首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 872 毫秒
1.
Unit hydrographs (UHs), along with design rainfalls, are frequently used to determine the discharge hydrograph for design and evaluation of hydraulic structures. Due to the presence of various uncertainties in its derivation, the resulting UH is inevitably subject to uncertainty. Consequently, the performance of hydraulic structures under the design storm condition is uncertain. This paper integrates the linearly constrained Monte-Carlo simulation with the UH theory and routing techniques to evaluate the reliability of hydraulic structures. The linear constraint is considered because the water volume of each generated design direct runoff hydrograph should be equal to that of the design effective rainfall hyetograph or the water volume of each generated UH must be equal to one inch (or cm) over the watershed. For illustration, the proposed methodology is applied to evaluate the overtopping risk of a hypothetical flood detention reservoir downstream of Tong-Tou watershed in Taiwan.  相似文献   

2.
Unit hydrographs (UHs), along with design rainfalls, are frequently used to determine the discharge hydrograph for design and evaluation of hydraulic structures. Due to the presence of various uncertainties in its derivation, the resulting UH is inevitably subject to uncertainty. Consequently, the performance of hydraulic structures under the design storm condition is uncertain. This paper integrates the linearly constrained Monte-Carlo simulation with the UH theory and routing techniques to evaluate the reliability of hydraulic structures. The linear constraint is considered because the water volume of each generated design direct runoff hydrograph should be equal to that of the design effective rainfall hyetograph or the water volume of each generated UH must be equal to one inch (or cm) over the watershed. For illustration, the proposed methodology is applied to evaluate the overtopping risk of a hypothetical flood detention reservoir downstream of Tong-Tou watershed in Taiwan.  相似文献   

3.
A simulation experiment for optimal design hyetograph selection   总被引:1,自引:0,他引:1  
The aim of this work is to assess the accuracy of literature design hyetographs for the evaluation of peak discharges during flood events. Five design hyetographs are examined in a set of simulations, based upon the following steps: (i) an ideal river basin is defined, characterized by a Beta distribution shaped unit hydrograph (UH); (ii) 1000 years of synthetic rainfall are artificially generated; (iii) a discharge time‐series is obtained from the convolution of the rainfall time‐series and the UH, and the reference T‐years flood is computed from this series; (iv) for the same return period T, the parameters of the intensity–duration–frequency (IDF) curve are estimated from the 1000 years of synthetic rainfall; (v) five design hyetographs are determined from the IDF curves and are convolved with the discrete UH to find the corresponding design hydrographs; (vi) the hydrograph peaks are compared with the reference T‐years flood and the advantages and drawbacks of each of the five approaches are evaluated. The rainfall and UH parameters are varied, and the whole procedure is repeated to assess the sensitivity of results to the system configuration. We found that all design hyetographs produce flood peak estimates that are consistently biased in most of the climatic and hydrologic conditions considered. In particular, significant underestimation of the design flood results from the adoption of any rectangular hyetograph used in the context of the rational formula. In contrast, the Chicago hyetograph tends to overestimate peak flows. In two cases it is sufficient to multiply the result by a constant scaling factor to obtain robust and nearly unbiased estimates of the design floods. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
The physical basis of the linkage between magnitude and timing of channel flow hydrographs and drainage network morphometry is reviewed. Small Hortonian and structurally Hortonian networks are analysed using numerical runoff simulation. For Hortonian networks the variability of the geometry of individual channels and subcatchments within each Strahler order has generally little effect upon the overall character of the hydrograph in channels of higher order. If the network is also structurally Hortonian, the analysis of the simultaneous formation, travel, and concentration of the hydrographs in all channels of the network can be simplified to a sequence of one representative hydrograph per channel order. This approach is used in this study. Three major runoff processes control the flow hydrograph characteristics: the overland flow process which determines the water supply to the drainage network; the channel flow process which translates the hydrograph in space and time; and the drainage network process which concentrates and magnifies the flow at the junctions of the drainage network. Functional relations for the hydrograph peak, timing, and flow velocity are presented. For a given uniform rainfall and infiltration rate, the peak of the channel flow hydrograph is shown to increase geometrically with channel order, and its magnitude is directly related to the bifurcation ratio. The travel time of the peak also increases geometrically with channel order, and it is directly related to the channel length ratio over velocity ratio. The flow velocity of the peak changes in a downstream direction as a function of the bifurcation and slope ratio. It was also found that for negligible channel storage the channel flow and drainage network processes do not contribute significantly to the observed nonlinear response of a watershed to precipitation.  相似文献   

