首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Local scour around piers is one of the main causes of bridge failures. In this study, three robust techniques, artificial neural networks (ANNs), M5-Tree, and Gene Expression Programming (GEP), were employed for prediction of scour depth around complex piers. The clear water condition was chosen for all experimental tests. The results indicated that pier diameter (b c) and foundation level (Y) are the main parameters for local scour. Furthermore, the minimum scour depth occurs in range of Y/b c = 1.1~1.3. In next step, to evaluate the mentioned techniques, a wide range of dataset was collected from the present study and literature. The radial base function (RBF) with R 2 = 0.945 and RMSE = 0.031 provides better prediction in comparison with conventional equations, M5-Tree (R 2 = 0.883, RMSE = 0.292) and the GEP techniques (R 2 = 0.811 and RMSE = 0.263). The equations developed by M5-Tree and GEP are more useful for practical purposes and can be easily employed to predict the depth of scour at complex piers.  相似文献   

2.
The elastic and structural behaviour of the synthetic zeolite CsAlSi5O12 (= 16.753(4), = 13.797(3) and = 5.0235(17) Å, space group Ama2, Z = 2) were investigated up to 8.5 GPa by in situ single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions. No phase-transition occurs within the P-range investigated. Fitting the volume data with a third-order Birch–Murnaghan equation-of-state gives: V 0 = 1,155(4) Å3, K T0 = 20(1) GPa and K′ = 6.5(7). The “axial moduli” were calculated with a third-order “linearized” BM-EoS, substituting the cube of the individual lattice parameter (a 3, b 3, c 3) for the volume. The refined axial-EoS parameters are: a 0 = 16.701(44) Å, K T0a = 14(2) GPa (βa = 0.024(3) GPa?1), K′ a = 6.2(8) for the a-axis; b 0 = 13.778(20) Å, K T0b = 21(3) GPa (βb = 0.016(2) GPa?1), K′ b = 10(2) for the b-axis; c 0 = 5.018(7) Å, K T0c = 33(3) GPa (βc = 0.010(1) GPa?1), K′ c = 3.2(8) for the c-axis (K T0a:K T0b:K T0c = 1:1.50:2.36). The HP-crystal structure evolution was studied on the basis of several structural refinements at different pressures: 0.0001 GPa (with crystal in DAC without any pressure medium), 1.58(3), 1.75(4), 1.94(6), 3.25(4), 4.69(5), 7.36(6), 8.45(5) and 0.0001 GPa (after decompression). The main deformation mechanisms at high-pressure are basically driven by tetrahedral tilting, the tetrahedra behaving as rigid-units. A change in the compressional mechanisms was observed at ≤ 2 GPa. The P-induced structural rearrangement up to 8.5 GPa is completely reversible. The high thermo-elastic stability of CsAlSi5O12, the immobility of Cs at HT/HP-conditions, the preservation of crystallinity at least up to 8.5 GPa and 1,000°C in elastic regime and the extremely low leaching rate of Cs from CsAlSi5O12 allow to consider this open-framework silicate as functional material potentially usable for fixation and deposition of Cs radioisotopes.  相似文献   

3.
A high-pressure single-crystal X-ray diffraction study has been carried out on a P21/c natural Mg-rich pigeonite sample with composition ca. Wo6En76Fs18 using a diamond anvil-cell. The unit-cell parameters were determined at 14 different pressures to 7.14 GPa. The sudden disappearance of the b-type reflections (h + k = odd) and a strong discontinuity (about 2.8%) in the unit-cell volume indicated a first-order P21/cC2/c phase transition between 4.66 and 4.88 GPa. The P(V) data of the P21/c phase were fitted to 4.66 GPa by a third-order Birch–Murnaghan equation of state (BM3 EoS), whereas the limited number of experimental data collected within the C2/c phase between 4.88 and 7.14 GPa were fitted using the same equation of state but with K′ constrained to the value obtained for the P21/c fitting. The equation of state coefficients are V 0 = 424.66(6) Å3, K T0 = 104(2) GPa and K′ = 8(1) for the P21/c phase, and V 0 = 423.6(1) Å3, K T0 = 112.4(8) GPa, and K′ fixed to 8(1) for the C2/c phase. The axial moduli for a, b, and c for the P21/c phase were obtained using also a BM3-EoS, while for the C2/c phase only a linear calculation could be performed, and therefore the same approach was applied for comparison also to the P21/c phase. In general the C2/c phase exhibits axial compressibilities (β c > β a >> β b) lower than those of the P21/c phase (β b > β c ≈ β a; similar to those found in previous studies in clinopyroxenes and orthopyroxenes). The lower compressibility of the C2/c phase compared with that of the P21/c could be ascribed to the greater stiffness along the b direction. A previously published relationship between P c and M2 average cation radius (i.r.) has been updated using all the literature data on P21/c clinopyroxene containing large cations at M2 site and our new data. The following weighted regression was obtained: P c (GPa) = 26(4) ? 28(5) ×  i.r (Å), R 2 = 0.97. This improved equation can be used to predict the critical pressure of natural P21/c clinopyroxene samples just knowing the composition at M2 site.  相似文献   

