首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
地形对确定高精度局部大地水准面的影响   总被引:16,自引:0,他引:16  
以计算香港大地水准面为例 ,着重研究了以下几点 :①DTM的分辨率对地形改正的影响 ;②质量柱体地形模型与质量线地形模型对计算地形改正的差异 ;③采用Helmert凝聚改正法 ,计算地形对大地水准面的间接影响 ;④比较经典Stokes Helmert方法与Sj¨oberg方法计算地形对大地水准面的影响  相似文献   

2.
Two alternative approaches are investigated to compute the discrete Stokes integral for gravimetric geoid determination so that geographical grid subdivision and gridding is not required. The techniques are based on Voronoi and Delaunay structures, in which the target area is partitioned into polygons and triangles, respectively, and the computation is carried out by point-wise integration. In the Voronoi scheme, polygonal areas just contain the observed gravity anomalies, instead of the interpolated ones; thus no gridding process or data interpolation is necessary, and only the original data are used. In the Delaunay scheme, gridding is also not required, but observed anomalies are interpolated into triangular compartments whose vertices hold the gravity stations. Geoidal undulations are thus computed at the barycenters (centroids) of the triangles. Both schemes were applied to the local gravimetric geoid determination in two distinct areas of Brazil (municipality of Rio de Janeiro, and Resende). The gravity observations are almost uniformly distributed spatially at both sites, and their topographies are very rugged. The Stokes component was also computed by means of classical numerical integration (space-domain), and compared with the Voronoi and Delaunay schemes to give root-mean-square (RMS) differences of 0.022 and 0.024 m, respectively, at the Rio de Janeiro site. In Resende, the comparisons yielded RMS differences of 0.040 and 0.053 m. The largest difference did not exceed 0.100 m for both methods and datasets. The one-dimensional (1-D) FFT (spectral domain) technique was also used on the Rio de Janeiro dataset, which gave RMS differences of 0.031 m for the classical method, 0.039 m for the Voronoi scheme, and 0.047 m for the Delaunay scheme. Relative comparisons with 465 GPS-leveling baselines in the Rio de Janeiro site gave RMS differences of 0.069, 0.061, 0.071, and 0.071 m, for the Voronoi, Delaunay, classical, and 1-D FFT methods, respectively. Since the Voronoi and Delaunay schemes avoid the gridding step, the pre-processing time and labor are reduced. As with other methods, the dependence upon data quality and distribution is the main drawback of both schemes. Finally, the Voronoi and Delaunay schemes proved to be computationally as efficient as the 1-D FFT method for only the geoid height computation.  相似文献   

3.
Sun  W. 《Journal of Geodesy》2002,76(8):399-406
Journal of Geodesy - ?The application of Stokes' formula to create geoid undulations requires no masses outside the geoid. However, due to the existence of the topography, terrain...  相似文献   

4.
局部大地水准面精化的实质是精确计算出大地水准面的起伏变化情况。一般情况下,需要密度足够的重力数据,依重力异常密集计算大地水准面差距或高程异常。但是在大陆西部高原山区重力点密度是不够的,无法达到大地水准面精化的目的。本文从理论上证实了用地形和岩石密度数据进行局部大地水准面精化的可行性。  相似文献   

5.
The vertical component obtained from the Global Positioning System (GPS) observations is from the ellipsoid (a mathematical surface), and therefore needs to be converted to the orthometric height, which is from the geoid (represented by the mean sea level). The common practice is to use existing bench marks (around the four corners of a project area and interpolate for the rest of the area), but in many areas bench marks may not be available, in which case an existing geoid undulation is used. Present available global geoid undulation values are not generally as detailed as needed, and in many areas they are not known better than ±1 to ±5 m, because of many limitations. This article explains the difficulties encountered in obtaining precise geoid undulation with some example computations, and proposes a technique of applying corrections to the best available global geoid undulations using detailed free-air gravity anomalies (within a 2° × 2° area) to get relative centimeter accuracy. Several test computations have been performed to decide the optimal block sizes and the effective spherical distances to compute the regional and the local effects of gravity anomalies on geoid undulations by using the Stokes integral. In one test computation a 2° × 2° area was subdivided into smaller surface elements. A difference of 37.34 ± 1.6 cm in geoid undulation was obtained over the same 2° × 2° area when 1° × 1° block sizes were replaced by a combination of 5' × 5' and 1' × 1' subdivision integration elements (block sizes).  相似文献   

