首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The governing equations for an elasto‐plastic constitutive model for frictional materials such as soil, rock, and concrete are presented, and the incremental form is indicated in preparation for implementation of the model in a user‐defined module for finite element calculations. This isotropic, work‐hardening and ‐softening model employs a single yield surface, it incorporates non‐associated plastic flow, and its capability of capturing the behaviour of different types of frictional materials under various three‐dimensional conditions has been demonstrated by comparison with measured behaviour, as presented in the literature. The incrementalization procedure is indicated and the resulting equations for the single hardening model are presented together with parameters for a dense sand. Following the implementation of the model, these parameters are used for evaluation of different integration schemes as presented in a companion paper by Jakobsen and Lade (Int. J. Numer. Anal. Meth. Geomech. 2002; 26 :661). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Advanced material constitutive models are used to describe complex soil behaviour. These models are often used in the solution of boundary value problems under general loading conditions. Users and developers of constitutive models need to methodically investigate the represented soil response under a wide range of loading conditions. This paper presents a systematic procedure for probing constitutive models. A general incremental strain probe, 6D hyperspherical strain probe (HSP), is introduced to examine rate‐independent model response under all possible strain loading conditions. Two special cases of HSP, the true triaxial strain probe (TTSP) and the plane‐strain strain probe (PSSP), are used to generate 3‐D objects that represent model stress response to probing. The TTSP, PSSP and general HSP procedures are demonstrated using elasto‐plastic models. The objects resulting from the probing procedure readily highlight important model characteristics including anisotropy, yielding, hardening, softening and failure. The PSSP procedure is applied to a Neural Network (NN) based constitutive model. It shows that this probing is especially useful in understanding NN constitutive models, which do not contain explicit functions for yield surface, hardening, or anisotropy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
The grain‐scale topography of a sediment surface is a key component of a fluvial system, affecting aspects including sediment transport, flow resistance and ecology. However, its effect is hard to quantify because of the need for grain‐scale elevation data from in situ fluvial gravel surfaces which are difficult to collect. The sediment surface properties are, therefore, commonly estimated as a function of the sediment grain‐size distribution; however, because of additional factors, such as grain packing and shape, there is not necessarily a unique relationship between the two. A new methodology has been developed that uses terrestrial laser scanning to collect grain‐scale topographic data from in situ fluvial gravel surfaces, from which digital terrain models are created. This paper investigates methods of analysing such digital terrain models, and possible sedimentological interpretations that can be drawn from the analysis. Eleven digital terrain models from exposed gravel surfaces in two contrasting rivers (the River Feshie and Bury Green Brook) were analysed by calculating: the distribution of surface elevations, semivariograms, surface inclinations, surface slopes and aspects and grain orientation. The distribution of surface elevations and surface slope and aspect analysis were found to be most informative. In the River Feshie, grain‐size was interpreted as being a dominant control on sediment surface structure and gravel imbrication was identified. In Bury Green Brook, the location of the digital terrain models within the riffle–pool sequence was the dominant control on surface structure and grain orientation. Such digital terrain models therefore provide a new approach to measuring and quantifying the topography of fluvial sediment surfaces.  相似文献   

4.
