首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 556 毫秒
1.
The Cenomanian/Turonian Boundary Event (CTBE) at Wunstorf, north-west Germany, has been analysed palynologically by high resolution sampling to reconstruct changes in relative sea-level and water mass character within photic zone waters. Based on changes in the ratio of terrigenous sporomorphs to marine palynomorphs (t/m index), the distribution of the organic-walled algal taxa as well as of selected dinocyst taxa and groups the section can largely be subdivided into pre-“plenus-bed” and post-“plenus-bed” intervals, reflecting different stages of third-order relative sea-level cycles and/or changes in water mass influence in the photic zone. Accordingly, the pre-“plenus-bed” interval is placed in a transgressive systems tract starting at the “facies change” event (C. guerangeri/M. geslinianum ammonite Zone boundary) with the maximum flooding surface at the top of the “Chondrites II” bed (top of R. cushmani Biozone). A highstand systems tract is suggested from the base of the “plenus-bed” up the base of the “fish-shale” event. Within the “fish-shale” event interval, a transgressive systems tract is suggested to start at the base of the thin, grey-green marly interbed. The Cenomanian/Turonian boundary proper, as defined by the first occurrence of Mytiloides spp., as well as the lowermost Turonian are located within the initial phase of a transgressive systems tract. With respect to water mass characteristics within photic-zone waters, the pre-“plenus-bed” interval is predominantly characterized by warm water masses that changed gradually towards the deposition of the “Chondrites II” bed, where a strong influence of cool and/or salinity-reduced waters is indicated by various palynological proxies. Within the post-“plenus-bed” interval a mixture and/or alternation of warmer and cooler waters is indicated, with the warmer water influence increasing gradually towards and within the Lower Turonian stage. The increased proportions of prasinophytes within the “Chondrites II” bed and parts of the “fish-shale” interval may indicate availability of reduced nitrogen chemospecies, especially ammonium, within photic-zone waters as a function of a vertical expansion of the oceanic O2-minimum zone.  相似文献   

2.
J. -B. Edel   《Tectonophysics》2003,363(3-4):225-241
Generally, the lack of bedding criteria in basement units hampers the interpretation of paleomagnetic results in terms of geotectonics. Nevertheless, this work demonstrates that successive remagnetizations recorded in Early Carboniferous metamorphic and plutonic units, without clear bedding criteria, can be used to constrain a polyphased tectonic evolution consisting of a regional clockwise rotation, followed by a folding phase, a tilting phase and a second regional clockwise rotation.Metamorphic, ultrabasic, tonalitic and granitic rocks from different parts of Limousin (western French Massif central; 45.5°N/1.25°E), which underwent metamorphism during Devonian–Early Carboniferous or were intruded in the Early–Middle Carboniferous, were sampled in order (a) to identify the magnetic overprinting phases and the related tectono-magmatic events and (b) to constrain the regional and plate tectonic evolution of Limousin. Paleomagnetic results from 32 new and 26 sites investigated previously show that at least 90% of the magnetization isolated in rocks older than 330 Ma are overprints. In agreement with results from adjacent areas of the Variscan belt, the major overprinting phases occurred: (a) in the last stages of the major exhumation phase [332–328 Ma; mean Virtual Geomagnetic Pole (VGP) “Cp”: 37°N/70.5°E], (b) during the post-collisional syn-orogenic extension (325–315 Ma; VGP “B”: 11°N/114°E), (c) in the Latest Carboniferous and Early Permian (VGP “A1”: 27°N/149°E) and (d) in the Late Permian (VGP “A”: 48°N/146°E). The Middle–Late Carboniferous overprints “Cp” and “B” are contemporaneous with emplacement of leucogranitic, crustal derived plutons, and probably result from the hydro-thermal activity related to the magmatism. The drift from “Cp” directions to “B” directions implies that after 330 Ma, Limousin underwent a clockwise rotation by 65°, together with the Central Europe Variscides. The “Bt” components, the VGPs of which deviate from the mean apparent polar wander path (APWP) of the belt, are interpreted as “B” overprints tilted during Late Variscan tectonics, that is, in the time range 325–315 Ma. The first and most important generation of “Bt” overprints was tilted during NW–SE folding associated with NE–SW shortening, updoming and emplacement of leucogranitic plutons. The second generation reveals southeastward tilting due to NE-striking normal faulting. The drift from “B” to “A1” directions implies that Limousin has participated to the second clockwise rotation by 40° of the whole belt in Westphalian times.  相似文献   

