a derivation from a subducted slab that had been hydrothermally altered by seawater (high 87Sr/86Sr values).The contrasting crystallization temperatures of the vein minerals as well as their overall geochemical differences indicate that the metasomatic agents responsible for the vein in the websterite were mobilized from a previously depleted source at a much deeper mantle level than those forming the vein of the clinopyroxene–poor lherzolite. The metasomatic agents may also have been mobilized at different times and from different plates, i.e., the deeply subducted Solomon Sea Microplate (for the veins in the websterite) and the shallow dehydrating Pacific Plate (for the veins in the clinopyroxene–poor lherzolite).Metasomatic agents responsible for similar petrologic phenomena, i.e., modal or cryptic metasomatism, may have distinctly different origins and show contrasting histories. A strongly depleted lherzolite may totally lose its initial geochemical signature by the influence of an enriched metasomatic agent, whereas a primarily enriched ultramafic rock, e.g., a websterite, may strongly obscure the trace-element pattern of a less enriched metasomatic vein. Furthermore, the geochemistry of the ultramafic xenoliths may reflect polyphase cryptic and modal metasomatism related to veining and later transport by the hosting melt to the seafloor.  相似文献   

7.
Garnet lherzolite xenoliths of similar petrography and mineralogy are found in the Elwin Bay, Nanorluk, and Amayersuk kimberlites. The xenoliths are either coarse equant to coarse tabular or porphyroclastic in texture. Compositions of coexisting pyroxenes indicates equilibration at 1000–1270° C at 34–41 kb (Wood-Banno/Wood method) or 865–1200° C at 29–36 kb (Wells/Wood method). No simple correlation exists between textural types and equilibration temperature. A primary spinel-bearing garnet lherzolite has equilibrated at 840° C at 21 kb (Wells/Wood) and provides the only known example of a xenolith with relatively high Cr/Cr+Al which has equilibrated at the spinel to garnet lherzolite transition along the continental geotherm. The pressure and temperature estimates for the xenoliths lie above those of the steady state geotherm and indicate that a perturbed geotherm existed in this region at the time of kimberlite intrusion. The formation of perturbed geotherms is discussed and it is considered that the upper high temperature limbs of inflected geotherms are transient pseudogeotherms generated in response to a thermal aureole about a rising mantle diapir and that the lherzolites which define such a geotherm represent a telescoped section of the mantle and include xenoliths derived from above and below the point of kimberlite liquid segregation. The lower temperature limbs of inflected geotherms are considered to be representative of the steady state geotherm and are sampled by the kimberlite which after segregation from the diapir rises at a much faster rate than the parent diapir and passes through material which is unaffected by the diapir thermal aureole.  相似文献   

8.
福建明溪上地幔热结构及流变学特征   总被引:3,自引:0,他引:3  
林传勇  韩秀玲 《地质论评》1999,45(4):352-360
通过对采自福建明溪的幔源包体样品的详细研究,建立了该区上地幔的地温线,探讨其流变学特征。所获地温线高于大洋地温线,但稍低于中国东部和澳大利亚东南部地温线。由该地温线推导的壳幔边界为38km左右,但尖晶石二辉橄榄岩在32km左右即已开始出现,表明存在上地幔物质的底侵作用。同样,尖晶石二辉橄榄岩和石榴子石二辉橄榄岩包体平衡温度有所重叠,表明两者不是截然分开,其间存在有5 ̄10km的过渡带。包体的变形特  相似文献   

