首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DH and 18O16O ratios have been measured for whole-rock samples and mineral separates from the mafic and ultramatic rocks of the Cambro-Ordovician Highland Border Suite. The H- and O- isotopic compositions of these rocks record individual stages in a relatively complex 500 Myr old hydrothermal/metamorphic history. Lizardite serpentinites (δD ~ ? 105‰; δ18O ~ + 6.2‰) record a premetamorphic history and indicate that parent harzburgites, dunites, and pyroxenites were serpentinized through low-temperature interaction with meteoric waters during cooling. The other rocks of the Highland Border Suite record subsequent interaction with metamorphic fluids. Amphibolite facies hornblende schists were produced through thrust-related (dynamothermal) metamorphism of spilitic pillow lavas. During dehydration, D-enriched fluids were driven off from the spilites thus leaving the hornblende schists to equilibrate with a relatively D-depleted internal fluid reservoir (δD ~ ? 45‰). The expelled D-enriched fluids may have mixed with more typical Dalradian metamorphic waters which then exchanged with the remaining mafic rocks and lizardite serpentinites during greenschist facies regional metamorphism to produce antigorite serpentinites (δD ~ ? 62‰; δ18O ~ + 8‰) and greenschist metaspilites (δD ~ ? 57‰; δ18O ~ + 7.3‰) with similar H- and O-isotopic compositions. Serpentinites which have been only partially metamorphosed show intermediate H-isotopic compositions between that of metamorphic antigorite (δD ~ ? 62‰) and non-metamorphic lizardite δD ~ ? 105‰) end members.  相似文献   

2.
New mineralogical and chemical data for ophiolitic rocks from the southwesternmost Liguride Units are presented in order to constrain their ocean-floor origin and subsequent emplacement in an accretionary wedge. Their complete petrochemical evolution is particularly well preserved in the southern Apennine metabasites. Metadolerites show amphibolite and greenschist facies mineral assemblages of ocean-floor metamorphism. Metabasalts display greenschist facies ocean-floor metamorphism and spilitic alteration. Veins cutting the mafic rocks show mineral assemblage of the prehnite–pumpellyite metamorphic facies. HP/LT orogenic metamorphism, reflecting underplating of the ophiolitic suite at the base of the Liguride accretionary wedge during subduction of the western Tethys oceanic lithosphere produced a mineral assemblage typical of the lawsonite–glaucophane facies. Bulk-rock chemistry suggests that the mafic protoliths had a MORB-type affinity, and were affected by ocean-floor rodingitic and/or spilitic alteration. Hydrothermal alteration-induced LREE mobility and LREE enrichment may be correlated with the ocean-floor metamorphism.  相似文献   

3.
The Makran accretionary prism in SE Iran and SW Pakistan is one of the most extensive subduction accretions on Earth. It is characterized by intense folding, thrust faulting and dislocation of the Cenozoic units that consist of sedimentary, igneous and metamorphic rocks. Rock units forming the northern Makran ophiolites are amalgamated as a mélange. Metamorphic rocks, including greenschist, amphibolite and blueschist, resulted from metamorphism of mafic rocks and serpentinites. In spite of the geodynamic significance of blueschist in this area, it has been rarely studied. Peak metamorphic phases of the northern Makran mafic blueschist in the Iranshahr area are glaucophane, phengite, quartz±omphacite+epidote. Post peak minerals are chlorite, albite and calcic amphibole. Blueschist facies metasedimentary rocks contain garnet, phengite, albite and epidote in the matrix and as inclusions in glaucophane. The calculated P–T pseudosection for a representative metabasic glaucophane schist yields peak pressure and temperature of 11.5–15 kbar at 400–510 °C. These rocks experienced retrograde metamorphism from blueschist to greenschist facies (350–450 °C and 7–8 kbar) during exhumation. A back arc basin was formed due to northward subduction of Neotethys under Eurasia (Lut block). Exhumation of the high‐pressure metamorphic rocks in northern Makran occurred contemporarily with subduction. Several reverse faults played an important role in exhumation of the ophiolitic and HP‐LT rocks. The presence of serpentinite shows the possible role of a serpentinite diapir for exhumation of the blueschist. A tectonic model is proposed here for metamorphism and exhumation of oceanic crust and accretionary sedimentary rocks of the Makran area. Vast accretion of subducted materials caused southward migration of the shore.  相似文献   