3.
4.
This is the fourth installment in a series of papers on the Asturian (Westphalian D) disrupted mire margins, termed the “ragged edge” in previous papers, and limestone distributions in the Herrin–Baker coal interval in the Western Kentucky extension of the Illinois Basin. New data, indicating in-situ peat development and marine influence, collected from the first in-mine exposure of this interval are presented. Borehole data from the region are examined in the context of “ragged edge” exposures and a carbonate platform depositional model for this portion of the Illinois Basin is presented. This shows that deposition of the sequence was influenced both by the underlying sediments and by a marine transgression. The former influence is seen in variations in coal and limestone thickness over sandstone-filled channels versus over shale bayfill deposits. The latter is marked by the progressive upwards loss of coal benches (i.e., the bottom bench of both coals is the most extensive and the Herrin coal is more extensive than the overlying Paradise coal) and by marine partings in both coals. Further, the brecciated margins seen in both coal seams are similar to brecciated peats encountered along the Everglades margins of Southwest Florida. Overall coal distributions are similar to both those along the Everglades margins and those along a transect from the Belize coast to Ambergis Caye.  相似文献   

5.
Using open-ended interviews to conduct research on foreign elites raises methodological questions which conducting research on non-foreign elites and foreign non-elites does not. In this paper I first reflect upon some of the practical issues I have encountered when conducting interviews with members of foreign elites. I then examine the issue of positionality to suggest that the dualism of “insider” knowledge and status versus “outsider” knowledge and status is not as stable as it is often assumed to be, and that it should not be presumed that an “insider” will necessarily produce “better” knowledge than will an “outsider” simply by dint of their positionality. Indeed, given that the interview process is about constructing social meaning – a process that involves both the researcher and the source – in many ways such a dualism is meaningless.  相似文献   

6.
7.
The Philippine mobile belt represents a crustal fragment, wedged between two subduction systems exhibiting opposite polarity. The eastern (Philippine—Quezon) system probably originated in the Eocene during northwest—southeast spreading of the west Philippine basin. Westward subduction is continued, probably as a result of northward motion of the Philippine basin crust. The western (Manila—Bataan) system originated in the Oligocene by spreading and formation of the South China Sea basin. Eastward subduction dominates the tectonics in the northern part of the archipelago and resulted in the formation of the Bataan orogene, a sequence of three parallel volcanic arcs emplaced in obducted oceanic crust. Geochemical and radiometric data indicate that the arcs migrated eastward with time (Miocene to Present) while changing composition from tholeiitic via calc-alkaline to shoshonitic. Centers of the latter two types are presently active. Depocenters behind the arcs also migrated eastward with time, suggesting correction of the isostatic disequilibrium caused by geanticlinal uplift of the orogene. Paleomagnetic evidence suggests that central Luzon is rotating counterclockwise probably due to differential spreading in the South China Sea basin. The west Philippine basin rotates clockwise. This results in significant “Einengung” in the southern part of the archipelago.  相似文献   

8.
The offsets on the ocean floor, usually called “transform-faults” are not shear faults common in solid Hookian rocks, but reflect the viscous Newtonian properties of laminar flow at the time when the upwelling magma along the spreading center was still in a liquid state. During spreading this liquid is carried away with the walls of the spreading center. This movement creates a pattern of stream lines in the liquid which run parallel to the direction of spreading. “Transform faults” are initiated along zones where a larger rate of shear disturbs the process of solidification. Consequently the strength of the basalt after solidification will be impaired along these zones. These weak zones will fracture under the thermo-elastic stresses during the final stage of cooling.The history of the term “transform fault” is discussed and the name “spreading offset” is proposed.  相似文献   