9.
A basanitoid flow of Miocene age, exposed near the West Kettle River, 25 km southeast of Kelowna, British Columbia, contains abundant ultramafic and mafic nodules. The subangular nodules are 1–20 cm across and typically show granular textures. A study of 250 nodules indicates that spinel lherzolite (60%) is the dominant type with subordinate olivine websterite (10%), websterite (7%), clinopyroxenite (4%), wehrlite (4%), pyroxene gabbro (4%), dunite (2%), harzburgite (1%) and granitic rocks (8%). Ultramafic nodules are of two types. Most of the wehrlites and clinopyroxenites belong to the black pyroxene (aluminous clinopyroxene) series, whereas the other clinopyroxene-bearing nodules belong to the green pyroxene (chromian diopside) series. Some spinel lherzolite nodules have distinctive pyroxene- and olivine-rich bands. Microprobe analyses of the constituent minerals of more than thirty nodules from the green pyroxene series indicate that grain to grain variations within individual nodules are small even when banding is present. Olivine, orthopyroxene, clinopyroxene and spinel in spinel lherzolite have average compositions of Fo90, En90, Wo47Fs5En48, Cr/(Cr+ Al+Fe3)=0.1 and Mg/(Mg+Fe2+)=0.8. Equilibration temperatures, which were calculated using the two pyroxene geothermometer of Wells (1977), range between 920–980° C. Based on published phase stability experiments, pressures of equilibration are between 10–18 kbar. In summary, the upper mantle beneath southern British Columbia is dominated by spinel lherzolite but contains some banding on a scale of cm to meters. The temperature in the upper mantle is 950° C at a depth of 30–60 km.On leave from the Geological Institute, University of Tokyo, Japan  相似文献   

10.
辽西中生代粗面玄武岩的KAr同位素年龄为84.76±1.67Ma,其 中 含有丰富的超镁 铁质岩和深部壳源捕虏体,主要有角闪尖晶二辉橄榄岩、尖晶石二辉橄榄岩、二辉橄榄岩、 含斜长石的角闪二辉石岩、二辉麻粒岩和辉石斜长片麻岩等。包体的组构及矿物化学研究表 明超镁质岩捕虏体来源于上地幔,麻粒岩和片麻岩则为深部壳源捕虏体。该类包体的发现对 中国东部中生代上地幔和下地壳的研究具有重要意义。  相似文献   

11.
Phlogopite has been recognized for the first time in ultramaficxenoliths from the Canadian Cordillera. The phlogopite-bearingxenoliths are hosted in post-glacial basanitoid flows and ejectaof the Kostal Lake volcanic center, British Columbia. The xenolithassemblage consists of 60% cumulate-textured wehrlites, and40% coarse-textured lherzolites, harzburgites, dunites, andolivine websterites. The phlogopite occurs: (1) as sub-euhedral grains along grainboundaries in dunite and lherzolite xenoliths; or (2) alongorthopyroxene lamellae exsolved from intercumulus clinopyroxenein the wehrlite xenoliths; or (3) as grains hosted in 10–100pm diameter fluid inclusions in clinopyroxene of all xenoliths.The phlogopites do not show any reaction relationships withother phases in any of the xenoliths studied. Phlogopites ina given xenolith have Mg/Mg + Fe2+ similar to that of coexistingolivine, clinopyroxene, and orthopyroxene. The partitioningof Fe and Mg between phlogopite and coexisting olivine and clinopyroxeneis similar to that observed in other phlogopite-bearing mantlexenoliths, and in high-pressure melting experiments on rockswith similar bulk compositions. This indicates that the phlogopitesin xenoliths from Kostal Lake have equilibrated with these coexistingphases. The occurrence of phlogopites in fluid inclusions containingNa, K, Cl, P, and S, suggests that incompatible element-enrichedhydrous fluids/melts fluxed this part of the upper mantle beneatheastern British Columbia. Metasomatism of the upper mantle beneathKostal Lake probably occurred prior to Quaternary alkaline magmatism(7550–400 B.P.) and after the initial volcanism whichformed the wehrlite cumulates (3–5 Ma). Metasomatism causedoverall oxidation of the upper mantle beneath this area butwas not responsible for the anomalously Fe-rich nature of somexenoliths from the Kostal Lake eruptive center.  相似文献   

12.
ULTRAMAFIC XENOLITHS FROM A KAMAFUGITE LAVA IN CENOZOIC VOLCANIC FIELD OF WEST QINLING, CHINA AND ITS GEOLOGICAL IMPLICATION  相似文献   