4.
High-pressure phase transitions of CaRhO3 perovskite were examined at pressures of 6–27 GPa and temperatures of 1,000–1,930°C, using a multi-anvil apparatus. The results indicate that CaRhO3 perovskite successively transforms to two new high-pressure phases with increasing pressure. Rietveld analysis of powder X-ray diffraction data indicated that, in the two new phases, the phase stable at higher pressure possesses the CaIrO3-type post-perovskite structure (space group Cmcm) with lattice parameters: a = 3.1013(1) Å, b = 9.8555(2) Å, c = 7.2643(1) Å, V m  = 33.43(1) cm3/mol. The Rietveld analysis also indicated that CaRhO3 perovskite has the GdFeO3-type structure (space group Pnma) with lattice parameters: a = 5.5631(1) Å, b = 7.6308(1) Å, c = 5.3267(1) Å, V m  = 34.04(1) cm3/mol. The third phase stable in the intermediate P, T conditions between perovskite and post-perovskite has monoclinic symmetry with the cell parameters: a = 12.490(3) Å, b = 3.1233(3) Å, c = 8.8630(7) Å, β = 103.96(1)°, V m  = 33.66(1) cm3/mol (Z = 6). Molar volume changes from perovskite to the intermediate phase and from the intermediate phase to post-perovskite are –1.1 and –0.7%, respectively. The equilibrium phase relations determined indicate that the boundary slopes are large positive values: 29 ± 2 MPa/K for the perovskite—intermediate phase transition and 62 ± 6 MPa/K for the intermediate phase—post-perovskite transition. The structural features of the CaRhO3 intermediate phase suggest that the phase has edge-sharing RhO6 octahedra and may have an intermediate structure between perovskite and post-perovskite.  相似文献   

5.
A new pyroxene with formula (Na0.86Mg0.14)(Mg0.57Ti0.43)Si2O6, synthesized in a high-pressure toroidal ‘anvil-with-hole’ apparatus at P = 7 GPa and T = 1700 °C, was characterized by X-ray single-crystal diffraction and Raman spectroscopy. The compound was found to be monoclinic (R1 = 2.56 %), space group C2/c, with lattice parameters a = 9.687(2), b = 8.814(1), c = 5.290(1) Å, β = 107.853(2)°, V = 430.08(1) Å3. The coexistence of Mg and Ti4+ at the M1 site does not induce strong modifications either to the M1 site or to the adjacent M2 site. The Raman spectrum of synthetic Na–Ti-pyroxene was obtained for the first time and compared with that of Mg2Si2O6 (with very low concentrations of Na and Ti). The structural characterization of the Na–Ti–Mg-pyroxene is important, because the study of its thermodynamic constants provides new constraints on thermobarometry of the upper mantle assemblages.  相似文献   