9.
Hydrochemical conditions up to depths of 1000 m below ground level around the Mizunami Underground Research Laboratory were investigated to construct a “baseline condition model” describing the undisturbed hydrochemical environment prior to excavation of the underground facilities at Mizunami, Gifu, Japan. Groundwater chemistry in this area was classified into a Na–Ca–HCO3 type of groundwater in the upper part of sedimentary rock sequence and a Na–(Ca)–Cl type of groundwater in the deeper part of the sedimentary rock sequence and basement granite. The residence time of the groundwaters was estimated from their 14C contents to be approximately 9.3 ka in the middle part of the sedimentary rock and older than 50 ka in the deep part of the granite. The evolution processes of these groundwaters were inferred to be water–rock interactions such as weathering of plagioclase, dissolution of marine sulphate/sulphide minerals and carbonate minerals in the Na–Ca–HCO3 type of groundwater, and mixing between “low-salinity water” in the shallow part and “higher-salinity water” in the deeper part of the granite in the Na–(Ca)–Cl type of groundwater. The source of salinity in the deeper part of the granite was possibly a palaeo-hydrothermal water or a fossil seawater that recharged in the Miocene, subsequently being modified by long-term water–rock interaction. The Cl-depth trend in granitic groundwater changes at a depth of −400 m below sea level. The hydrogeological properties controlling the groundwater flow and/or mixing processes such as advection and diffusion were inferred to be different at this depth in the granite. This hydrochemical conceptual model is indispensable not only when constructing the numerical model for evaluating the hydrochemical disturbance during construction and operation of the MIU facility, but also when confirming a hydrogeological model.  相似文献   

10.
Kaolin deposits of the Swat District in Pakistan are indicated to have derived by hydrothermal alteration of more feldspathic parts of felsic intrusives, which occur enclosed in orthoamphibolites and orthogneisses of the Cretaceous Kohistan Island Arc terrane. These latter “country rocks” formed under epidote–amphibolite conditions that prograde northwards to amphibolite facies, and locally manifest slight metamorphic differentiation. The felsic intrusives exhibit a general decrease in siliceous character from west to east, but are less siliceous than most hosts of world kaolins. They are composed of chemically allied quartz diorite, tonalite, trondhjemite and pegmatoids, which evolved mainly by an orthomagmatic crystal fractionation. These parental rocks are calc-alkaline in nature, and kaolinization has proceeded in Ca-richer environment. This is in variance with the occurrence of most known kaolin deposits over potassic granites or rhyolites. Ca-metasomatism of the “host rocks” is in evidence. Kaolin formation by a supergene process is not displayed.The raw kaolin with contained unaltered plagioclase is characterized by a rather low silica (46.54–50.93%) and potash (<1%), and high alumina (23.54–26.77%), Fe2O3 (1.73–5.45%) and lime (8.13–16.93%) content. Kaolinization proceeded with a decrease in SiO2 and concomitant increase in Al2O3. The same trend is followed with fineness of grain size of washed fractions, in resemblance to other known kaolin deposits of primary as well as secondary origin.  相似文献   