This paper presents an advanced thermomechanical model – TEAM in the framework of two‐surface plasticity for saturated clays, with emphasis put on some important thermomechanical features of natural clays evidenced experimentally such as the limited thermomechanical elastic zone, the smooth transition from elastic to plastic behavior. Two plastic mechanisms are introduced in the model: one is to reproduce the thermoplasticity involving thermal expansion and contraction observed at high over‐consolidation ratios and the second one describes the temperature effect on the yield behavior. The model adopts additional yield surfaces, namely inner yield surfaces that are associated with the two proposed plastic mechanisms to account for the plastic behavior inside the existing conventional thermomechanical yield surface namely yield surfaces. The general expressions of the yield surfaces and plastic potentials in p′–q–T space are introduced. A progressive plastic hardening mechanism associated with the inner yield surface is defined, enabling the plastic modulus to vary smoothly during thermomechanical loadings inside the yield surfaces. Several tests on natural Boom clay along different thermomechanical loading paths have been simulated by TEAM, and results show its relevance in describing the thermomechanical behavior of saturated clays. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
An elastoplastic constitutive model is proposed for saturated sands in general stress space using the middle surface concept (MSC). In MSC, different features of stress–strain response of a material are divided into different pseudo‐yield surfaces. The true‐yield surface representing the true response is established by using various links between the yield surfaces. In this MSC sand model, several well‐known features of sand response are represented by three different pseudo‐yield surfaces, which are developed in a simple and straightforward way. These features include the critical state behaviour, the effects of state parameter, unloading and reloading plastic deformation, the influence of fabric anisotropy, and phase transformation line related behaviour. Finally, the model predictions and test results are compared for two different types of sands under a variety of loading conditions and good comparisons are obtained. The application of MSC to saturated sand modelling shows the versatility of MSC as a general concept for modelling stress–strain response of materials. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, two complex critical‐state models are implemented in a displacement finite element code. The two models are used for structured clays and sands, and are characterized by multiple yield surfaces, plastic yielding within the yield surface, and complex kinematic and isotropic hardening laws. The consistent tangent operators—which lead to a quadratic convergence when used in a fully implicit algorithm—are difficult to derive or may even not exist. The stress integration scheme used in this paper is based on the explicit Euler method with automatic substepping and error control. This scheme employs the classical elastoplastic stiffness matrix and requires only the first derivatives of the yield function and plastic potential. This explicit scheme is used to integrate the two complex critical‐state models—the sub/super‐loading surfaces model (SSLSM) and the kinematic hardening structure model (KHSM). Various boundary‐value problems are then analysed. The results for the two models are compared with each other, as well with those from standard Cam‐clay models. Accuracy and efficiency of the scheme used for the complex models are also investigated. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A new constitutive model for soft structured clays is developed based on an existing model called S‐CLAY1S, which is a Cam clay type model that accounts for anisotropy and destructuration. The new model (E‐SCLAY1S) uses the framework of logarithmic contractancy to introduce a new parameter that controls the shape of the yield surface as well as the plastic potential (as an assumed associated flow rule is applied). This new parameter can be used to fit the coefficient of earth pressure at rest, the undrained shear strength or the stiffness under shearing stress paths predicted by the model. The improvement to previous constitutive models that account for soil fabric and bonding is formulated within the contractancy framework such that the model predicts the uniqueness of the critical state line and its slope is independent of the contractancy parameter. Good agreement has been found between the model predictions and published laboratory results for triaxial compression tests. An important finding is that the contractancy parameter, and consequently the shape of the yield surface, seems to change with the degree of anisotropy; however, further study is required to investigate this response. From published data, the yield surface for isotropically consolidated clays seems ‘bullet’ or ‘almond’ shaped, similar to that of the Cam clay model; while for anisotropically consolidated clays, the yield surface is more elliptical, like a rotated and distorted modified Cam clay yield surface. © 2015 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd.  相似文献   

8.