6.
Due to the fact that the spectrum of a convolution is the product of the spectra of the two convolved functions, the convolution integrals of physical geodesy can be evaluated very efficiently by the use of the fast Fourier transform (FFT) provided that gravity and/or terrain data are available on a regular grid. All Fourier transform-based methods usually treat the gridded data as point values despite the fact that these discrete values may have been obtained by averaging and they represent mean values over the whole area of a grid element. In the frequency domain, this fact can be taken into account very easily, because the spectra of mean and point data are related via a two-dimensional (2D) sinc function. The paper shows explicitly this relationship using the convolution integrals for the evaluation of geoid undulations, deflections of the vertical, and gravity and gradiometry terrain effects. Numerical tests are presented, indicating that the differences in the two approaches may become significant when highly accurate results are wanted. The application of the2D sinc function in the evaluation, update, and inversion of other convolution integrals is briefly discussed as well.  相似文献   

7.
Gravity field terrain effect computations by FFT   总被引:2,自引:2,他引:2  
The widespread availability of detailed gridded topographic and bathymetric data for many areas of the earth has resulted in a need for efficient terrain effect computation techniques, especially for applications in gravity field modelling. Compared to conventional integration techniques, Fourier transform methods provide extremely efficient computations due to the speed of the Fast Fourier Transform (FFT. The Fourier techniques rely on linearization and series expansions of the basically unlinear terrain effect integrals, typically involving transformation of the heights/depths and their squares. TheFFT methods will especially be suited for terrain reduction of land gravity data and satellite altimetry geoid data. In the paper the basic formulas will be outlined, and special emphasis will be put on the practial implementation, where a special coarse/detailed grid pair formulation must be used in order to minimize the unavoidable edge effects ofFFT, and the special properties ofFFT are utilized to limit the actual number of data transformations needed. Actual results are presented for gravity and geoid terrain effects in test areas of the USA, Greenland and the North Atlantic. The results are evaluated against a conventional integration program: thus, e.g., in an area of East Greenland (with terrain corrections up to10 mgal), the accuracy ofFFT-computed terrain corrections in actual gravity stations showed anr.m.s. error of0.25 mgal, using height data from a detailed photogrammetric digital terrain model. Similarly, isostatic ocean geoid effects in the Faeroe Islands region were found to be computed withr.m.s. errors around0.03 m  相似文献   

8.
Using the spherical harmonic representations of the earth's disturbing potential and its functionals, we derive the inverse Vening Meinesz formula, which converts deflection of the vertical to gravity anomaly using the gradient of the H function. The deflection-geoid formula is also derived that converts deflection to geoidal undulation using the gradient of the C function. The two formulae are implemented by the 1D FFT and the 2D FFT methods. The innermost zone effect is derived. The inverse Vening Meinesz formula is employed to compute gravity anomalies and geoidal undulations over the South China Sea using deflections from Seasat, Geosat, ERS-1 and TOPEX//POSEIDON satellite altimetry. The 1D FFT yields the best result of 9.9-mgal rms difference with the shipborne gravity anomalies. Using the simulated deflections from EGM96, the deflection-geoid formula yields a 4-cm rms difference with the EGM96-generated geoid. The predicted gravity anomalies and geoidal undulations can be used to study the tectonic structure and the ocean circulations of the South China Sea. Received: 7 April 1997 / Accepted: 7 January 1998  相似文献   