11.
The interpretation of the seismic Vibroseis and explosive TRANSALP profiles has examined the upper crustal structures according to the near-surface geological evidences and reconstructions which were extrapolated to depth. Only the southern sector of the TRANSALP transect has been discussed in details, but its relationship with the whole explored chain has been considered as well. The seismic images indicate that pre-collision and deep collision structures of the Alps are not easily recognizable. Conversely, good records of the Neo-Alpine to present architecture were provided by the seismic sections.Two general interpretation models (“Crocodile” and “Extrusion”) have been sketched by the TRANSALP Working Group [2002]. Both illustrate the continental collision producing strong mechanical interaction of the facing European and African margins, as documented by giant lithosphere wedging processes. Arguments consistent with the “Extrusion” model and with the indentation of Adriatic (Southalpine) lithosphere underneath the Tauern Window (TW) are:
– According to the previous DSS reconstructions, the Bouguer anomalies and the Receiver Functions seismological data, the European Moho descends regularly attaining a zone south of the Periadriatic Lineament (PL). The Moho boundary and its geometry appear to be rather convincing from images of the seismic profile;
– the Tauern Window intense uplift and exhumation is coherent with the strong compression regime, which acted at depth, thus originating the upward and lateral displacement of the mobile and ductile Penninic masses according to the “Extrusion” model;
– the indentation of the Penninic mobile masses within the colder and more rigid Adriatic crust cannot be easily sustained. Wedging of the Adriatic stiffened lower crust, under high stresses and into the weaker Penninic domain, can be a more suitable hypothesis. Furthermore, the intrusion of the European Penninic crustal wedge underneath the Dolomites upper crust is not supported by any significant uplifting of the Dolomites. The total average uplift of the Dolomites during the Neogene appears to be 6−7 times smaller than that recognized in the TW. Markedly the northward dip of the PL, reaching a depth of approximately 20 km, is proposed in our interpretation;
– finally, the Adriatic upper crustal evolution points to the late post-collision change in the tectonic grow-up of the Eastern Alps orogenic chain. The tectonic accretion of the northern frontal zone of the Eastern and Central Alps was interrupted from the Late Miocene (Serravallian–Tortonian) onward, as documented by the Molasse basin evolution. On the contrary, the structural nucleation along the S-vergent tectonic belt of the eastern Southern Alps (Montello–Friuli thrust belt) severely continued during the Messinian and the Plio–Pleistocene. This structural evolution can be considered to be consistent with the deep under-thrusting and wedge indentation of the Adriatic lithosphere underneath the southern side of the Eastern Alps thrust-and-fold belt.
Similarly, the significance of the magmatic activity for the construction of the Southern Alps crust and for its mechanical and geological differentiation, which qualified the evolution of the thrust-and-fold belt, is highlighted, starting with the Permian–Triassic magmatism and progressing with the Paleogene occurrences along the Periadriatic Lineament and in the Venetian Magmatic Province (Lessini–Euganei Hills).  相似文献   

12.
The Neoproterozoic Katangan R.A.T. (“Roches Argilo-Talqueuses”) Subgroup is a sedimentary sequence composed of red massive to irregularly bedded terrigenous-dolomitic rocks occurring at the base of the Katangan succession in Congo. Red R.A.T. is rarely exposed in a continuous section because it was affected by a major layer-parallel décollement during the Lufilian thrusting. However, in a number of thrust sheets, Red R.A.T. is in conformable sedimentary contact with Grey R.A.T which forms the base of the Mines Subgroup. Apart from the colour difference reflecting distinct depositional redox conditions, lithological, petrographical and geochemical features of Red and Grey R.A.T. are similar. A continuous sedimentary transition between these two lithological units is shown by the occurrence of variegated to yellowish R.A.T. The D. Strat. “Dolomies Stratifiées” formation of the Mines Subgroup conformably overlies the Grey R.A.T. In addition, a transitional gradation between Grey R.A.T. and D. Strat. occurs in most Cu–Co mines in Katanga and is marked by interbedding of Grey R.A.T.-type and D. Strat.-type layers or by a progressive petrographic and lithologic transition from R.A.T. to D. Strat. Thus, there is an unquestionable sedimentary transition between Grey R.A.T. and D. Strat. and between Grey R.A.T. and Red R.A.T.The R.A.T. Subgroup stratigraphically underlies the Mines Subgroup and therefore R.A.T. cannot be comprised of syn-orogenic sediments deposited upon the Kundelungu (formerly “Upper Kundelungu”) Group as suggested by Wendorff (2000). As a consequence, the Grey R.A.T. Cu–Co mineralisation definitely is part of the Mines Subgroup Lower Orebody, and does not represent a distinct generation of stratiform Cu–Co sulphide mineralisation younger than the Roan orebodies.  相似文献   