6.
We have collected high resolution neutron powder diffraction patterns from Na2SO4·10D2O over the temperature range 4.2–300 K following rapid quenching in liquid nitrogen, and over a series of slow warming and cooling cycles. The crystal is monoclinic, space-group P21/c (Z = 4) with a = 11.44214(4) Å, b = 10.34276(4) Å, c = 12.75486(6) Å, β = 107.847(1)°, and V = 1436.794(8) Å3 at 4.2 K (slowly cooled), and a = 11.51472(6) Å, b = 10.36495(6) Å, c = 12.84651(7) Å, β = 107.7543(1)°, V = 1460.20(1) Å3 at 300 K. Structures were refined to R P (Rietveld powder residual, \( R_{P} = {{\sum {\left| {I_{\text{obs}} - I_{\text{calc}} } \right|} } \mathord{\left/ {\vphantom {{\sum {\left| {I_{\text{obs}} - I_{\text{calc}} } \right|} } {\sum {I_{\text{obs}} } }}} \right. \kern-\nulldelimiterspace} {\sum {I_{\text{obs}} } }} \)) better than 2.5% at 4.2 K (quenched and slow cooled), 150 and 300 K. The sulfate disorder observed previously by Levy and Lisensky (Acta Cryst B34:3502–3510, 1978) was not present in our specimen, but we did observe changes with temperature in deuteron occupancies of the orientationally disordered water molecules coordinated to Na. The temperature dependence of the unit-cell volume from 4.2 to 300 K is well represented by a simple polynomial of the form V = ? 4.143(1) × 10?7 T 3 + 0.00047(2) T2 ? 0.027(2) T + 1437.0(1) Å3 (R 2 = 99.98%). The coefficient of volume thermal expansion, α V , is positive above 40 K, and displays a similar magnitude and temperature dependence to α V in deuterated epsomite and meridianiite. The relationship between the magnitude and orientation of the principal axes of the thermal expansion tensor and the main structural elements are discussed; freezing in of deuteron disorder in the quenched specimen affects the thermal expansion, manifested most obviously as a change in the behaviour of the unit-cell parameter β.  相似文献   

7.
Because of economic and technical limitations, measuring solar energy received at ground level (R s ) isn’t possible in all parts of the country, and in only 12% of synoptic stations is this parameter measured and recorded. Thus, it should be estimated and modeled spatially based on other climatic variables using mathematical methods. In this research, many attempts have been made to introduce an air temperature-based model for Rs estimation, and then, based on the output of the mentioned models, several geostatistical methods have been tested, and finally an elegant spatial model is proposed for (Rs) zoning in Iran. In this regard, the relationships between the measured amounts of monthly solar radiation and other climatic parameters, such as a monthly average, maximum and minimum temperature, precipitation, relative humidity, and the number of sunny hours during the period 1970–2010, are examined and modeled. It was revealed that based on the linear relationship between the monthly average air temperatures and solar radiation values recorded in each of the stations, that the best-fit linear model, with R 2  = 0.822, MAE = 1.81, RMSE = 2.51%, and MAPE = 10.08, can be introduced for Rs estimation. Then, using the outputs of the proposed model, the amounts of (R s ) are estimated in another 171 meteorological stations (a total of 192 stations), and eight geostatistical methods (IDW, GPI, RBF, LPI, OK, SK, UK, and EBK) were investigated for zoning. Comparing the resulting variograms showed that in addition to proof of spatial correlation between solar radiation data, they can be applied for modeling changes in various directions. Analyzing the ratio of the nugget effect on the roof of the variograms showed that the Gaussian model with the lowest ratio (Co/Co + C = 0.883) and (R 2  = 0.972), could model the highest correlation between the data and, therefore, it was used for data interpolation. To select the best geostatistical model, R2, MAE, and RMSE were used. On this basis, it was found that the RBF method with R 2  = 0.904, MAE = 3.02, RMSE = 0.39% is the most effective. Also, the IDW method with R 2  = 0.90, MAE = 3.08, RMSE = 0.391%, compared to other methods is the most effective. In addition, for data validation, correlations between observed and estimated values of solar radiation were studied and found R 2  = 0.86.  相似文献   

8.
9.
Acacia nilotica was used for the adsorption of Reactive Black 5 (RB5) dye from an aqueous solution. Both the raw and activated (with H3PO4) carbon forms of Acacia nilotica (RAN and ANAC, respectively) were used for comparison. Various parameters (including dye concentration, contact time, temperature, and pH) were optimized to obtain the maximum adsorption capacity. RAN and ANAC were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The maximum experimental adsorption capacities for RAN and ANAC were 34.79 and 41.01 mg g?1, respectively, which agreed with the maximum adsorption capacities predicted by the Langmuir, Freundlich, and Dubinin–Radushkevich equilibrium isotherm models. The adsorption data of ANAC showed a good fit to the isotherm models based on the coefficient of determination (R 2): Langmuir type II (R 2 = 0.99) > Freundlich (R 2 = 0.9853) > Dubinin–Radushkevich (R 2 = 0.9659). This result suggested monolayer adsorption of RB5 dye. The adsorption of RB5 dye followed pseudo-second-order kinetics. The RAN adsorbent reflected an exothermic reaction (enthalpy change, ΔH = ?0.006 kJ mol?1) and increased randomness (standard entropy change, ΔS = 0.038 kJ mol?1) at the solid–solution interface. In contrast, ANAC reflected both exothermic [?0.011 kJ mol?1 (303–313 K)] and endothermic [0.003 kJ mol?1 (313–323 K)] reactions. However, the ΔS value of ANAC was lower when the RB5 adsorption increased from 313 to 323 K. The negative values for the Gibbs free energy change at all temperatures indicated that the adsorption of RB5 dye onto RAN and ANAC was spontaneous in the forward direction.  相似文献   