9.
本文提出了利用快速Hartley变换(FHT)计算Stokes公式的方法,这一算法最适合于用来计算实序列的积分变换,而快速Fourier变换(FFT)较适合于用来计算复序列的积分变换。计算Stokes公式只涉及实序列问题,用FHT计算Stokes公式比用FFT算法更有效。本文详细地描述了用FHΥ计算Stokes公式的算法,进行了数值计算,与相应的FFT计算结果作了比较。结果表明,两种算法可以得到相同的精度,但是,FHT的计算速度比FFT的计算速度快一倍以上,且所需要的内存空间只是后者的一半。  相似文献   

10.
Precise terrain elevation information is required in various remote sensing and Engineering projects. There are many technologies to derive the terrain elevation information like GPS, ground surveys, LiDAR, Photogrammetry. GPS is the most widely used technology to obtain information due to its ease of operation. However the usage of ellipsoidal heights, i.e. with respect to WGS84 has limited usage in hydrological applications. GPS heights must be converted into orthometric heights for use in hydrological applications, and this requires geoid undulation information. These geoid undulations can be deduced from earth gravity models. There are various earth gravity models available for ready usage like EGM96, EGM2008, GFZ96 in the public domain. This paper discusses the improvements observed in deriving orthometric heights using EGM2008 over its predecessor model EGM96. The utilization of the new model in topographical mapping projects are also presented.  相似文献   

11.
A method is presented with which to verify that the computer software used to compute a gravimetric geoid is capable of producing the correct results, assuming accurate input data. The Stokes, gravimetric terrain correction and indirect effect formulae are integrated analytically after applying a transformation to surface spherical coordinates centred on each computation point. These analytical results can be compared with those from geoid computation software using constant gravity data in order to verify its integrity. Results of tests conducted with geoid computation software are presented which illustrate the need for integration weighting factors, especially for those compartments close to the computation point. Received: 6 February 1996 / Accepted: 19 April 1997  相似文献   

12.
This paper presents a method for the computation of the Stokes for-mula using the Fast Hartley Transform(FHT)techniques.The algorithm is mostsuitable for the computation of real sequence transform,while the Fast FourierTransform(FFT)techniques are more suitable for the computaton of complex se-quence transform.A method of spherical coordinate transformation is presented inthis paper.By this method the errors,which are due to the approximate term inthe convolution of Stokes formula,can be effectively eliminated.Some numericaltests are given.By a comparison with both FFT techniques and numerical integra-tion method,the results show that the resulting values of geoidal undulations byFHT techniques are almost the same as by FFT techniques,and the computation-al speed of FHT techniques is about two times faster than that of FFT techniques.  相似文献   

13.
The fast Fourier transform (FFT) and, recently, the fast Hartley transform (FHT) have been extensively used by geodesists for efficient geoid determination. For this kind of efficiency, data must be given on a regular grid and, consequently, a pre-processing step of interpolation is required when only point measurements are available. This paper presents a way of computing a grid of geoid undulations N without explicitly gridding the data. The method is applicable to all FFT or FHT techniques of geoid or terrain effects determination, and it works with planar as well as spherical formulas. This method can be used not only for, e.g., computing a grid of undulations from irregular gravity anomalies g but it also lends itself to other applications, such as the gridding of gravity anomalies and, since the contribution of each data point is computed individually, the update of N- or g-grids as soon as new point measurements become available. In the case that there are grid cells which contain no measurements, the results of gravity interpolation or geoid estimation can be drastically improved by incorporating into the procedure a frequency-domain interpolating function. In addition to numerical results obtained using a few simple interpolating functions, the paper presents briefly the mathematical formulas for recovering missing grid values and for transforming values from one grid to another which might be rotated and/or scaled with respect to the first one. The geodetic problems where these techniques may find applications are pointed out throughout the paper.Presented at theIAG General Meeting, Beijing, P.R. China, Aug. 6–13, 1993  相似文献   