5.
This work develops a top‐down modelling approach for storm‐event rainfall–runoff model calibration at unmeasured sites in Taiwan. Twenty‐six storm events occurring in seven sub‐catchments in the Kao‐Ping River provided the analytical data set. Regional formulas for three important features of a streamflow hydrograph, i.e. time to peak, peak flow, and total runoff volume, were developed via the characteristics of storm event and catchment using multivariate regression analysis. Validation of the regional formulas demonstrates that they reasonably predict the three features of a streamflow hydrograph at ungauged sites. All of the sub‐catchments in the study area were then adopted as ungauged areas, and the three streamflow hydrograph features were calculated by the regional formulas and substituted into the fuzzy multi‐objective function for rainfall–runoff model calibration. Calibration results show that the proposed approach can effectively simulate the streamflow hydrographs at the ungauged sites. The simulated hydrographs more closely resemble observed hydrographs than hydrographs synthesized using the Soil Conservation Service (SCS) dimensionless unit hydrograph method, a conventional method for hydrograph estimation at ungauged sites in Taiwan. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
We report an empirical analysis of the hydrologic response of three small, highly impervious urban watersheds to pulse rainfall events, to assess how traditional stormwater management (SWM) alters urban hydrographs. The watersheds vary in SWM coverage from 3% to 61% and in impervious cover from 45% to 67%. By selecting a set of storm events that involved a single rainfall pulse with >96% of total precipitation delivered in 60 min, we reduced the effect of differences between storms on hydrograph response to isolate characteristic responses attributable to watershed properties. Watershed-average radar rainfall data were used to generate local storm hyetographs for each event in each watershed, thus compensating for the extreme spatial and temporal heterogeneity of short-duration, intense rainfall events. By normalizing discharge values to the discharge peak and centring each hydrograph on the time of peak we were able to visualize the envelope of hydrographs for each group and to generate representative composite hydrographs for comparison across the three watersheds. Despite dramatic differences in the fraction of watershed area draining to SWM features across these three headwater tributaries, we did not find strong evidence that SWM causes significant attenuation of the hydrograph peak. Hydrograph response for the three watersheds is remarkably uniform despite contrasts in SWM, impervious cover and spatial patterns of land cover type. The primary difference in hydrograph response is observed on the recession limb of the hydrograph, and that change appears to be associated with higher storm-total runoff in the watersheds with more area draining to SWM. Our findings contribute more evidence to the work of previous authors suggesting that SWM is less effective at attenuating urban hydrographs than is commonly assumed. Our findings also are consistent with previous work concluding that percent impervious cover may have greater influence on runoff volume than percent SWM coverage.  相似文献   

7.
In cockpit karst landscapes, fluxes from upland areas contribute large volumes of water to low-lying depressions and stream flow. Hydrograph hysteresis and similarity between monitoring sites is important for understanding the space–time variability of hydrologic responses across the “hillslope–depression–stream” continuum. In this study, the hysteretic feature of hydrographs was assessed by characterizing the loop-like relationships between responses at upstream sites relative to subsurface discharge at the outlet of a small karst catchment. A classification of hydrograph responses based on the multi-scale smoothing Kernel -derived distance classifies the hydrograph responses on the basis of similarities between hillslope and depression sites, and those at the catchment outlet. Results demonstrate that the temporal and spatial variability of hydrograph hysteresis and similarity between hillslope flow and outlet stream flow can be explained by the local heterogeneity of depression aquifer. Large depression storage deficits emerging in the highly heterogeneous aquifer produce strong hysteresis and multiple relationships of upstream hydrographs relative to the outlet subsurface discharge. In contrast, when depression storage deficits are filled during consecutive rainfall events, depression hydrographs at the high permeability sites are almost synchronous or exhibit a monotonous function with the hydrographs at the outlet. This reduced hydrograph hysteresis enhances preferential flow paths in fractured rocks and conduits that can accelerate the hillslope flow to the outlet. Therefore, classification of hydrograph similarities between any upstream sites and the catchment outlet can help to identify the dominant hydrological functions in the heterogeneous karst catchment.  相似文献   