13.
Peridotite xenoliths found in Cenozoic alkali basalts of northern Victoria Land, Antarctica, vary from fertile spinel-lherzolite to harzburgite. They often contain glass-bearing pockets formed after primary pyroxenes and spinel. Few samples are composite and consist of depleted spinel lherzolite crosscut by amphibole veins and/or lherzolite in contact with poikilitic wehrlite. Peridotite xenoliths are characterized by negative Al2O3–Mg# and TiO2–Mg# covariations of clino- and orthopyroxenes, low to intermediate HREE concentrations in clinopyroxene, negative Cr–Al trend in spinel, suggesting variable degrees of partial melting. Metasomatic overprint is evidenced by trace element enrichment in clinopyroxene and sporadic increase of Ti–Fetot. Preferential Nb, Zr, Sr enrichments in clinopyroxene associated with high Ti–Fetot contents constrain the metasomatic agent to be an alkaline basic melt. In composite xenoliths, clinopyroxene REE contents increase next to the veins suggesting metasomatic diffusion of incompatible element. Oxygen isotope data indicate disequilibrium conditions among clinopyroxene, olivine and orthopyroxene. The highest δ18O values are observed in minerals of the amphibole-bearing xenolith. The δ18Ocpx correlations with clinopyroxene modal abundance and geochemical parameters (e.g. Mg# and Cr#) suggest a possible influence of partial melting on oxygen isotope composition. Thermobarometric estimates define a geotherm of 80°C/GPa for the refractory lithosphere of NVL, in a pressure range between 1 and 2.5 GPa. Clinopyroxene microlites of melt pockets provide P–T data close to the anhydrous peridotite solidus and confirm that they originated from heating and decompression during transport in the host magma. All these geothermometric data constrain the mantle potential temperature to values of 1250–1350°C, consistent with the occurrence of mantle decompressional melting in a transtensive tectonic regime for the Ross Sea region.  相似文献   

14.
Tertiary to Recent continental rifting and sea floor spreadingformed the Red Sea. Mantle xenoliths from the Saudi ArabianRed Sea margin provide an opportunity to study the mantle beneaththe flanks of this young ocean basin. The Harrat al Kishb mantlexenolith suite consists of Cr-diopside group spinel harzburgiteand lherzolite mantle wall rock, and a variety of pyroxenitesproduced by crystallization from mafic magmas within the mantle.The pyroxenites include two texturally distinct varieties ofCr-diopside group spinel websterites, and Al-augite group spinelpyroxenite, garnet-spinel websterite, and garnet-bearing spinelclinopyroxenite. All Harrat al Kishb xenoliths are deformedto some degree and many are recrystallized. Mineral exsolutionand zoning textures indicate reequilibration to decreasing temperatureconditions. Several xenoliths provide evidence for metasomaticprocesses in the mantle beneath western Saudi Arabia. Estimates of peridotite temperatures are 900–980?C withpressure bracketed between 13 and 19 kb. Al-augite spinel pyroxenitesyield temperatures of 1050–1070?C. Garnet-spinel websteritesyield temperatures and pressures in the range 1000–1030?C,13.8–16.5 kb. These P-T estimates show that mantle temperatures are elevatedwell above those predicted by low surface heat flow measurements.Mantle heating associated with rifting is young enough thatsurface heat flow has not yet equilibrated. The xenolith dataare consistent with a model of asthenosphere upwelling beneaththe Red Sea rift. Comparison of xenolith data with existingseismic refraction data reveals a coherent picture of the compositionof the western Saudi Arabian lithosphere.  相似文献   

