首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
This paper presents a complete finite‐element treatment for unsaturated soil problems. A new formulation of general constitutive equations for unsaturated soils is first presented. In the incremental stress–strain equations, the suction or the pore water pressure is treated as a strain variable instead of a stress variable. The global governing equations are derived in terms of displacement and pore water pressure. The discretized governing equations are then solved using an adaptive time‐stepping scheme which automatically adjusts the time‐step size so that the integration error in the displacements and pore pressures lies close to a specified tolerance. The non‐linearity caused by suction‐dependent plastic yielding, suction‐dependent degree of saturation, and saturation‐dependent permeability is treated in a similar way to the elastoplasticity. An explicit stress integration scheme is used to solve the constitutive stress–strain equations at the Gauss point level. The elastoplastic stiffness matrix in the Euler solution is evaluated using the suction as well as the stresses and hardening parameters at the start of the subincrement, while the elastoplastic matrix in the modified Euler solution is evaluated using the suction at the end of the subincrement. In addition, when applying subincrementation, the same rate is applied to all strain components including the suction. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
The numerical integration of the stress–strain relationship is an important part of many finite element code used in geotechnical engineering. The integration of elasto-plastic models for unsaturated soils poses additional challenges associated to the presence of suction as an extra constitutive variable with respect to traditional saturated soil models. In this contribution, a range of explicit stress integration schemes are derived with specific reference to the Barcelona Basic Model (BBM), which is one of the best known elasto-plastic constitutive models for unsaturated soils. These schemes, however, do not address possible non-convexity of the loading collapse (LC) curve and neglect yielding on the suction increase (SI) line. The paper describes eight Runge–Kutta methods of various orders with adaptive substepping as well as a novel integration scheme based on Richardson extrapolation. The algorithms presented also incorporate two alternative error control methods to ensure accuracy of the numerical integration. Extensive validation and comparison of different schemes are presented in a companion paper. Although the algorithms presented were coded for the Barcelona Basic Model, they can be easily adapted to other unsaturated elasto-plastic models formulated in terms of two independent stress variables such as net stress and suction.  相似文献   

3.
Wheeler, Sharma and Buisson proposed an elasto‐plastic constitutive model for unsaturated soils that couples the mechanical and water retention behaviours. The model was formulated for isotropic stress states and adopts the mean Bishop's stress and modified suction as stress state variables. This paper deals with the extension of this constitutive model to general three‐dimensional stress conditions, proposing the generalized stress–strain relationships required for the numerical integration of the constitutive model. A characteristic of the original model is the consideration of a number of elasto‐plastic mechanisms to describe the complex behaviour of unsaturated soils. This work presents the three‐dimensional formulation of these coupled irreversible mechanisms in a generalized way including anisotropic loading. The paper also compares the results from the model with published experiments performed under different loading conditions. The response of the model is very satisfactory in terms of both mechanical and water retention behaviours. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A simple thermo‐hydro‐mechanical (THM) constitutive model for unsaturated soils is described. The effective stress concept is extended to unsaturated soils with the introduction of a capillary stress. This capillary stress is based on a microstructural model and calculated from attraction forces due to water menisci. The effect of desaturation and the thermal softening phenomenon are modelled with a minimal number of material parameters and based on existing models. THM process is qualitatively and quantitatively modelled by using experimental data and previous work to show the application of the model, including a drying path under mechanical stress with transition between saturated and unsaturated states, a heating path under constant suction and a deviatoric path with imposed suction and temperature. The results show that the present model can simulate the THM behaviour in unsaturated soils in a satisfactory way. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A new constitutive model is developed for the mechanical behaviour of unsaturated soils based on the theory of hypoplasticity and the effective stress principle. The governing constitutive relations are presented and their application is demonstrated using several experimental data from the literature. Attention is given to the stiffening effect of suction on the mechanical response of unsaturated soils and the phenomenon of wetting‐induced collapse. All model parameters have direct physical interpretation, procedures for their quantification from test data are highlighted. Quantitative predictions of the model are presented for wetting, drying and constant suction tests. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
7.
The paper compares the accuracy and efficiency of explicit stress integration schemes for elasto-plastic unsaturated soil models with automatic error control. Numerical tests are performed with reference to the Barcelona Basic Model (BBM), one of the most popular elasto-plastic models for unsaturated soils, by using eight explicit Runge–Kutta algorithms of various order as well as a novel application of the extrapolation method described in the companion paper. Initially, the results obtained from the lowest order Runge–Kutta scheme (i.e. Modified Euler) as well as the extrapolation method are checked against accurate solutions of a number of BBM paths involving changes of strains and suction. Subsequently, the efficiency and accuracy of all algorithms are assessed for generic increments of strains and suction, while the difference between two alternative error control methods is also analysed. The results presented, although strictly valid for the Barcelona Basic Model, are expected to be general and relevant to other similar unsaturated elasto-plastic models formulated in terms of two independent stress variables such as net stress and suction.  相似文献   