13.
Historically, a significant level of mining activity has taken place in the batholite-related metalogenic enclave of Linares (Jaén province, Spain), associated with Pb–Ag, Cu, Zn and Fe sulphides and Ba sulphate mineralization, though mining here has now been abandoned. Additionally, the area features a significant amount of urban, industrial and agricultural activities. These considerations, taken together, explain the need to assess the levels of concentration of trace elements and to determine their relationship with geogenic and anthropogenic factors. For geochemical characterisation of the soil, the region has been divided into 126 grid squares with an area of 1 km2. For each grid square, 32 trace elements have been analysed. Elemental concentrations of Cu, Pb, Zn, As and Mn have been included in statistical analyses. According to the reference levels established by the Regional Government (Junta de Andalucía), soils in a large part of the study area require amendment applications. The comparison of the mean content for each grid square with the reference levels reveals a significant degree of contamination of the soil by Cu (719 mg kg−1), Pb (22,964 mg kg−1) and As (100 mg kg−1) in those grid squares affected by metallurgic activities. By means of factor analysis, four scores have been identified which together account for 80% of the variance observed. The first score is highly correlated with the logarithms of the variables Fe, Th, La, Ti, Al, Na, K, Zr, Y, Nb, Be and Sc. It is a “natural” factor that indicates the type of soil matrix (fundamentally granites and, to a lesser degree, Triassic materials). The second score shows high correlation with the logarithms of the variables Mo, Cu, Pb, Zn, Ag, Co, Mn, As, Cd, Sb, Ba, W and Sn, and is the “metallization” factor related to the mineralization that has been exploited. The third score is mainly determined by the logarithms of the variables Sr, Ca and Mg. This is a “natural” factor that indicates a type of carbonate soil matrix (Miocene). Finally, the fourth factor groups the logarithms of the variables Ni, V and Cr, elements that are associated with the combustion of fossil fuels. Analysis of the patterns of each of the factors identified enabled achieving a global characterisation of the study area. Cluster analysis of the observations showed there to be five clusters relating to the grid squares, differentiated by lithologies and degrees of contamination. These clusters are used to determine the background of granite and to calculate the anomalous load.  相似文献   

14.
The Rhodiani ophiolites are represented by two tectonically superimposed ophiolitic units: the “lower” Ultramafic unit and the “upper” Volcanic unit, both bearing calcareous sedimentary covers. The Ultramafic unit consists of mantle harzburgites with dunite pods and chromitite ores, and represents the typical mantle section of supra-subduction zone (SSZ) settings. The Volcanic unit is represented by a sheeted dyke complex overlain by a pillow and massive lava sequence, both including basalts, basaltic andesites, andesites, and dacites. Chemically, the Volcanic unit displays low-Ti affinity typical of island arc tholeiite (IAT) ophiolitic series from SSZ settings, having, as most distinctive chemical features, low Ti/V ratios (< 20) and depletion in high field strength elements and light rare earth elements.The rare earth element and incompatible element composition of the more primitive basaltic andesites from the Rhodiani ophiolites can be successfully reproduced with about 15% non-modal fractional melting of depleted lherzolites, which are very common in the Hellenide ophiolites. The calculated residua correspond to the depleted harzburgites found in the Rhodiani and Othrys ophiolites. Both field and chemical evidence suggest that the whole sequence of the Rhodiani Volcanic unit (from basalt to dacite) originated by low-pressure fractional crystallization under partially open-system conditions. The modelling of mantle source, melt generation, and mantle residua carried out in this paper provides new constraints for the tectono-magmatic evolution of the Mirdita–Pindos oceanic basin.  相似文献   