4.
The Araguaia Belt encloses a poorly constrained Pan-African (Brasiliano Cycle) continental suture marked by a series of (~750 Ma) ophiolitic units which, when properly characterized, could provide important informations on its geological history, closely linked with the Rodinia demise and further western Gondwana amalgamation. We present new bulk-rock and mineral major and trace element compositions for these ultramafic and mafic units. They mainly consist in fully serpentinized harzburgite, scarce dunite lenses and chromite pods, tectonically overlain by basaltic pillow lavas. Low Al2O3/SiO2 ratios (0.01 to 0.06), rather high MgO concentrations (42.28 to 45.29 wt%) and spinels' Cr# and Mg# ratios comprised between 0.36 and 0.51 and 0.59 and 0.72, respectively, indicate a depleted oceanic-like protolith. MORB-peridotite interactions are evidenced both by pyroxenite, olivine gabbro and diabase occurrences in the serpentinites and by high TiO2 (up to 0.42 wt%) contents in spinels from some Serra do Quatipuru serpentinites. These observations support that the Araguaia Belt ophiolitic bodies are the remnants of the upper mantle section of a MOR or subcontinental lithosphere. The serpentinites whole-rock REE content can be modeled as resulting from a dry partial melting involving 14 to 24% of melt extraction, coupled with refertilization by fertile melts, generated deeper in the mantle. Such an oceanic-like setting is also supported by the N-MORB signature of Serra do Tapa and Morro do Agostinho pillow lavas basalts. All together, these results tend to infirm the supra-subduction zone (SSZ) setting previously proposed for these ophiolitic units. Important LILE, B and Li enrichments in the serpentinites likely result from a metasomatic event involving sediments-derived fluids that occurred during the obduction of the units on the Amazonian Craton. Our results combined with (1) the apparent scarcity of igneous crustal rocks, (2) the proximal nature of the metasedimentary rocks hosting the ophiolitic units, and (3) the occurrences of Amazonian Craton fragments eastward of the ophiolitic bodies, allow us to propose that the Araguaia Belt comprises a fossil ocean-continent transition (OCT) accreted on the eastern border of the Amazonian Craton.  相似文献   

5.
The metamorphic complexes of eastern Kamchatka exposed on the Khavyven Highland and Karaginsky Island, as well as on the Kamchatka and Ozernoi peninsulas, compose large (up to 1.5 km) elongated blocks spatially associated with ophiolitic peridotite and gabbroic rock bodies (the Khavyven Highland and Karaginsky Island) or make up isolated fragments and blocks among serpentinite melange (the Ozernoi and Kamchatka peninsulas). The degree of metamorphism of the primary rocks varies from the greenschist/amphibolite boundary facies (Karaginsky Island and the Khavyven Highland) to the high-pressure amphibolite facies (the Ozernoi and Kamchatka peninsulas).  相似文献   

6.
The Limousin ophiolite is located at the suture zone between two major thrust sheets in the western French Massif Central. This ophiolitic section comprises mantle‐harzburgite, mantle‐dunite, wehrlites, troctolites and layered gabbros. It has recorded a static metamorphic event transforming the gabbros into undeformed amphibolites and the magmatic ultramafites into serpentinites and/or pargasite‐bearing chloritites. With various thermobarometric methods, it is possible to show that the different varieties of amphibole have registered low‐P (c. 0.2 GPa) conditions with temperature ranging from high‐T, late‐magmatic conditions to greenschist–zeolite metamorphic facies. The abundance of undeformed metamorphic rocks (which is typical of the lower oceanic crust), the occurrence of Ca–Al (–Mg) metasomatism illustrated by the growth of Ca–Al silicates in veins or replacing the primary magmatic minerals, the PT conditions of the metamorphism and the numerous similarities with oceanic crustal rocks from Ocean Drilling Program and worldwide ophiolites are the main arguments for an ocean‐floor hydrothermal metamorphism in the vicinity of a palaeo‐ridge. Among the West‐European Variscan ophiolites, the Limousin ophiolites constitute an extremely rare occurrence that has not been involved in any HP (subduction‐related) or MP (orogenic) metamorphism as observed in other ophiolite occurrences (i.e. France, Spain and Germany).  相似文献   