15.
In order to provide mantle and crustal constraints during the evolution of the Colombian Andes, Sr and Nd isotopic studies were performed in xenoliths from the Mercaderes region, Northern Volcanic Zone, Colombia. Xenoliths are found in the Granatifera Tuff, a deposit of Cenozoic age, in which mantle- and crustal-derived xenoliths are present in bombs and fragments of andesites and lamprophyres compositions. Garnet-bearing xenoliths are the most abundant mantle-derived rocks, but websterites (garnet-free xenoliths) and spinel-bearing peridotites are also present in minor amounts. Amphibolites, pyroxenites, granulites, and gneisses represent the lower crustal xenolith assemblage. Isotopic signatures for the mantle xenoliths, together with field, petrographic, mineral, and whole-rock chemistry and pressure–temperature estimates, suggest three main sources for these mantle xenoliths: garnet-free websterite xenoliths derived from a source region with low P and T (16 kbar, 1065 °C) and MORB isotopic signature, 87Sr/86Sr ratio of 0.7030, and 143Nd/144Nd ratio of 0.5129. Garnet-bearing peridotite and websterite xenoliths derived from two different sources in the mantle: i) a source with intermediate P and T (29–35 kbar, 1250–1295 °C) conditions, similar to that of sub-oceanic geotherm, with an OIB isotopic signature (87Sr/86Sr ratio of 0.7043 and 143Nd/144Nd ratio of 0.5129); and ii) another source with P and T conditions similar to those of a sub-continental geotherm (>38 kbar, 1140–1175 °C) and OIB isotopic characteristics (87Sr/86Sr ratio=0.7041 and 143Nd/144Nd ratio=0.5135).  相似文献   

16.
The basaltic maar of Youkou, situated in the Adamawa Volcanic Massif in the eastern branch of the continental segment of the Cameroon Volcanic Line, contains mantle-derived xenoliths of various types in pyroclastites. Spinel-bearing lherzolite xenoliths from the Youkou volcano generally exhibit protogranular textures with olivine (Fo89.4?90.5), enstatite (En89???91Fs8.7?9.8Wo0.82?1.13), clinopyroxene, spinel (Cr#Sp?=?9.4–13.8), and in some cases amphibole (Mg#?=?88.5–89.1). Mineral equilibration temperatures in the lherzolite xenoliths have been estimated from three–two pyroxene thermometers and range between 835 and 937 °C at pressures of 10–18 kbar, consistent with shallow mantle depths of around 32–58 km. Trends displayed by bulk-rock MgO correlate with Al2O3, indicating that the xenoliths are refractory mantle residues after partial melting. The degree of partial melting estimated from spinel compositions is less than 10%: evidences for much higher degrees of depletion are preserved in one sample, but overprinted by refertilization in others. Trace element compositions of the xenoliths are enriched in highly incompatible elements (LREE, Sr, Ba, and U), indicating that the spinel lherzolites underwent later cryptic metasomatic enrichment induced by plume-related hydrous silicate melts. The extreme fertility (Al2O3?=?6.07–6.56 wt% in clinopyroxene) and the low CaO/Al2O3 ratios in the spinel lherzolites suggest that they could not be a simple residue of partial melting of primitive mantle and must have experienced refertilization processes driven by the infiltration of carbonatite or carbonated silicate melts.  相似文献   

17.
A comparison of mantle xenolith suites along the northern Canadian Cordillera reveals that the xenoliths from three suites exhibit bimodal populations whereas the xenoliths from the other four suites display unimodal populations. The bimodal suites contain both fertile lherzolite and refractory harzburgite, while the unimodal suites are dominated by fertile lherzolite xenoliths. The location of the three bimodal xenolith suites correlates with a newly discovered P-wave slowness anomaly in the upper mantle that is 200 km in width and extends to depths of 400–500 km (Frederiksen AW, Bostock MG, Van Decar JC, Cassidy J, submitted to Tectonophysics). This correlation suggests that the bimodal xenolith suites may either contain fragments of the anomalously hot asthenospheric mantle or that the lithospheric upper mantle has been affected by the anomalously hot mantle. The lherzolite xenoliths in the bimodal suites display similar major element compositions and trace element patterns to the lherzolite xenoliths in the unimodal suites, suggesting that the lherzolites represent the regional lithospheric upper mantle. In contrast, the harzburgite xenoliths are highly depleted in terms of major element composition, but their clinopyroxenes [Cpx] have much higher incompatible trace element contents than those in the lherzolite xenoliths. The major element and mildly incompatible trace element systematics of the harzburgite and lherzolite xenoliths indicate that they could be related by a partial melting process. The lack of textural and geochemical evidence for the former existence of garnet argues against the harzburgite xenoliths representing actual fragments of the deeper anomalous asthenospheric mantle. Furthermore, the calculated P-wave velocity difference between harzburgite and lherzolite end-members is only 0.8%, with the harzburgites having higher P-wave velocities. Therefore the 3% P-wave velocity difference detected teleseismically cannot be produced by the compositional difference between the lherzolite and harzburgite xenoliths. If temperature is responsible for the observed 3% P-wave velocity perturbation, the anomalous mantle is likely to be at least 200 °C higher than the surrounding mantle. Taken together these data indicate that the refractory harzburgite xenoliths represent the residue of 20–25% partial melting of a lherzolite lithospheric mantle. The incompatible trace element enrichment of the harzburgites suggests that this melting was accompanied by the ingress of fluids. The association of the bimodal xenolith suites with the mantle anomaly detected teleseismically suggests that anomalously hot asthenospheric mantle provided both the heat and volatiles responsible for the localized melting and enrichment of the lithospheric mantle. Received: 16 May 1997 / Accepted: 25 October 1997  相似文献   