10.
The comparative compressibility and high-pressure stability of a natural epidote (0.79 Fe-total per formula unit, Fetot pfu) and clinozoisite (0.40 Fetot pfu) were investigated by single-crystal X-ray diffraction and Raman spectroscopy. The lattice parameters of both phases exhibit continuous compression behavior up to 30 GPa without evidence of phase transformation. Pressure–volume data for both phases were fitted to a third-order Birch–Murnaghan equation of state with V 0 = 461.1(1) Å3, K 0 = 115(2) GPa, and \(K_{0}^{'}\) = 3.7(2) for epidote and V 0 = 457.8(1) Å3, K 0 = 142(3) GPa, and \(K_{0}^{'}\) = 5.2(4) for clinozoisite. In both epidote and clinozoisite, the b-axis is the stiffest direction, and the ratios of axial compressibility are 1.19:1.00:1.15 for epidote and 1.82:1.00:1.19 for clinozoisite. Whereas the compressibility of the a-axis is nearly the same for both phases, the b- and c-axes of the epidote are about 1.5 times more compressible than in clinozoisite, consistent with epidote having a lower bulk modulus. Raman spectra collected up to 40.4 GPa also show no indication of phase transformation and were used to obtain mode Grüneisen parameters (γ i) for Si–O vibrations, which were found to be 0.5–0.8, typical for hydrous silicate minerals. The average pressure coefficient of Raman frequency shifts for M–O modes in epidote, 2.61(6) cm?1/GPa, is larger than found for clinozoisite, 2.40(6) cm?1/GPa, mainly due to the different compressibility of FeO6 and AlO6 octahedra in M3 sites. Epidote and clinozoisite contain about 2 wt% H2O are thus potentially important carriers of water in subducted slabs.  相似文献   

11.
The crystal structure and chemical composition of a crystal of (Mg14?x Cr x )(Si5?x Cr x )O24 (x ≈ 0.30) anhydrous Phase B (Anh-B) synthesized in the model system MgCr2O4–Mg2SiO4 at 12 GPa and 1600 °C have been investigated. The compound was found to be orthorhombic, space group Pmcb, with lattice parameters a = 5.900(1), b = 14.218(2), c = 10.029(2) Å, V = 841.3(2) Å3 and Z = 2. The structure was refined to R 1 = 0.065 using 1492 independent reflections. Chromium was found to substitute for both Mg at the M3 site (with a mean bond distance of 2.145 Å) and Si at the octahedral Si1 site (mean bond distance: 1.856 Å), according to the reaction Mg2+ + Si4+ = 2Cr3+. Such substitutions cause a reduction in the volume of the M3 site and an increase in the volume of the Si-dominant octahedron with respect to the values typically observed for pure Anh-B and Fe2+-bearing Anh-B. Taking into account that Cr3+ is not expected to be Jahn–Teller active, it appears that both the Cr3+–for–Mg and Cr3+–for–Si substitutions in the Anh-B structure decrease the distortion of the octahedra. Electron microprobe analysis gave the Mg13.66(8)Si4.70(6)Cr0.62(4)O24 stoichiometry for the studied phase. The successful synthesis of this phase provides new information for the possible mineral assemblages occurring in the Earth’s deep upper mantle and shed new light on the so-called X discontinuity that has been observed at 275–345 km depth in several subcontinental and subduction zone environments.  相似文献   