7.
The studied serpentinites occur as isolated masses, imbricate slices of variable thicknesses and as small blocks or lenses incorporated in the sedimentary matrix of the mélange. They are thrusted over the associated island arc calc-alkaline metavolcanics and replaced by talc-carbonates along shear zones. Lack of thermal effect of the serpentinites upon the enveloping country rocks, as well as their association with thrust faults indicates their tectonic emplacement as solid bodies. Petrographically, they are composed essentially of antigorite, chrysotile and lizardite with subordinate amounts of carbonates, chromite, magnetite, magnesite, talc, tremolite and chlorite. Chrysotile occurs as cross-fiber veinlets traversing the antigorite matrix, which indicate a late crystallization under static conditions. The predominance of antigorite over other serpentine minerals indicates that the serpentinites have undergone prograde metamorphism or the parent ultramafic rocks were serpentinized under higher pressure. The parent rocks of the studied serpentinites are mainly harzburgite and less commonly dunite and wehrlite due to the prevalence of mesh and bastite textures. The serpentinites have suffered regional metamorphism up to the greenschist facies, which occurred during the collisional stage or back-arc basin closure, followed by thrusting over a continental margin. The microprobe analyses of the serpentine minerals show wide variation in SiO2, MgO, Al2O3, FeO and Cr2O3 due to different generations of serpentinization. The clinopyroxene relicts, from the partly serpentinized peridotite, are augite and similar to clinopyroxene in mantle-derived peridotites. The chromitite lenses associated with the serpentinites show common textures and structures typical of magmatic crystallization and podiform chromitites. The present data suggest that the serpentinites and associated chromitite lenses represent an ophiolitic mantle sequence from a supra-subduction zone, which were thrust over the continental margins during the collisional stage of back-arc basin.  相似文献   

8.
The studied serpentinites occur as isolated masses, imbricate slices of variable thicknesses and as small blocks or lenses incorporated in the sedimentary matrix of the mélange. They are thrusted over the associated island arc calc-alkaline metavolcanics and replaced by talc-carbonates along shear zones. Lack of thermal effect of the serpentinites upon the enveloping country rocks, as well as their association with thrust faults indicates their tectonic emplacement as solid bodies. Petrographically, they are composed essentially of antigorite, chrysotile and lizardite with subordinate amounts of carbonates, chromite, magnetite, magnesite, talc, tremolite and chlorite. Chrysotile occurs as cross-fiber veinlets traversing the antigorite matrix, which indicate a late crystallization under static conditions. The predominance of antigorite over other serpentine minerals indicates that the serpentinites have undergone prograde metamorphism or the parent ultramafic rocks were serpentinized under higher pressure. The parent rocks of the studied serpentinites are mainly harzburgite and less commonly dunite and wehrlite due to the prevalence of mesh and bastite textures. The serpentinites have suffered regional metamorphism up to the greenschist facies, which occurred during the collisional stage or back-arc basin closure, followed by thrusting over a continental margin. The microprobe analyses of the serpentine minerals show wide variation in SiO2, MgO, Al2O3, FeO and Cr2O3 due to different generations of serpentinization. The clinopyroxene relicts, from the partly serpentinized peridotite, are augite and similar to clinopyroxene in mantle-derived peridotites. The chromitite lenses associated with the serpentinites show common textures and structures typical of magmatic crystallization and podiform chromitites. The present data suggest that the serpentinites and associated chromitite lenses represent an ophiolitic mantle sequence from a supra-subduction zone, which were thrust over the continental margins during the collisional stage of back-arc basin.  相似文献   