18.
Mantle xenoliths in alkali basalt at three locations in South Korea—Boun, the Gansung area, and Baegryung Island—are spinel lherzolites composed of olivine, orthopyroxene, clinopyroxene, and spinel. The xenoliths generally display triple junctions between grains, kink-banding in olivine and pyroxenes, and protogranular and equigranular textures, with no preferred crystal orientation. Anhedral brown spinels occur interstitially. Minerals in lherzolites from each of the three localities are compositionally homogeneous. Olivine compositions have Fo89.0 to Fo90.2, low CaO (.03 to 0.12 wt%), and NiO of 0.34 to 0.40 wt%; the orthopyroxene is enstatite with En89.0 to En90.0 Al2O3 of 4 to 5 wt%; the clinopyroxene is diopside with En47.2 to En49.1 and Al2O3 of 7.42 to 7.64 wt% from Boun and 4.70 to 4.91 wt% from Baegryung. Spinel chemistry shows a distinct negative trend, with increasing Al corresponding with decreasing Cr, and Mg# and Cr# of 75.1 to 81.9 and 8.5 to 12.6, respectively.

Temperatures and pressures of equilibration for these mantle xenoliths were estimated using various pyroxene geothermometers (Wood and Banno, 1973; Wells, 1977; Mercier, 1980; Sachtleben and Seck, 1981; Bertrand and Mercier, 1985; Brey and Köhler, 1990) and the Al-solubility geobarometer (Mercier, 1980; Lane and Ganguly, 1980). Temperature estimates from the recipes of Mercier (1980) and Sachtleben and Seck (1981) are compatible. The equilibrium temperatures of these xenoliths, taken as the average obtained from these two methods, lie between 970 and 1020° C, and equilibrium pressures derived from Mercier (1980) fall within the range of 12 to 19 kbar (i.e., 42 to 63 km). These temperatures and pressures are reinforced by considerations of the Al-isopleths in the MAS system (Lane and Ganguly, 1980), as adjusted for the Fe effect on Al solubility in orthopyroxene (Lee and Ganguly, 1988).

The equilibrium temperatures and pressures of xenoliths, as considered in P/T space, belong to the oceanic geotherm, based upon the various mantle geotherms presented by Mercier (1980). This geotherm is completely different from continental geotherms, e.g., from South Africa (Lesotho) and southern India. Mineral compositions of spinel-lherzolites in South Korea and eastern China are primitive; paleogeotherms of both are quite similar, but degrees of depletion of the upper mantle could vary locally. This is demonstrated by eastern China, which has various depleted xenoliths caused by different degrees of partial melting.  相似文献   

19.
Spinel-lherzolite xenoliths in alkali basalts from eastern China have porphyroclastic to equigranular textures displaying varying degrees of deformation and subsolidus re-equilibration. The proportions of minerals in these xenoliths vary from 52 to 72% homogeneous olivine (Fo88-91); 11 to 26% orthopyroxene (Wo0.9.1.6; En88-90; Fs8.7.10.7), with minor discontinuous variations of Al2O3, FeO, and CaO; 6 to 19% clinopyroxene (Wo43.47; En49.51; Fs3.7.6.7); and 1 to 5% spinel, with similar Mg# (79.6 to 82.6), but wider variations of Al2O3 and Cr2O3 (100Cr/(Cr + Al + Fe3+) = 8.1 to 23.6). Although previous trace-element and isotopic studies have shown that at least two distinctly different mantle sources were sampled by Cenozoic basalts, mineralogical heterogeneities seem to be minor within the spinel-peridotite-facies lithosphere beneath eastern China.