8.
This paper introduces an unconventional constitutive model for soils, which deals with a unified thermo‐mechanical modelling for unsaturated soils. The relevant temperature and suction effects are studied in light of elasto‐plasticity. A generalized effective stress framework is adopted, which includes a number of intrinsic thermo‐hydro‐mechanical connections, to represent the stress state in the soil. Two coupled constitutive aspects are used to fully describe the non‐isothermal behaviour. The mechanical constitutive part is built on the concepts of bounding surface theory and multi‐mechanism plasticity, whereas water retention characteristics are described using elasto‐plasticity to reproduce the hysteretic response and the effect of temperature and dry density on retention properties. The theoretical formulation is supported by comparisons with experimental results on two compacted clays. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Unsaturated soil behaviour, such as volume change, shear strength and yield stress, is usually interpreted and modelled in terms of stress and suction. This approach is consistent with laboratory tests where suction is a controllable variable. However, it also suffers some limitations. This paper (Parts I and II) presents an alternative approach for interpreting unsaturated soil behaviour, which is built in the space of stress versus degree of saturation. In Part I, a new volume change equation is proposed in terms of stress and degree of saturation, to give a better explanation to the non-linear change of soil compressibility under constant suctions. The soil compression index is assumed to be a function of the effective degree of saturation and is interpolated from the known compressibility at the fully saturated state and that at a dry state. An alternative approach to simulate hydraulic hysteresis and hydro-mechanical interaction is then introduced, which enables the calculation of the effective degree of saturation under complex stress and suction paths. The proposed volume change equation and the approach to describe saturation variation, which are two fundamental aspects to establish constitutive laws for unsaturated soils, are validated against a variety of experimental data in literature.  相似文献   

10.
A simple thermohydromechanical (THM) constitutive model for unsaturated soils is described. The effective stress concept is extended to unsaturated soils with the introduction of a capillary stress. This capillary stress is based on a microstructural model and calculated from attraction forces due to water menisci. The effect of desaturation and the thermal softening phenomenon are modelled with a minimal number of material parameters and based on existing models. THM process is qualitatively and quantitatively modelled by using experimental data and previous work to show the application of the model, including a drying path under mechanical stress with transition between saturated and unsaturated states, a heating path under constant suction and a deviatoric path with imposed suction and temperature. The results show that the present model can simulate the THM behaviour in unsaturated soils in a satisfactory way.  相似文献   