9.
Important mafic–ultramafic masses have been located for the first time in the intersection area between the Keraf Shear Zone and the Nakasib Suture Zone of the Nubian Shield. The masses, comprising most of the members of the ophiolite suite, are Sotrebab and Qurun complexes east of the Nile, and Fadllab complex west of the Nile. The new mafic–ultramafic masses are located on the same trend of the ophiolitic masses decorating the Nakasib Suture. A typical complete ophiolite sequence has not been observed in these complexes, nevertheless, the mafic–ultramafic rocks comprise basal unit of serpentinite and talc chlorite schists overlain by a thick cumulate facies of peridotites, pyroxenites and layered gabbros overlain by basaltic pillow lavas with dolerite dykes and screens of massive gabbros. Associated with pillow lavas are thin layers of carbonates and chert. The best section of cumulate mafic–ultramafic units has been observed in Jebel Qurun and El Fadlab complexes, comprising peridotites, pyroxenites and layered gabbros. Dolerite dykes and screens of massive gabbros have been observed with basaltic pillow lava sections in Wadi Dar Tawaiy. The basal ultramafic units of the complexes have been fully or partly retrograded to chlorite magnetite schist and talc to talc-carbonate rocks (listowenites), especially in the Jebel Qurun and Sotrebab complexes. Petrographically, the gabbros (layered and massive) and the basaltic pillow lavas show mineral assemblages of epidote amphibolite facies. The mafic members from the three complexes show a clear tholeiitic trend and oceanic floor affinity. The pillow lavas plot in the field of oceanic floor basalt, namely in the back arc field. Primitive mantle normalized spider diagram of the pillow lavas reveals a closer correspondence to Enrich-Mid-Oceanic Ridge Basalt (E-MORB) type, which is confirmed by the flat chondrite normalized Rare Earth Elements (REE) pattern. Field, petrographical and geochemical evidence supports ophiolitic origin of the three complexes. The newly discovered ophiolitic complexes mark the western continuation of the Nakasib Suture Zone.  相似文献   

10.
The metamorphic history of mafic exotic blocks from a tectonic melange zone within an allochthonous ophiolitic terrane (Marmora Terrane) of the Pan-African Gariep orogenic belt in south-western Namibia was studied, based on mineral parageneses and amphibole composition. Glaucophane described previously from these rocks could not be verified. Instead, two types of blue amphiboles were distinguished: (i) rims of (ferro-) edenitic to pargasitic to barroisitic hornblende composition around brownish amphibole phenocrysts replacing magmatic clinopyroxene, and (ii) deep blue porphyroblasts of magnesio-riebeckite with little ferro-glaucophane component in a highly metasomatized albite-rich rock. Textural and mineralogical evidence, particularly the existence of up to three different amphibole generations in metagabbro samples, supports a multiphase metamorphic history experienced by these exotic blocks. The first metamorphic event, M1, is interpreted as very low- P hydrothermal oceanic metamorphism that affected the igneous protoliths at up to amphibolite facies temperatures. Subsequent M2 metamorphism was syntectonic and is characterized by temperatures similar to those attained during M1 but higher pressures indicating burial to 15–20 km. This event is related to a subduction process. The third metamorphic event, M3, was low grade and of regional nature. It is the only one recorded in the sedimentary envelope of the exotic blocks. The formation of magnesio-riebeckite is considered a retrograde reaction at greenschist facies during M2. The results indicate that in the Gariep belt subduction and subsequent obduction have occurred, although blueschist facies metamorphism has not been reached.  相似文献   

11.
Abstract. In the Kamuikotan zone, central Hokkaido, Japan, two distinct types of metamorphic rocks are tectonically mixed up, along with a great quantity of ultramafic rocks; one type consists of high-pressure metamorphic rocks, and the other of low-pressure ones. The high-pressure metamorphic rocks are divided into two categories. (1) Prograde greenschist to glaucophaneschist facies rocks derived from mudstone, sandstone, limestone, a variety of basic rocks such as pillow and massive lavas, hyaloclastite and tuff, and radiolarian (Valanginian to Hauterivian) chert, among which the basic rocks and the chert, and occasionally the sandstone, occur as incoherent blocks (or inclusions) enveloped by mudstone. (2) Retrograde amphibolites with minor metachert and glaucophane-calcite rock, which are tectonic (or exotic) blocks enclosed within prograde mudstone or serpentinite, or separated from these prograde rocks by faults. The K-Ar ages of the prograde metamorphic rocks (72, 107 and 116 Ma on phengitic muscovites) are younger than those of the retrograde rocks (109, 132, 135 and 145 Ma on muscovites, and 120 Ma on hornblende). The low-pressure metamorphic rocks consist of the mafic members of an ophiolite sequence with a capping of radiolarian (Tithonian) chert with the metamorphic grade ranging from the zeolite facies, through the greenschist (partly, actinolite-calcic plagioclase) facies to the amphibolite (partly, hornblende-granulite) facies. The low-pressure metamorphism has a number of similarities with that described for'ocean-floor'metamorphism. The tectonic evolution of such a mixed-up zone is discussed in relation to Mesozoic plate motion.  相似文献   