These xenoliths experienced limited interaction with the host basaltic magma during eruption. Symplectites of secondary, minute silicates, titanomagnetite, and sulfide have replaced orthopyroxene—and to a lesser extent olivine—at the contact with the basalt. The spinel in the margin of the xenolith is continuously zoned by substitutions of Fe3O4 (magnetite) and Fe2TiO4 (ulvospinel) for MgAl2O3 (spinel), and is rimmed by titanomagnetite with a sharp boundary. However, the compositions of the interior clinopyroxenes were commonly modified by metasomatic partial melting, which resulted in “spongy-textured” rinds on primary clinopyroxene. This secondary assemblage is composed mainly of a refractory, jadeite-poor clinopyroxene, which is largely in optica! continuity with the primary clinopyroxene in addition to interstitial feldspars, with minor titanomagnetite and Fe-Ni sulfides. This assemblage was produced by the introduction of K-rich fluids from the enclosing basaltic magma. The intensity of these secondary reactions appears to have been a function of the residence time of the xenolith in the host basalt. Therefore, all secondary alteration of both external and internal primary minerals in these xenoliths are the result of near-surface metasomatic processes, rather than of mantle phenomena.  相似文献   

20.
The diamondiferous Letlhakane kimberlites are intruded into the Proterozoic Magondi Belt of Botswana. Given the general correlation of diamondiferous kimberlites with Archaean cratons, the apparent tectonic setting of these kimberlites is somewhat anomalous. Xenoliths in kimberlite diatremes provide a window into the underlying crust and upper mantle and, with the aid of detailed petrological and geochemical study, can help unravel problems of tectonic setting. To provide relevant data on the deep mantle under eastern Botswana we have studied peridotite xenoliths from the Letlhakane kimberlites. The mantle-derived xenolith suite at Letlhakane includes peridotites, pyroxenites, eclogites, megacrysts, MARID and glimmerite xenoliths. Peridotite xenoliths are represented by garnet-bearing harzburgites and lherzolites as well as spinel-bearing lherzolite xenoliths. Most peridotites are coarse, but some are intensely deformed. Both garnet harzburgites and garnet lherzolites are in many cases variably metasomatised and show the introduction of metasomatic phlogopite, clinopyroxene and ilmenite. The petrography and mineral chemistry of these xenoliths are comparable to that of peridotite xenoliths from the Kaapvaal craton. Calculated temperature-depth relations show a well-developed correlation between the textures of xenoliths and P-T conditions, with the highest temperatures and pressures calculated for the deformed xenoliths. This is comparable to xenoliths from the Kaapvaal craton. However, the P-T gap evident between low-T coarse peridotites and high-T deformed peridotites from the Kaapvaal craton is not seen in the Letlhakane xenoliths. The P-T data indicate the presence of lithospheric mantle beneath Letlhakane, which is at least 150 km thick and which had a 40mW/m2 continental geotherm at the time of pipe emplacement. The peridotite xenoliths were in internal Nd isotopic equilibrium at the time of pipe emplacement but a lherzolite xenolith with a relatively low calculated temperature of equilibration shows evidence for remnant isotopic disequilibrium. Both harzburgite and lherzolite xenoliths bear trace element and isotopic signatures of variously enriched mantle (low Sm/Nd, high Rb/Sr), stabilised in subcontinental lithosphere since the Archaean. It is therefore apparent that the Letlhakane kimberlites are underlain by old, cold and very thick lithosphere, probably related to the Zimbabwe craton. The eastern extremity of the Proterozoic Magondi Belt into which the kimberlites intrude is interpreted as a superficial feature not rooted in the mantle. Received: 19 March 1996 / Accepted: 16 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号