14.
The undulations of the geoid may be computed from spherical harmonic potential coefficients of the earth’s gravitational field. This paper examines three procedures that reflect various points of view on how this computation should be carried out. One method requires only the flattening of a reference ellipsoid to be defined while the other two methods require a complete definition of the parameters of the ellipsoid. It was found that the various methods give essentially the same undulations provided that correct parameters are chosen for the reference ellipsoid. A discussion is given on how these parameters are chosen and numerical results are reported using recent potential coefficient determinations.  相似文献   

15.
In view of the smallness of the atmospheric mass compared to the mass variations within the Earth, it is generally assumed in physical geodesy that the terrain effects are negligible. Subsequently most models assume a spherical or ellipsoidal layering of the atmosphere. The removal and restoring of the atmosphere in solving the exterior boundary value problems thus correspond to gravity and geoid corrections of the order of 0.9 mGal and -0.7 cm, respectively.We demonstrate that the gravity terrain correction for the removal of the atmosphere is of the order of 50µGal/km of elevation with a maximum close to 0.5 mGal at the top of Mount Everest. The corresponding effect on the geoid may reach several centimetres in mountainous regions. Also the total effect on geoid determination for removal and restoring the atmosphere may contribute significantly, in particular by long wavelengths. This is not the case for the quasi geoid in mountainous regions.  相似文献   

16.
The Stokes formula is efficiently evaluated by the one-and two- dimensional (1D, 2D) fast Fourier transform (FFT) technique in the plane and on the sphere in order to obtain precise geoid determinatiover a large area such as Europe. Using a high-pass filtered spherical harmonic reference model (OSU91A truncated to different degrees), gridded gravity anomalies and geoid heights were produced and the anomalies were used as input in the FFT software. Various tests were performed with respect to the different kernel functions used, to the spherical computations in bands, as well as to windowing, edge effects and extent of the area. It is thus demonstrated that, in geoid computations over large regions, the 1D spherical FFT and the 2D multiband spherical FFT in combination with discrete spectra for the kernel functions and 100% zero-padding give better results than those obtained by the other transform techniques. Additionally, numerical tests were carried out at the same test area using the planar fast Hartley transform (FHT) instead of the FFT and the results obtained by the two attractive alternatives were compared regarding the requirements in both computer time and computer memory needed in geoid height computations.A slightly modified version of the paper has been presented at the XX EGS General Assembly, Hamburg, 3–7 April, 1995  相似文献   

17.
Any errors in digital elevation models (DEMs) will introduce errors directly in gravity anomalies and geoid models when used in interpolating Bouguer gravity anomalies. Errors are also propagated into the geoid model by the topographic and downward continuation (DWC) corrections in the application of Stokes’s formula. The effects of these errors are assessed by the evaluation of the absolute accuracy of nine independent DEMs for the Iran region. It is shown that the improvement in using the high-resolution Shuttle Radar Topography Mission (SRTM) data versus previously available DEMs in gridding of gravity anomalies, terrain corrections and DWC effects for the geoid model are significant. Based on the Iranian GPS/levelling network data, we estimate the absolute vertical accuracy of the SRTM in Iran to be 6.5 m, which is much better than the estimated global accuracy of the SRTM (say 16 m). Hence, this DEM has a comparable accuracy to a current photogrammetric high-resolution DEM of Iran under development. We also found very large differences between the GLOBE and SRTM models on the range of −750 to 550 m. This difference causes an error in the range of −160 to 140 mGal in interpolating surface gravity anomalies and −60 to 60 mGal in simple Bouguer anomaly correction terms. In the view of geoid heights, we found large differences between the use of GLOBE and SRTM DEMs, in the range of −1.1 to 1 m for the study area. The terrain correction of the geoid model at selected GPS/levelling points only differs by 3 cm for these two DEMs.  相似文献   