On the basis of fundamental constitutive laws such as elasticity, perfect plasticity, and pure viscosity, many elasto‐viscoplastic constitutive relations have been developed since the 1970s through phenomenological approaches. In addition, a few more recent micro‐mechanical models based on multi‐scale approaches are now able to describe the main macroscopic features of the mechanical behaviour of granular media. The purpose of this paper is to compare a phenomenological constitutive relation and a micro‐mechanical model with respect to a basic issue regularly raised about granular assemblies: the incrementally non‐linear character of their behaviour. It is shown that both phenomenological and micro‐mechanical models exhibit an incremental non‐linearity. In addition, the multi‐scale approach reveals that the macroscopic incremental non‐linearity could stem from the change in the regime of local contacts between particles (from plastic regime to elastic regime) in terms of the incremental macroscopic loading direction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
An objective of this paper is to demonstrate that the small strain model developed by the authors can be incorporated into the conventional kinematic hardening plasticity framework to predict pre‐failure defor mations. The constitutive model described in this paper is constituted by three elliptical yield surfaces in triaxial stress space. Two inner surfaces are rotated ellipses of the same shape, representing the boundaries of the linear elastic and small strain regions, while the third surface is the modified Cam clay large‐scale yield surface. Within the linear elastic region, the soil behaviour is elastic with cross‐coupling between the shear and volumetric stress–strain components. Within the small strain region, the soil behaviour is elasto‐plastic, described by the kinematic hardening rule with an infinite number of loading surfaces defined by the incremental energy criterion. Within the large‐scale yield surface, the soil behaviour is elasto‐plastic, described by kinematic and isotropic hardening of the small strain region boundary. Since the yield surfaces have different shapes, the uniqueness of the plastic loading condition imposes a restriction on the ratio between their semi‐diameters. The model requires 12 parameters, which can be determined from a single consolidated undrained triaxial compression test. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
An advanced elasto‐plastic constitutive model for frictional materials, whose incremental version is presented in a companion paper (Int. J. Numer. Anal. Meth. Geomech., 2002; 26 :647), is implemented in a user‐defined material module. The general calculation strategy inside this module is presented and discussed, including the initial intersection of the yield surface and the techniques for updating of stresses and hardening modulus. Several integration schemes are implemented in the module and their capabilities in relation to the advanced, three‐dimensional constitutive model are evaluated. The forward Euler, modified Euler, and Runge–Kutta–Dormand–Prince integration schemes are explained in detail, compared, and evaluated in view of error tolerances and computational efficiency. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
12.
This paper presents a new purely viscoplastic soil model based on the subloading surface concept with a mobile centre of homothety, enabling the occurrence of viscoplastic strains inside the yield surface and avoiding the abrupt change in stiffness of the traditional overstress viscoplastic models. This is required for overconsolidated soils. The model is formulated to reproduce the soil rate‐dependent behaviour under cyclic loading (changes in loading direction) and incorporates both initial and induced anisotropy, as well as destructuring. The model shows good qualitative response to some imposed three‐dimensional stress paths under quasi‐inviscid (elastoplastic) behaviour. Some of the main time‐dependent aspects of soil behaviour that the model is capable of reproducing were also illustrated. The capability of the model to adequately reproduce the results from an undrained triaxial test performed on stiff overconsolidated clays from the Lisbon region (Formação de Benfica), with an unloading–reloading deviatoric stress cycle at constant mean stress, that incorporates a series of staggered fast loading and creep stages, was evaluated. The model was able to reproduce well the main observed aspects of the time‐dependent stress–strain response and pore pressure evolution of a stiff overconsolidated clay under complex loading. The revised and generalised viscoplastic subloading surface concept is viable and can be applied to a consistent extension to viscoplasticity, including in the interior of the yield surface, of existing elastoplastic models formulated for soils and other materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Data assimilation, using the particle filter and incorporating the soil‐water coupled finite element method, is applied to identify the yield function of the elastoplastic constitutive model and corresponding parameters based on the sequential measurements of hypothetical soil tests and an actual construction sequence. In the proposed framework of the inverse analysis, the unknowns are both the particular parameter within the exponential contractancy model, nE, which parameterizes various shapes for the yield function of the competing constitutive models, including the original/the modified Cam‐Clay models and in‐between models and the parameters of the corresponding constitutive model. An appropriate set, consisting of the yield function of the constitutive model and the parameters of the constitutive model, can be simultaneously identified by the particle filter to describe the most suitable soil behavior. To examine the validity of the proposed procedure, hypothetical and actual measurements for the displacements of a soil specimen were obtained for consolidated and undrained tests through a synthetic FEM computation and for consolidated and drained tests, respectively. After examining the applicability of the proposed procedure to these test results, the present paper then focuses on the actual measured data, ie, the settlement behavior including the lateral deformation of the Kobe Airport Island constructed on reclaimed land.  相似文献   

14.