8.
The proper assessment of design hydrographs and their main properties (peak, volume and duration) in small and ungauged basins is a key point of many hydrological applications. In general, two types of methods can be used to evaluate the design hydrograph: one approach is based on the statistics of storm events, while the other relies on continuously simulating rainfall‐runoff time series. In the first class of methods, the design hydrograph is obtained by applying a rainfall‐runoff model to a design hyetograph that synthesises the storm event. In the second approach, the design hydrograph is quantified by analysing long synthetic runoff time series that are obtained by transforming synthetic rainfall sequences through a rainfall‐runoff model. These simulation‐based procedures overcome some of the unrealistic hypotheses which characterize the event‐based approaches. In this paper, a simulation experiment is carried out to examine the differences between the two types of methods in terms of the design hydrograph's peak, volume and duration. The results conclude that the continuous simulation methods are preferable because the event‐based approaches tend to underestimate the hydrograph's volume and duration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
I. MUZIK 《水文研究》1996,10(10):1401-1409
The concept of a spatially distributed unit hydrograph is based on the fact that the unit hydrograph can be derived from the time–area curve of a watershed by the S-curve method. The time–area diagram is a graph of cumulative drainage area contributing to discharge at the watershed outlet within a specified time of travel. Accurate determination of the time–area diagram is made possible by using a GIS. The GIS is used to describe the connectivity of the links in the watershed flow network and to calculate distances and travel times to the watershed outlet for various points within the watershed. Overland flow travel times are calculated by the kinematic wave equation for time to equilibrium; channel flow times are based on the Manning and continuity equations. To account for channel storage, travel times for channel reaches are increased by a percentage depending on the channel reach length and geometry. With GIS capability for rainfall mapping, the assumption of a uniform spatial rainfall distribution is no longer necessary; hence the term, spatially distributed unit hydrograph. An example of the application for the Waiparous Creek in the Alberta Foothills is given. IDRISI is used to develop a simple digital elevation model of the 229 km2 watershed, using 1 km × 1 km grid cells. A grid of flow directions is developed and used to create an equivalent channel network. Excess rainfall for each 1 km × 1 km cell is individually computed by the Soil Conservation Service (SCS) runoff curve method and routed through the equivalent channel network to obtain the time–area curve. The derived unit hydrograph gave excellent results in simulating an observed flood hydrograph. The distributed unit hydrograph is no longer a lumped model, since it accounts for internal distribution of rainfall and runoff. It is derived for a watershed without the need for observed rainfall and discharge data, because it is essentially a geomorphoclimatic approach. As such, it allows the derivation of watershed responses (hydrographs) to inputs of various magnitudes, thus eliminating the assumption of proportionality of input and output if needed. The superposition of outputs is retained in simulating flood hydrographs by convolution, since it has been shown that some non-linear systems satisfy the principle of superposition. The distributed unit hydrograph appears to be a very promising rainfall runoff model based on GIS technology.  相似文献   

10.
Abstract

This study applies the discrete wavelet transform (DWT) to decompose the unit hydrograph, thereby generating parsimonious reparameterizations of the unit hydrograph. A model compression method is then employed to significantly compress the unit hydrograph requiring that fewer coefficients be estimated. Moreover, a wavelet-based linearly constrained least mean squares (WLCLMS) algorithm is also used to estimate on-line the wavelet coefficients of the unit hydrograph. The updated wavelet coefficients of the unit hydrograph, convoluted with effective rainfall input in the wavelet domain, allow for accurate prediction of one-step-ahead runoff in the time domain. The proposed approach allows the unit hydrographs to vary in time and accurately predicts runoff from a basin in Taiwan, thus making it highly promising for flood forecasting.  相似文献   

11.
In this paper a very general rainfall-runoff model structure (described below) is shown to reduce to a unit hydrograph model structure. For the general model, a multi-linear unit hydrograph approach is used to develop subarea runoff, and is coupled to a multi-linear channel flow routing method to develop a link-node rainfall-runoff model network. The spatial and temporal rainfall distribution over the catchment is probabilistically related to a known rainfall data source located in the catchment in order to account for the stochastic nature of rainfall with respect to the rain gauge measured data. The resulting link node model structure is a series of stochastic integral equations, one equation for each subarea. A cumulative stochastic integral equation is developed as a sum of the above series, and includes the complete spatial and temporal variabilities of the rainfall over the catchment. The resulting stochastic integral equation is seen to be an extension of the well-known single area unit hydrograph method, except that the model output of a runoff hydrograph is a distribution of outcomes (or realizations) when applied to problems involving prediction of storm runoff; that is, the model output is a set of probable runoff hydrographs, each outcome being the results of calibration to a known storm event.  相似文献   