18.
A new, high-resolution and high-precision geoid has been computed for the whole of Canada and part of the U.S., ranging from 35°N to about 90°N in latitude and 210°E to 320°E in longitude. The OSU91A geopotential model complete to degree and order 360 was combined with a 5 × 5 mean gravity anomaly grid and 1km × 1km topographical information to generate the geoid file. The remove-restore technique was adopted for the computation of terrain effects by Helmert's condensation reduction. The contribution of the local gravity data to the geoid was computed strictly by the 1D-FFT technique, which allows for the evaluation of the discrete spherical Stokes integral without any approximation, parallel by parallel. The indirect effects of up to second order were considered. The internal precision of the geoid, i.e. the contribution of the gravity data and the model coefficients noise, was also evaluated through error propagation by FFT. In a relative sense, these errors seem to agree quite well with the external errors and show clearly the weak areas of the geoid which are mostly due to insufficient gravity data coverage. Comparison of the gravimetric geoid with the GPS/levelling-derived geoidal heights of eight local GPS networks with a total of about 900 stations shows that the absolute agreement with respect to the GPS/levelling datum is generally better than 10 cm RMS and the relative agreement ranges, in most cases, from 4 to 1 ppm over short distances of about 20 to 100km, 1 to 0.5 ppm over distances of about 100 to 200 km, and 0.5 to 0.1 ppm for baselines of 200 to over 1000 km. Other existing geoids, such as UNB90, GEOID90 and GSD91, were also included in the comparison, showing that the new geoid achieves the best agreement with the GPS/levelling data.Presented at theIAG General Meeting, Beijing, P.R. China, Aug. 6–13, 1993  相似文献   

19.
Ellipsoidal geoid computation   总被引:1,自引:1,他引:0  
Modern geoid computation uses a global gravity model, such as EGM96, as a third component in a remove–restore process. The classical approach uses only two: the reference ellipsoid and a geometrical model representing the topography. The rationale for all three components is reviewed, drawing attention to the much smaller precision now needed when transforming residual gravity anomalies. It is shown that all ellipsoidal effects needed for geoid computation with millimetric accuracy are automatically included provided that the free air anomaly and geoid are calculated correctly from the global model. Both must be consistent with an ellipsoidal Earth and with the treatment of observed gravity data. Further ellipsoidal corrections are then negligible. Precise formulae are developed for the geoid height and the free air anomaly using a global gravity model, given as spherical harmonic coefficients. Although only linear in the anomalous potential, these formulae are otherwise exact for an ellipsoidal reference Earth—they involve closed analytical functions of the eccentricity (and the Earths spin rate), rather than a truncated power series in e2. They are evaluated using EGM96 and give ellipsoidal corrections to the conventional free air anomaly ranging from –0.84 to +1.14 mGal, both extremes occurring in Tibet. The geoid error corresponding to these differences is dominated by longer wavelengths, so extrema occur elsewhere, rising to +766 mm south of India and falling to –594 mm over New Guinea. At short wavelengths, the difference between ellipsoidal corrections based only on EGM96 and those derived from detailed local gravity data for the North Sea geoid GEONZ97 has a standard deviation of only 3.3 mm. However, the long-wavelength components missed by the local computation reach 300 mm and have a significant slope. In Australia, for example, such a slope would amount to a 600-mm rise from Perth to Cairns.  相似文献   

20.
This paper deals with the problem of determining a scalar spherical field from its surface gradient, i.e., the modelling of geoid undulations from deflections of the vertical. Essential tools are integral formulae on the sphere based on Green’s function of the Beltrami operator. The determination of geoid undulations from deflections of the vertical is formulated as multiscale procedure involving scale-dependent regularized versions of the surface gradient of Green’s function. An advantage of the presented approach is that the multiscale method is based on locally supported wavelets. In consequence, local modelling of geoid undulations are calculable from locally available deflections of the vertical  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号