A laser ablation multi‐collector inductively coupled plasma‐mass spectrometry (LA‐MC‐ICP‐MS) method was developed to obtain precise and accurate Pb isotopic ratio measurements in low‐Pb materials (< 10 μg g?1) using a combination of Faraday cups and ion counters (FC–IC). The low abundance 204Pb (~ 1.4%) was collected using an IC. A NBS 981 standard solution was used to cross‐calculate the FC–IC gain and to investigate the signal response characteristics of the IC. A significant, continuous and linear decrease in the FC–IC gain was observed within 1 hr, but this drift could be corrected using the calibrator‐sample‐calibrator bracketing method. In addition, a non‐linear response of the IC used in this study was observed and corrected by a non‐linear correction algorithm, which was established by measuring a series of gravimetrically prepared NBS 981 standard solutions (NIST SRM 981). Compared with the conventional arrangement, the use of the newly designed X skimmer cone and Jet sample cone improved the signal intensities from Pb isotopes by a factor of 1.9. Compared with only Faraday cups, using a combination FC–IC array was found to enhance the measurement repeatability (RSD) of 20xPb/204Pb by approximately one order of magnitude when the 204Pb intensity was < 8 mV. Eight natural glasses and the NIST SRM 612 reference material glass (as a calibration material) were measured to evaluate the new protocol for Pb isotope determination. The analytical results were in agreement with the reference values within 2s measurement uncertainties. For MPI‐DING ATHO‐G (5.67 μg g?1 total Pb), KL2‐G (2.07 μg g?1 total Pb) and ML3B‐G (1.38 μg g?1 total Pb), the typical accuracies of 20xPb/204Pb were 0.09% of preferred values with precisions of < 0.33% (2RSD). The Pb isotope ratios in feldspars from granodiorite and within mafic microgranular enclaves (MMEs) from the Fangshan pluton, North China, were measured using the present method. The Pb isotopic compositions of feldspars from the whole host granodiorite show that that are radiogenic in the margin zone and gradually become less radiogenic. For the MMEs, the Pb isotopic compositions of feldspars are highly variable and overlap with those of the whole host granodiorite. For single‐grain feldspar, the strong rim‐core‐rim variations of the Pb isotopic compositions and trace elements are interpreted to have been generated via magma mixing. These results suggest that the Fangshan pluton underwent magma mixing of mantle‐derived mafic magmas with felsic magmas, and the proportion of the mafic magma influx decreased over time.  相似文献   

15.
This study presents a new measurement procedure for the isolation of Pt from iron meteorite samples. The method also allows for the separation of Pd from the same sample aliquot. The separation entails a two‐stage anion‐exchange procedure. In the first stage, Pt and Pd are separated from each other and from major matrix constituents including Fe and Ni. In the second stage, Ir is reduced with ascorbic acid and eluted from the column before Pt collection. Platinum yields for the total procedure were typically 50–70%. After purification, high‐precision Pt isotope determinations were performed by multi‐collector ICP‐MS. The precision of the new method was assessed using the IIAB iron meteorite North Chile. Replicate analyses of multiple digestions of this material yielded an intermediate precision for the measurement results of 0.73 for ε192Pt, 0.15 for ε194Pt and 0.09 for ε196Pt (2 standard deviations). The NIST SRM 3140 Pt solution reference material was passed through the measurement procedure and yielded an isotopic composition that is identical to the unprocessed Pt reference material. This indicates that the new technique is unbiased within the limit of the estimated uncertainties. Data for three iron meteorites support that Pt isotope variations in these samples are due to exposure to galactic cosmic rays in space.  相似文献   

16.