12.
In this paper a very general rainfall-runoff model structure (described below) is shown to reduce to a unit hydrograph model structure. For the general model, a multi-linear unit hydrograph approach is used to develop subarea runoff, and is coupled to a multi-linear channel flow routing method to develop a link-node rainfall-runoff model network. The spatial and temporal rainfall distribution over the catchment is probabilistically related to a known rainfall data source located in the catchment in order to account for the stochastic nature of rainfall with respect to the rain gauge measured data. The resulting link node model structure is a series of stochastic integral equations, one equation for each subarea. A cumulative stochastic integral equation is developed as a sum of the above series, and includes the complete spatial and temporal variabilities of the rainfall over the catchment. The resulting stochastic integral equation is seen to be an extension of the well-known single area unit hydrograph method, except that the model output of a runoff hydrograph is a distribution of outcomes (or realizations) when applied to problems involving prediction of storm runoff; that is, the model output is a set of probable runoff hydrographs, each outcome being the results of calibration to a known storm event.  相似文献   

13.
Abstract

A two-parameter gamma distribution for synthetic unit hydrographs (SUH) is compared with the Clark's and Espey's SUHs. A critical comparison of Clark's and gamma UHs, in terms of recession characteristics and time–area curve, is presented. It is observed that, in principle, a gamma UH can represent the hydrograph recession better than the Clark's UH does. Selection of a time–area curve is needed for obtaining the Clark's UH. The main problem in developing a SUH using the Clark's method is identified as the non-availability of a parametric form of the time–area curve. The time–area curve as represented in the hydrological model HEC-1, for the use in Clark's method, is found inadequate and unjustified. Gamma UHs obtained without optimization, for several examples, are found consistent with their physical meanings and better than the respective Clark's UH in reproducing runoff obtained with optimization. The parameters of Clark's UH (i.e. time of concentration and recession constant), as optimized through the HEC-1 program, are found inconsistent with their empirical origins and physical meanings; these lose their physical meaning and serve only as fitting parameters. This is due to the inappropriate time–area curve. A gamma UH has also the advantage of having fewer parameters than Clark's UH, which makes it more identifiable while still maintaining a connection with the physics of the problem. Espey's SUH for urban watersheds is transmuted to a gamma distribution using the empirical equations for the peak and time to peak of the UH. A numerical UH for a gauged catchment, generally obtained through linear programming or a least-squares approach, can be easily transmuted to a gamma UH and, hence, can be given a conceptual interpretation. Thus, these can also be used for developing a SUH.  相似文献   

14.
Design flood estimates for a given return period are required in both gauged and ungauged catchments for hydraulic design and risk assessments. Contrary to classical design estimates, synthetic design hydrographs provide not only information on the peak magnitude of events but also on the corresponding hydrograph volumes together with the hydrograph shapes. In this study, we tested different regionalization approaches to transfer parameters of synthetic design hydrographs from gauged to ungauged catchments. These approaches include classical regionalization methods such as linear regression techniques, spatial methods, and methods based on the formation of homogeneous regions. In addition to these classical approaches, we tested nonlinear regression models not commonly used in hydrological regionalization studies, such as random forest, bagging, and boosting. We found that parameters related to the magnitude of the design event can be regionalized well using both linear and nonlinear regression techniques using catchment area, length of the main channel, maximum precipitation intensity, and relief energy as explanatory variables. The hydrograph shape, however, was found to be more difficult to regionalize due to its high variability within a catchment. Such variability might be better represented by looking at flood-type specific synthetic design hydrographs.  相似文献   

15.
A Bayesian post‐processor is used to generate a representation of the likely hydrograph forecast flow error distribution using raingauge and radar input to a stochastic catchment model and its deterministic equivalent. A hydrograph ensemble is so constructed. Experiments are analysed using the model applied to the River Croal in north‐west England. It is found that for rainfall input to the model having errors less than 3mm h?1, corresponding to about a 15% error in peak flow, the stochastic model outperforms the deterministic model. The range of hydrographs associated with the different model simulations and the measured hydrographs are compared. The significant improvement possible using a stochastic approach is demonstrated for a specific case study, although the mean hydrograph derived using the stochastic model has an error range associated with it. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