15.
In this paper, I analyze the connections made between women and water in a Rajasthani drinking water supply project as a significant part of drinking water’s commodification. For development policy makers, water progressing from something free to something valued by price is inevitable when moving economies toward modernity and development. My findings indicate that water is not commodified simply by charging money for it, but through a series of discourses and acts that link it to other “modern” objects and give it value. One of these objects is “women”. I argue that through women’s participation activities that link gender and modernity to new responsibilities and increased mobility for village women involving the clean water supply, a “traditional” Rajasthani woman becomes “modern”. Water, in parallel, becomes “new”, “improved” and worth paying for. Women and water resources are further connected through project staff’s efforts to promote latrines by targeting women as their primary users. The research shows that villagers applied their own meanings to latrines, some of which precluded women using them. This paper fills a gap in feminist political ecology, which often overlooks how gender is created through natural resource interventions, by concerning itself with how new meanings of “water” and “women” are mutually constructed through struggles over water use and its commodification. It contributes to critical development geography literatures by demonstrating that women’s participation approaches to natural resource development act as both constraints and opportunities for village constituents. It examines an under-explored area of gender and water research by tracing village-level struggles over meanings of latrines.  相似文献   

16.
Jody Emel  Matthew T. Huber   《Geoforum》2008,39(3):1393-1407
Natural resource investment in the mining sector is often mediated through conflicts over rent distribution between corporate capital and landowner states. Recent rounds of neoliberal policy promoted by the World Bank have highlighted the need for landowner states to offer incentives in order to attract “high risk” capital investment. In Sub-Saharan Africa, in particular, countries have been pushed to offer attractive fiscal terms to capital, thereby lowering the proportion traditionally called rent. This paper examines how the concept of “risk” has been mobilized to legitimate such skewed distributional arrangements. While certain conceptions of social and ecological “risk” have been prevalent in political and social theoretic discourse on mining, such focus elides the overwhelming contemporary power of our notion of “neoliberal risk” – or the financial/market risks – in actually setting the distributional terms of mineral investment. We illustrate our argument by examining the nexus of World Bank mining policy promotion and Tanzanian policy in the late 1990s meant to attract foreign direct investment in gold production. In closing, we suggest that just as “risk” is used to legitimate attractive fiscal terms for investment, recent events highlight how skewed distribution of benefits may set into motion risks that corporate capital had not bargained for.  相似文献   

17.
Geological and geophysical data on southwest Tuscany are reviewed in order to define the structure and evolution of the upper lithosphere from the Miocene to the Quaternary. Petrologic studies reveal the existence, below all of Tuscany, of Hercynian and older polyphased metamorphic rocks and of Hercynian granite, whose top is an important seismic reflecting horizon. The basement is characterized by NE-SW trending structures, in contrast with the main NW-SE “Alpine” structures of the uppermost levels. The heat flow map shows two broad areas with values higher than 80 mW/m2, reaching maximum values of 10.5 and 15 H.F.U. in the geothermal areas, which are also characterized by negative Bouguer anomalies. A Landsat study revealed a NE-SW band of subcircular structures passing through Larderello and coinciding with a regional fault system and a steep rise in the Moho. Petrologic, geochemical and radiometric data on the Tuscan igneous rocks show that partial melting took place in the Tuscan crust at different levels and to varying degrees from the Miocene to Quaternary, producing a continuous “Alpine” granitic layer. The known Tuscan intrusive bodies and two batholiths below the Larderello and Mt. Amiata geothermal fields represent culminations of the “Alpine” granite. The rise of the Tuscan magmas was closely correlated to a post-Tortonian tensional tectonics and followed its N-E migration. Tensional tectonics started after the last compressional phase (10–11 Ma B.P.) as a consequence of the anticlockwise rotation of Italy, the opening of the Tyrrhenian Sea and the swelling of the mantle below southwest Tuscany.  相似文献   