12.
The Ordovician volcanic rocks in the Mayaxueshan area have been pervasively altered or metamorphosed and contain abundant secondary minerals such as albite, chlorite, epidote, prehnite, pumpellyite, actinolite, titanite, quartz, and/or calcite. They were denoted as spilites or spilitic rocks in terms of their petrographic features and mineral assemblages. The metamorphic grades of the volcanic rocks are equivalent to that of the intercalated metaclastic rocks. This indicates that both the spilitic volcanic rocks and metaclastic rocks in the Mayaxueshan area have formed as a result of Caledonian regional metamorphism. We suggest that the previously denoted spilitic rocks or altered volcanic rocks should be re-denoted as metabasalts or metabasaltic rocks. The metamorphic grade of the volcanic rocks increases with their age: prehnite-pumpellyite facies for the upper part of the Middle Ordovician volcanic rocks, prehnite-pumpeilyite to lower greenschist facies for the lower part of the Middle Ordovician vol  相似文献   

13.
The SHRIMP-II zircon U-Pb dates for metamorphic rocks from the West Siberian basement are determined for the first time. It is established that the major protolith of the metamorphic strata from the Shaimsk-Kuznetsovsk meganticlinorium is composed of sedimentary Late- and Middle-Devonian rocks (395–398 Ma). It is likely that the greywackes, whose strata were mainly formed under erosion of ophiolitic rocks, served as a substrate for the metamorphic rocks. The metamorphic transformations of the rocks occurred under conditions of greenschist and occasionally lower amphibolite facies of metamorphism during the Late Carboniferous-Early Permian period.  相似文献   

14.
The Penjwin meta-peridotite rock represents one of the five main metamorphosed ultramafic bodies in Kurdistan region, Northwest Zagros Thrust Zone. It underwent at least two successively low-retrograde metamorphic events with one progressive one which all modified the original mineralogy and texture of primary dunite and harzburgite. The primary upper mantle mineral assemblage olivine?+?orthopyroxene?+?chromian spinel is replaced by olivine?+?tremolite–actiolite?+?anthopylite?+?talc?+?ferichromite?+?Cr-chlorite assemblage of amphibolite facies. The further retrograde metamorphic amphibolite facies assemblage is replaced by lizardite–chrysotile?+?Cr-chlorite?+?syn-serpentinization Cr-magnetite of lower greenschist facies. Later at the main Zagros thrust fault, low greenschist facies underwent progressive metamorphism due to the local effect of shear stress as a result of the exhumation and obduction of Penjwin ophiolite suite over Merga Red bed series during Tertiary. Lizardite–chrysotile transformed to antigorite and producing antigorite?+?carbonate?+?syn-serpentinization Cr-magnetite?+?Cr-chlorite assemblage of upper greenschist facies. Chromian spinel is concentrically zoned as a result of multi-stages retrogressive metamorphic events, in which the Cr # (Cr/(Cr?+?Al)) increases from core to rim (0.5 to 1). Three zones can be identified from core to rim: The core is primary Al-rich and mantled by ferrichromite of amphibolite facies. The most outer zone of chromian spinel grains is represented by syn-serpentinization Cr-magnetite of greenschist facies.  相似文献   