A modulus‐multiplier approach, which applies a reduction factor to the modulus of single pile py curves to account for the group effect, is presented for analysing the response of each individual pile in a laterally loaded pile group with any geometric arrangement based on non‐linear pile–soil–pile interaction. The pile–soil–pile interaction is conducted using a 3D non‐linear finite element approach. The interaction effect between piles under various loading directions is investigated in this paper. Group effects can be neglected at a pile spacing of 9 times the pile diameter for piles along the direction of the lateral load and at a pile spacing of 6 times the pile diameter for piles normal to the direction of loading. The modulus multipliers for a pair of piles are developed as a function of pile spacing for departure angle of 0, 90, and 180sup>/sup> with respect to the loading direction. The procedure proposed for computing the response of any individual pile within a pile group is verified using two well‐documented full‐scale pile load tests. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
SANICLAY is a new simple anisotropic clay plasticity model that builds on a modification of an earlier model with an associated flow rule, in order to include simulations of softening response under undrained compression following Ko consolidation. Non‐associativity is introduced by adopting a yield surface different than the plastic potential surface. Besides, the isotropic hardening of the yield surface both surfaces evolve according to a combined distortional and rotational hardening rule, simulating the evolving anisotropy. Although built on the general premises of critical state soil mechanics, the model induces a critical state line in the void ratio–mean effective stress space, which is a function of anisotropy. To ease interpretation, the model formulation is presented firstly in the triaxial stress space and subsequently, its multiaxial generalization is developed systematically, in a form appropriate for implementation in numerical codes. The SANICLAY is shown to provide successful simulation of both undrained and drained rate‐independent behaviour of normally consolidated sensitive clays, and to a satisfactory degree of accuracy of overconsolidated clays. The new model requires merely three constants more than those of the modified Cam clay model, all of which are easily calibrated from well‐established laboratory tests following a meticulously presented procedure. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
对土体动力黏塑性记忆型嵌套面模型的改进   总被引:3,自引:1,他引:2  
庄海洋  陈国兴 《岩土力学》2009,30(1):118-122
在对土体动力黏塑性记忆型嵌套面本构模型已有的研究基础上,对该模型进行改进,不再对空间锥形屈服面变化时屈服面锥角 的变化规律作假定,按照土体在循环荷载作用下空间屈服面在子午平面上投影线的实际变化规律,建立屈服面硬化参数的增量表达式,完善了该模型的理论基础,为进一步对该模型的试验验证和改进提供了理论依据,并对比分析了分别使用改进后模型和改进前模型计算同一场地地震反应的计算结果。  相似文献   

19.
A new procedure to integrate critical state models including Cam–Clay and modified Cam–Clay is proposed here. The proposed procedure makes use of the linearity of the virgin isotropic compression curve and the parallel anisotropic consolidation lines in e–ln p space which are basic features of the formulation of critical state models. Using this algorithm, a unique final stress state may be found as a function of a single unknown for elastoplastic loading. The key equations are given in this article for the Cam–Clay and modified Cam–Clay models. The use of the Newton–Raphson iterative method to minimize residuals and obtain a converged solution is described here. This new algorithm may be applied using the assumptions of linear elasticity or non‐linear elasticity within a given loading step. The new algorithm proposed here is internally consistent and has computational advantages over the current numerical integration procedures. Numerical examples are presented to show the performance of the algorithm as compared to other integration algorithms. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

20.
《Sedimentology》2018,65(2):620-637
Submarine turbidity currents are a key mechanism in the transportation of clastic sediments to deep seas. Such currents may initiate with a complex longitudinal flow structure comprising flow pulses (for example, by being sourced from retrogressive sea floor slope failures) or acquire such structure during run‐out (for example, following flow combination downstream of confluences). A key question is how far along channel pathway complex flow structure is preserved within turbidity currents as they run out and thus if flow initiation mechanism and proximity to source may be inferred from the vertical structure of their deposits. To address this question, physical modelling of saline flows has been conducted to investigate the dynamics of single‐pulsed versus multi‐pulsed density driven currents. The data suggest that, under most circumstances, individual pulses within a multi‐pulsed flow must merge. Therefore, initiation signatures will only be preserved in deposits upstream of the merging point and may be distorted approaching it; downstream of the merging point, all initiation signals will be lost. This new understanding of merging phenomenon within multi‐pulsed gravity currents broadens our ability to interpret multi‐pulsed turbidites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号