18.
The geology of the Last Interglaciation (sensu stricto, marine isotope substage (MIS) 5e) in the Bahamas records the nature of sea level and climate change. After a period of quasi-stability for most of the interglaciation, during which reefs grew to +2.5 m, sea level rose rapidly at the end of the period, incising notches in older limestone. After brief stillstands at +6 and perhaps +8.5 m, sea level fell with apparent speed to the MIS 5d lowstand and much cooler climatic conditions. It was during this regression from the MIS 5e highstand that the North Atlantic suffered an oceanographic “reorganization” about 118±3 ka ago. During this same interval, massive dune-building greatly enlarged the Bahama Islands. Giant waves reshaped exposed lowlands into chevron-shaped beach ridges, ran up on older coastal ridges, and also broke off and threw megaboulders onto and over 20 m-high cliffs. The oolitic rocks recording these features yield concordant whole-rock amino acid ratios across the archipelago. Whether or not the Last Interglaciation serves as an appropriate analog for our “greenhouse” world, it nonetheless reveals the intricate details of climatic transitions between warm interglaciations and near glacial conditions.  相似文献   

19.
This work discusses the state of knowledge (mainly tectonic and geophysical data) about the Tonale line and other “peri-Adriatic” lines in the Central and Eastern Alps. The chain is here cut into a mosaic of independent blocs, separated by faults with basic injections in some places. The Tonale fault had a dextral movement in Oligo-Miocene times; it is connected with the Austrian “Thermenlinie”, and not to the Pusteria—Gail line. An attempt at chronology is presented.

Résumé

Ce travail fait le point des connassiances, principalement tectoniques et géophysiques, sur la linge du Tonale et les accidents “péri-adriatiques” récents des Alpes centrales et Orientales. Dans cette région, la chaine est découpée en une mosaïque de blocs indépendants, séparés par des accidents injectés ça et là de masses basiques. L'accident du Tonale, Qui a joué en décrochement dextre à l'Oligo-Miocéne, est relié à la Thermenlinie d'Autriche Et non à la linge Pusteria—Gail. Un essai de chronologie est présenté.  相似文献   

20.
The Jinshajiang Suture Zone is important for enhancing our understanding of the evolution of the Paleo-Tethys and its age, tectonic setting and relationship to the Ailaoshan Suture Zone have long been controversial. Based on integrated tectonic, biostratigraphic, chemostratigraphic and isotope geochronological studies, four tectono-stratigraphic units can be recognized in the Jinshajiang Suture Zone: the Eaqing Complex, the Jinshajiang Ophiolitic Melange, the Gajinxueshan “Group” and the Zhongxinrong “Group”. Isotope geochronology indicates that the redefined Eaqing Complex, composed of high-grade-metamorphic rocks, might represent the metamorphic basement of the Jinshajiang area or a remnant micro-continental fragment. Eaqing Complex protolith rocks are pre-Devonian and probably of Early–Middle Proterozoic age and are correlated with those of the Ailaoshan Complex. Two zircon U–Pb ages of 340±3 and 294±3 Ma, separately dated from the Shusong and Xuitui plagiogranites within the ophiolitic assemblage, indicate that the Jinshajiang oceanic lithosphere formed in latest Devonian to earliest Carboniferous times. The oceanic lithosphere was formed in association with the opening and spreading of the Jinshajiang oceanic basin, and was contiguous and equivalent to the Ailaoshan oceanic lithosphere preserved in the Shuanggou Ophiolitic Melange in the Ailaoshan Suture Zone; the latter yielded a U–Pb age of 362±41 Ma from plagiogranite. The re-defined Gajinxueshan and Zhongxinrong “groups” are dated as Carboniferous to Permian, and latest Permian to Middle Triassic respectively, on the basis of fossils and U–Pb dating of basic volcanic interbeds. The Gajinxueshan “Group” formed in bathyal slope to neritic shelf environments, and the Zhongxinrong “Group” as bathyal to abyssal turbidites in the Jinshajiang–Ailaoshan back-arc basin. Latest Permian–earliest Middle Triassic synorogenic granitoids, with ages of 238±18 and 227±5–255±8 Ma, respectively, and an Upper Triassic overlap molasse sequence, indicate a Middle Triassic age for the Jinshajiang–Ailaoshan Suture, formed by collision of the Changdu-Simao Block with South China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号