15.
Spilites from the Carlsberg Ridge, Indian Ocean   总被引:2,自引:0,他引:2  
A dredge haul from 5°N. on the Carlsberg Ridge brought upa collection of rocks that form a coherent spilitic series.Different specimens are identified with the various parts ofa spilitic pillow lava pile; some with pillow cores, otherswith pillow margins, and yet others with the material interstitialto the pillows. Their mineralogy is of greenschist facies. Comparisonwith the fresh basalt pillow lavas of the oceans suggests thatthese spilites were formed from the basalts by low-grade metamorphism,and were neither the product of the reaction of hot basalt withsea water nor that of the crystallization of a special spiliticmagma. The pillow cores, consisting of an albite-chlorite-augite-sphene-(actinolite-epidote)assemblage are contrasted strongly with the pillow margins,composed principally of chlorite, and this contrast seems tobe controlled by the original basalt mineralogy. Calcic plagioclasehas been replaced by albite, augite may remain or may be replacedby actinolite, iron ore has been replaced by sphene, and botholivine and basalt-glass by chlorite. Thus the pillow margins,originally almost entirely glassy, are now chemically very differentfrom the originally crystalline pillow cores. This process has involved a large-scale local transport of materialbetween core and margin of the pillows. The degree of this transportcan be closely estimated because the convergent compositionof deep-ocean basalts, especially strong in this region, meansthat the composition of the basalt from which the spilite hasformed is very well known. The hypothesis that the bulk compositionof the lava pile has remained constant during the transformationto spilite can also be tested, and it appears that it does nothold. Significant amounts of CaO and A12O3 must have been lostfrom the pile, and a large amount of water gained by it. Theremay or may not have been significant gains in SiO2, total Feand Na2O. The contrast of this kind of process with the isochemicalmetamorphism more normal in metamorphic terrains is ascribedto the effect of shear on the rates of nucleation of the differentphases.  相似文献   

16.
闽中地区马面山群东岩组变质岩形成的古构造环境研究   总被引:9,自引:0,他引:9  
闽中地区马面山群东岩组地层主要为绿片岩为主的一套古火山沉积建造。其主要岩性类型包括各种成分的绿片岩、大理岩、石英片岩及变粒岩类。绿片岩显示海底火山喷发特征,变粒岩原岩为中酸性岩类。东岩组变质岩岩石化学研究表明,绿片岩的原岩应为玄武岩类。变粒岩类主要属于英安岩及流纹岩。这些特征反映东岩组具双峰式火山岩特征,形成于大陆内部张性环境。绿片岩稀土元素特征也显示和大陆拉张环境中的火山岩类稀土特征非常相似,属大陆拉斑玄武岩;微量元素分布显示出该组变质岩原岩类似于大洋岛和大陆裂谷的板内碱性玄武岩。因此闽中地区中元古代可能处于板内古裂谷环境。  相似文献   

17.
In order to evaluate the mobility of trace elements during subduction metamorphism, the geochemistry of blueschists of the Dzhebash Group from the Kurtushibinsky Range of the Western Sayan (basins of the Koyard and Oresh rivers) was studied, and the chemical compositions of high-pressure rocks were compared with weakly altered basalts from the same region. The protoliths of the blueschists were probably metabasalts of similar age from the ophiolitic dike complex, the pillow lavas of the Verkhnekoyardsky Formation crowning them, and the pillow basalts of the Kurtushibinsky Formation. The spatial association of the blueschists with the Kurtushibinsky Formation basalts and identical trace element patterns in these rocks allow us to suppose the cogenetic character of their protoliths. Geological and geochemical data suggest their formation in an oceanic plateau setting, whereas the mafic rocks of the dike complex and the Verkhnekoyardsky Formation show island-arc affinity. A comparison of the Dzhebash Group blueschists with the chemically equivalent Kurtushibinsky basalts showed that high-pressure metamorphism caused only minor changes in their compositions. These rocks are almost indistinguishable with respect to such fluid-immobile components as Ti, P, Zr, Hf, Y, and middle and heavy rare earth elements. On the other hand, the blueschists are strongly depleted in potassium. The selective removal of Rb and Ba during blueschist metamorphism was observed only in those samples that showed the most extensive removal of potassium.  相似文献   