12.
The crystal structure of Pb6Bi2S9 is investigated at pressures between 0 and 5.6 GPa with X-ray diffraction on single-crystals. The pressure is applied using diamond anvil cells. Heyrovskyite (Bbmm, a = 13.719(4) Å, b = 31.393(9) Å, c = 4.1319(10) Å, Z = 4) is the stable phase of Pb6Bi2S9 at ambient conditions and is built from distorted moduli of PbS-archetype structure with a low stereochemical activity of the Pb2+ and Bi3+ lone electron pairs. Heyrovskyite is stable until at least 3.9 GPa and a first-order phase transition occurs between 3.9 and 4.8 GPa. A single-crystal is retained after the reversible phase transition despite an anisotropic contraction of the unit cell and a volume decrease of 4.2%. The crystal structure of the high pressure phase, β-Pb6Bi2S9, is solved in Pna2 1 (a = 25.302(7) Å, b = 30.819(9) Å, c = 4.0640(13) Å, Z = 8) from synchrotron data at 5.06 GPa. This structure consists of two types of moduli with SnS/TlI-archetype structure in which the Pb and Bi lone pairs are strongly expressed. The mechanism of the phase transition is described in detail and the results are compared to the closely related phase transition in Pb3Bi2S6 (lillianite).  相似文献   

13.
The thermal evolution of 10-Å phase Mg3Si4O10(OH)2·H2O, a phyllosilicate which may have an important role in the storage/release of water in subducting slabs, was studied by X-ray single-crystal diffraction in the temperature range 116–293 K. The lattice parameters were measured at several intervals both on cooling and heating. The structural model was refined with intensity data collected at 116 K and compared to the model refined at room temperature. As expected for a layer silicate on cooling in this temperature range, the a and b lattice parameters undergo a small linear decrease, α a  = 1.7(4) 10?6 K?1 and α b  = 1.9(4) 10?6 K?1, where α is the linear thermal expansion coefficient. The greater variation is along the c axis and can be modeled with the second order polynomial c T  = c 293(1 + 6.7(4)10?5 K?1ΔT + 9.5(2.5)10?8 K?2T)2) where ΔT = T ? 293 K; the monoclinic angle β slightly increased. The cell volume thermal expansion can be modeled with the polynomial V T  V 293 (1 + 8.0 10?5 K?1 ΔT + 1.4 10?7 K?2T)2) where ΔT = T ? 293 is in K and V in Å3. These variations were similar to those expected for a pressure increase, indicating that T and P effects are approximately inverse. The least-squares refinement with intensity data measured at 116 K shows that the volume of the SiO4 tetrahedra does not change significantly, whereas the volume of the Mg octahedra slightly decreases. To adjust for the increased misfit between the tetrahedral and octahedral sheets, the tetrahedral rotation angle α changes from 0.58° to 1.38°, increasing the ditrigonalization of the silicate sheet. This deformation has implications on the H-bonds between the water molecule and the basal oxygen atoms. Furthermore, the highly anisotropic thermal ellipsoid of the H2O oxygen indicates positional disorder, similar to the disorder observed at room temperature. The low-temperature results support the hypothesis that the disorder is static. It can be modeled with a splitting of the interlayer oxygen site with a statistical distribution of the H2O molecules into two positions, 0.6 Å apart. The resulting shortest Obas–OW distances are 2.97 Å, with a significant shortening with respect to the value at room temperature. The low-temperature behavior of the H-bond system is consistent with that hypothesized at high pressure on the basis of the Raman spectra evolution with P.  相似文献   

14.
The crystal chemistry and the elastic behavior under isothermal conditions up to 9 GPa of a natural, and extremely rare, 3T-phlogopite from Traversella (Valchiusella, Turin, Western Alps) [(K0.99Na0.05Ba0.01)(Mg2.60Al0.20Fe 0.21 2+ )[Si2.71Al1.29O10](OH)2, space group P3112, with a = 5.3167(4), c = 30.440(2) Å, and V = 745.16(9) ų] have been investigated by electron microprobe analysis in wavelength dispersion mode, single-crystal X-ray diffraction at 100 K, and in situ high-pressure synchrotron radiation powder diffraction (at room temperature) with a diamond anvil cell. The single-crystal refinement confirms the general structure features expected for trioctahedral micas, with the inter-layer site partially occupied by potassium and sodium, iron almost homogeneously distributed over the three independent octahedral sites, and the average bond distances of the two unique tetrahedra suggesting a disordered Si/Al-distribution (i.e., 〈T1-O〉 ~ 1.658 and 〈T2-O〉 ~ 1.656 Å). The location of the H-site confirms the orientation of the O–H vector nearly perpendicular to (0001). The refinement converged with R 1(F) = 0.0382, 846 unique reflections with F O > 4σ(F O) and 61 refined parameters, and not significant residuals in the final difference-Fourier map of the electron density (+0.77/?0.37 e ?3). The high-pressure experiments showed no phase transition within the pressure range investigated. The PV data were fitted with a Murnaghan (M-EoS) and a third-order Birch-Murnaghan equation of state (BM-EoS), yielding: (1) M-EoS, V 0 = 747.0(3) Å3, K T0 = 44.5(24) GPa, and K′ = 8.0(9); (2) BM-EoS, V 0 = 747.0(3) Å3, K T0 = 42.8(29) GPa, and K′ = 9.9(17). A comparison between the elastic behavior in response to pressure observed in 1M- and 3T-phlogopite is made.  相似文献   