The management of water excesses and deficits is a major task in semiarid Mediterranean regions, where the variability of rainfall inputs is high at different time and space scales. Thus intense hydrometeorological events, which generate both potential resource and hazards, are of major interest. A simple method is proposed, with the example of the Skhira basin (192 km2) in central Tunisia, to account for the event space–time variability of rainfall in a rainfall–runoff model, in order to check its influence on the shape, magnitude and timing of resulting hydrographs. The transfer function used is a geomorphology-based unit hydrograph with an explicit territorial significance. Simulations made for highly variable events show the relevance of this method, seen as the first step of a downward approach, and its robustness with respect to the quality and the density of rainfall data.  相似文献   

17.
18.
The separation of baseflow is an important issue in hydrology. The objective of this paper is to develop a new baseflow separation method based on the Horton infiltration capacity curve. For this purpose, the mathematical expressions of three parameters for the Horton infiltration capacity curve were derived in terms of rainfall and runoff data, and the lag time of the effective rainfall in the unsaturated zone and the groundwater flow routing equation are also presented. With these equations, the baseflow hydrographs at the outlet of the basin can be separated. The flow chart of the proposed method for baseflow hydrograph separation is given. Three recent baseflow separation methods, i.e. digital filter, non‐linear reservoir and the Boussinesq equation, were chosen as parallel schemes to compare with the proposed method. Rainfall‐runoff data from four watersheds located in different climatic regions in China were selected and used as case studies. Test and application results indicate that the proposed baseflow hydrograph separation method is in accordance with the hydrological physical process. The proposed method is comparable with current available methods and reduces some of the subjective aspects for the rising limb of the baseflow hydrograph, and it is useful for unit hydrograph analysis and for the study of the rainfall‐runoff relationship. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
A geomorphological instantaneous unit hydrograph (GIUH) is derived from the geomorphological characteristics of a catchment and it is related to the parameters of the Clark instantaneous unit hydrograph (IUH) model as well as the Nash IUH model for deriving its complete shape. The developed GIUH based Clark and Nash models are applied for simulation of the direct surface run‐off (DSRO) hydrographs for ten rainfall‐runoff events of the Ajay catchment up to the Sarath gauging site of eastern India. The geomorphological characteristics of the Ajay catchment are evaluated using the GIS package, Integrated Land and Water Information System (ILWIS). The performances of the GIUH based Clark and Nash models in simulating the DSRO hydrographs are compared with the Clark IUH model option of HEC‐1 package and the Nash IUH model, using some commonly used objective functions. The DSRO hydrographs are computed with reasonable accuracy by the GIUH based Clark and Nash models, which simulate the DSRO hydrographs of the catchment considering it to be ungauged. Inter comparison of the performances of the GIUH based Clark and Nash models shows that the DSRO hydrographs are estimated with comparable accuracy by both the models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
A laboratory study was undertaken to investigate how changes in flow regime and hydrograph shape (number of cycled hydrographs and duration of each hydrograph) together impact bedload transport and resulting bed morphology. Three hydrologic conditions (experiments) representing different levels of urbanization, or analogously different flow regimes, were derived from measured hydrometric field data. Each experiment consisted of a series of hydrographs with equal peak discharge and varying frequency, duration and flashiness. Bedload transport was measured throughout each hydrograph and measurements of bed topography and surface texture were recorded after each hydrograph. The results revealed hysteresis loops in both the total and fractional transport, with more pronounced loops for longer duration hydrographs, corresponding to lower rate of unsteadiness until reaching the peak discharge (pre-urbanization conditions). Shorter duration hydrographs (urban conditions) displayed more time above critical shear stress thresholds leading to higher bedload transport rates and ultimately to more variable hysteresis patterns. Surface textures from photographic methods revealed surface armoring in all experiments, with larger armor ratios for longer duration hydrographs, speculated to be due to vertical sorting and more time for bed rearrangements to occur. The direction of bed surface adjustment was linked to bedload hysteresis, more precisely with clockwise hysteresis (longer hydrographs) typically resulting in bed coarsening. More frequent and shorter duration hydrographs result in greater relative channel adjustments in slope, topographic variability and surface texture. © 2019 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号