18.
The Khan-Taishir ophiolitic complex is situated within Early Caledonian structures of Western Mongolia. It consists (from below upward) of strongly differentiated ultramafics (dunites and harzburgites), pyroxenites and gabbro, sheeted dikes, pillow lavas and sediments, including in their uppermost part archaeocyatic limestones of Lower Cambrian age. Geological, petrochemical and geochemical data indicate that the ultramafics are turn off from the overlying ophiolitic sequence. Igneous rocks of the ophiolitic complex, except the ultramafics, were formed by two-stage differentiation of mantle magma of quartz-tholeiitic composition exhausted in potassium and titanium. Pyroxenites and gabbro with an anorthositic trend of differentiation were generated during the first stage, and sheeted dikes and pillow lavas with a quartz trend of differentiation were formed during the second one. Ophiolites of the Khan-Taishir complex petrochemically and geochemically differ strongly from mafic and ultramafic rocks of midoceanic ridges. Together with ophiolites of the Troodos complex (Cyprus) and Macquarie Island (eastern Indian Ocean) they constitute the special type of ophiolite peculiar rather to slip boundaries of lithosphere plates. The other type of ophiolite, including complexes like the Dzolen complex of south Mongolia, contains poorly differentiated ultramafics and does not contain sheeted dikes; while the igneous rocks are very similar to mafic and ultramafic rocks dredged from midoceanic and formed probably in midoceanic ridge environments as well.  相似文献   

19.
Metamorphic mineral assemblages and textures from Early Palaeozoic continental margin rocks in north-western Newfoundland indicate that different structural levels have contrasting metamorphic histories. Rocks of the East Pond Metamorphic Suite, which represent the older, structurally lower level of the margin, experienced an early high-pressure–low-temperature stage of metamorphism (10–12 kbar minimum, 450–500°C) which produced eclogite in mafic dykes and phengite–garnet assemblages in pelites. This was overprinted by higher temperature–lower pressure amphibolite facies metamorphism (700–750°C, 7–9 kbar minimum) which produced complex symplectic textures in rocks of all compositions. Rocks of the Fleur de Lys Supergroup, which were deposited in the stratigraphically higher levels of the rifted margin, reached pressures of 7–8.5 kbar at about 450°C during the early stages of metamorphism, overprinted by assemblages which indicate maximum temperatures of 550–600°C at about 6.5 kbar. The metamorphic history of both units is interpreted to be the result of thermal relaxation following initial burial of a continental margin by overriding thrust sheets. Since there is no evidence that maximum pressures or temperatures within the Fleur de Lys Supergroup were ever as high as those reached in the East Pond Metamorphic Suite, these rocks may have followed parallel, 'nested' P–T–t paths, with the more deeply buried East Pond Metamorphic Suite subjected to greater thermal relaxation effects. Quantitative modelling of P–T–t paths is not possible with the present data, owing to both large uncertainties in P–T estimates, and in the time of metamorphism.  相似文献   

20.
Remnants of the Liguria-Piemont Ocean with its Jurassic ophiolitic basement are preserved in the South Pennine thrust nappes of eastern Switzerland. Analysis of South Pennine stratigraphy and comparison with sequences from the adjacent continental margin units suggest that South Pennine nappes are relics of a transform fault system. This interpretation is based on three arguments: (1) In the highly dismembered ophiolite suite preserved, Middle to Late Jurassic pelagic sediments are found in stratigraphic contact not only with pillow basalts but also with serpentinites indicating the occurrence of serpentinite protrusions along fracture zones. (2) Ophiolite breccias (»ophicalcites«) occurring along distinct zones within peridotite-serpentinite host rocks are comparable with breccias from present-day oceanic fracture zones. They originated from a combination of tectonic and sedimentary processes: i.e. the fragmentation of oceanic basement on the seafloor and the filling of a network of neptunian dikes by pelagic sediment with locally superimposed hydrothermal activity and gravitational collapse. (3) The overlying Middle to Late Jurassic radiolarian chert contains repeated intercalations of massflow conglomerates mainly comprising components of oceanic basement but clasts of acidic basement rocks and oolitic limestone also exist. This indicates a close proximity between continental and oceanic basement. The rugged morphology manifested in the mass-flow deposits intercalated with the radiolarites is draped by pelagic sediments of Early Cretaceous age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号