15.
The high-pressure behavior of a vanadinite (Pb10(VO4)6Cl2, a = b = 10.3254(5), = 7.3450(4) Å, space group P63/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the PV data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V 0 = 681(1) Å3, K 0 = 41(5) GPa, and K′ = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order “linearized” BM-EoS. The EoS parameters are: a 0 = 10.3302(2) Å, K 0(a) = 35(2) GPa and K′(a) = 10(1) for the a-axis; c 0 = 7.3520(3) Å, K 0(c) = 98(4) GPa, and K′(c) = 9(2) for the c-axis (K 0(a):K 0(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe a (0) = 35(2) GPa for the a-axis, Fe c (0) = 98(4) GPa for the c-axis and Fe V (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K′ values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed.  相似文献   

16.
The ability of ion-exchange resin for ammonia removal from aqueous solution was studied. The results showed that Amberlite ion-exchange resin was effective in removing ammonia from aqueous solution. Factorial design and response surface methodology were applied to evaluate and optimize the effects of pH, resin dose, contact time, temperature and initial ammonia concentration. Low pH condition was preferred with the optimum pH found to be 6. High resin dose generated high removal rate and low exchange capacity. Results of factorial design and response surface methodology showed that temperature was not a significant parameter. The model prediction was in good agreement with observed data (R 2 = 0.957). The optimum Q e was 28.78 mg/g achieved at pH = 6 and initial TAN concentration of 3000 mg/L. The kinetics followed the pseudo-second-order kinetic model (R 2 = 0.999). Equilibrium data were fitted to Langmuir and Freundlich isotherm models with Langmuir model providing a slightly better predication (R 2 = 0.996). The resin was completely regenerated by 2 N H2SO4.  相似文献   

17.
Before starting seismic cycle of Ahar–Varzaghan 2012 event, a partial gap in the form of a pre-seismic calm sequence (seismicity rate, r = 0.46 event/year, b = 1.4) with duration of 303 days spatially has dominated over the entire seismogenic area. From April 17, 2012, to May 31, 2012, r significantly increased to 2.16, indicating strong foreshock sequence, and b value changed to 1.9, remarkably. In the last two months before the mainshock, foreshocks have partially migrated toward the earthquake fault (with a decrease in size, b = 2.0). Significantly, high rate of seismicity and low V P /V S (1.64) in the foreshocks sequence and also very high seismicity rate (17.3) and high V P /V S (1.76) in the aftershocks sequence make substantial differences between the seismic cycle and the background seismicity. Moreover, a significant E–W migration of the microseismicity was confirmed in the study area.  相似文献   

18.
A pyroxene with composition LiNiSi2O6 was synthesized at T = 1,473 K and P = 2.0 GPa; the cell parameters at T = 298 K are a = 9.4169(6) Å, b = 8.4465(7) Å, c = 5.2464(3) Å, β = 110.534(6)°, V = 390.78(3) Å3. TEM examination of the LiNiSi2O6 pyroxene showed the presence of h + k odd reflections indicative of a primitive lattice, and of antiphase domains obtained by dark field imaging of the h + k odd reflections. A HT in situ investigation was performed by examining TEM selected area diffraction patterns collected at high temperature and synchrotron radiation powder diffraction. In HTTEM the LiNiSi2O6 was examined together with LiCrSi2O6 pyroxene. In LiCrSi2O6 the h + k odd critical reflections disappear at about 340 K; they are sharp up to the transition temperature and do not change their shape until they disappear. In LiNiSi2O6 the h + k odd reflections are present up to sample deterioration at 650 K. A high temperature synchrotron radiation powder diffraction investigation was performed on LiNiSi2O6 between 298 and 773 K. The analysis of critical reflections and of changes in cell parameters shows that the space group is P-centred up to the highest temperature. The comparative analysis of the thermal and spontaneous strain contributions in P21/c and C2/c pyroxenes indicates that the high temperature strain in P-LiNiSi2O6 is very similar to that due to thermal strain only in C2/c spodumene and that a spontaneous strain contribution related to pre-transition features is not apparent in LiNiSi2O6. A different high-temperature behaviour in LiNiSi2O6 with respect to other pyroxenes is suggested, possibly in relation with the presence of Jahn–Teller distortion of the M1 polyhedron centred by low-spin Ni3+.  相似文献   

19.
A new synchrotron X-ray diffraction study of chromium oxide Cr2O3 (eskolaite) with the corundum-type structure has been carried out in a Kawai-type multi-anvil apparatus to pressure of 15 GPa and temperatures of 1873 K. Fitting the Birch–Murnaghan equation of state (EoS) with the present data up to 15 GPa yielded: bulk modulus (K 0,T0), 206 ± 4 GPa; its pressure derivative K0,T , 4.4 ± 0.8; (?K 0,T /?T) = ?0.037 ± 0.006 GPa K?1; a = 2.98 ± 0.14 × 10?5 K?1 and b = 0.47 ± 0.28 × 10?8 K?2, where α 0,T  = a + bT is the volumetric thermal expansion coefficient. The thermal expansion of Cr2O3 was additionally measured at the high-temperature powder diffraction experiment at ambient pressure and α 0,T0 was determined to be 2.95 × 10?5 K?1. The results indicate that coefficient of the thermal expansion calculated from the EoS appeared to be high-precision because it is consistent with the data obtained at 1 atm. However, our results contradict α 0 value suggested by Rigby et al. (Brit Ceram Trans J 45:137–148, 1946) widely used in many physical and geological databases. Fitting the Mie–Grüneisen–Debye EoS with the present ambient and high-pressure data yielded the following parameters: K 0,T0 = 205 ± 3 GPa, K0,T  = 4.0, Grüneisen parameter (γ 0) = 1.42 ± 0.80, q = 1.82 ± 0.56. The thermoelastic parameters indicate that Cr2O3 undergoes near isotropic compression at room and high temperatures up to 15 GPa. Cr2O3 is shown to be stable in this pressure range and adopts the corundum-type structure. Using obtained thermoelastic parameters, we calculated the reaction boundary of knorringite formation from enstatite and eskolaite. The Clapeyron slope (with \({\text{d}}P/{\text{d}}T = - 0.014\) GPa/K) was found to be consistent with experimental data.  相似文献   

20.
A natural sample of clinochlore from the Longitudinal Valley area of northeastern Taiwan has been characterized by using the powder X-ray diffraction (XRD), differential thermal analysis and electron paramagnetic resonance (EPR) spectroscopic techniques. The lattice parameters of the monoclinic (IIb) clinochlore with the composition (Mg2.988 Al1.196 Fe1.6845 Mn0.026)5.8945 (Si2.559 Al1.441)4 O10 (OH)8 have been calculated from the powder XRD data and are found to be a = 5.347 Å, b = 9.223 Å, c = 14.250 Å, β = 97.2° and Z = 2. The thermal behaviour of the sample showed the typical behaviour of clinochlore with a hydroxyl content of 12.5 wt%. The EPR spectrum at room temperature exhibits two resonance signals centred at g ≈ 2.0 and g ≈ 8.0. The signal at g ≈ 2.0 shows a six-line hyperfine structure which is a characteristic of Mn2+ ions in octahedral symmetry. The resonance signal at g ≈ 8.0 is a characteristic of Fe3+ ions. The EPR spectra have also been recorded at different temperatures (123–295 K). The population of spin levels (N) has been calculated for g ≈ 2.0 and g ≈ 8.0 resonance signals. It is observed that N increases with decreasing temperature. From EPR spectra, the spin-Hamiltonian parameters have been evaluated. The zero-field splitting parameter (D) is found to be temperature dependent. The peak-to-peak width of the g ≈ 8.0 resonance signal is found to increase with decrease in temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号