11.
This paper discusses a series of stress point algorithms for a breakage model for unsaturated granular soils. Such model is characterized by highly nonlinear coupling terms introduced by breakage‐dependent hydro‐mechanical energy potentials. To integrate accurately and efficiently its constitutive equations, specific algorithms have been formulated using a backward Euler scheme. In particular, because implementation and verification of unsaturated soil models often require the use of mixed controls, the incorporation of various hydro‐mechanical conditions has been tackled. First, it is shown that the degree of saturation can be replaced with suction in the constitutive equations through a partial Legendre transformation of the energy potentials, thus changing the thermomechanical state variables and enabling a straightforward implementation of a different control mode. Then, to accommodate more complex control scenarios without redefining the energy potentials, a hybrid strategy has been used, combining the return mapping scheme with linearized constraints. It is shown that this linearization strategy guarantees similar levels of accuracy compared with a conventional strain–suction‐controlled implicit integration. In addition, it is shown that the use of linearized constraints offers the possibility to use the same framework to integrate a variety of control conditions (e.g., net stress and/or water‐content control). The convergence profiles indicate that both schemes preserve the advantages of implicit integration, that is, asymptotic quadratic convergence and unconditional stability. Finally, the performance of the two implicit schemes has been compared with that of an explicit algorithm with automatic sub‐stepping and error control, showing that for the selected breakage model, implicit integration leads to a significant reduction of the computational cost. Such features support the use of the proposed hybrid scheme also in other modeling contexts, especially when strongly nonlinear models have to be implemented and/or validated by using non‐standard hydro‐mechanical control conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
13.
This paper presents a new plasticity model developed for the simulation of monotonic and cyclic loading of non‐cohesive soils and its implementation to the commercial finite‐difference code FLAC, using its User‐Defined‐Model (UDM) capability. The new model incorporates the framework of Critical State Soil Mechanics, while it relies upon bounding surface plasticity with a vanished elastic region to simulate the non‐linear soil response. Stress integration of constitutive relations is performed using a recently proposed explicit scheme with automatic error control and substepping, which so far has been employed in the literature only for constitutive models aiming at monotonic loading. The overall accuracy of this scheme is evaluated at element level by simulating cyclic loading along complex stress paths and by using iso‐error maps for paths involving change of the Lode angle. The performance of the new constitutive model and its stress integration scheme in complex boundary value problems involving earthquake‐induced liquefaction is evaluated, in terms of accuracy and computational cost, via a number of parametric analyses inspired by the successful simulation of the VELACS centrifuge Model Test No. 2 studying the lateral spreading response of a liquefied sand layer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Unsaturated soils are highly heterogeneous 3‐phase porous media. Variations of temperature, the degree of saturation, and density have dramatic impacts on the hydro‐mechanical behavior of unsaturated soils. To model all these features, we present a thermo‐hydro‐plastic model in which the hydro‐mechanical hardening and thermal softening are incorporated in a hierarchical fashion for unsaturated soils. This novel constitutive model can capture heterogeneities in density, suction, the degree of saturation, and temperature. Specifically, this constitutive model has 2 ingredients: (1) it has a “mesoscale” mechanical state variable—porosity and 3 environmental state variables—suction, the degree of saturation, and temperature; (2) both temperature and mechanical effects on water retention properties are taken into account. The return mapping algorithm is applied to implement this model at Gauss point assuming an infinitesimal strain. At each time step, the return mapping is conducted only in principal elastic strain space, assuming no return mapping in suction and temperature. The numerical results obtained by this constitutive model are compared with the experimental results. It shows that the proposed model can simulate the thermo‐hydro‐mechanical behavior of unsaturated soils with satisfaction. We also conduct shear band analysis of an unsaturated soil specimen under plane strain condition to demonstrate the impact of temperature variation on shear banding triggered by initial material heterogeneities.  相似文献   

15.
A comprehensive framework to define the constitutive behaviour of unsaturated soils is developed within the theory of mixtures applied to three‐phase porous media. Each of the three phases is endowed with its own strain and stress. Elastic and elastic–plastic constitutive equations are developed. Particular emphasis is laid on the interactions between the phases both in the elastic and plastic regimes. Nevertheless, the clear structure of the constitutive equations requires a minimal number of material parameters. Their identification is provided: in particular, it incorporates directly the soil–water characteristic curve. Crucial to the formulation is an appropriate definition of the effective stress. The coupled influence of this effective stress and of suction makes it possible to describe qualitatively many of the characteristic features observed in experiments, e.g. for normally consolidated soils, a plastic behaviour up to air entry followed by an elastic behaviour at increasing suctions, and, on the way back, an elastic behaviour, unless compression is applied in which case plastic collapse occurs. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
This article presents an equivalent stress approach that can be used in many elastoplastic constitutive models for unsaturated soils. The use of the equivalent stress leads to a modified yield locus that is independent of the suction. In addition, the equivalent stress becomes the major stress variable, with suction required only as an additional variable in calculations. The model on the basis of equivalent stress predicts exactly the same soil behaviour, with the sole difference being the use of equivalent stress instead of original stress variables. This article also presents the equivalent stress formulations of several constitutive models for unsaturated soils, including the Barcelona Basic Model. The predictions from these models remain unchanged, with the only difference being in their implementation. Finally, the equivalent stress approach and the net stress approach are compared for the Barcelona Basic Model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
非饱和土的本构模型研究   总被引:1,自引:0,他引:1  
缪林昌 《岩土力学》2007,28(5):855-860
引用平均土骨架应力的概念,研究推导出非饱和土的刚度参数随吸力变化而变化的关系式,进而推导得到用平均土骨架应力表述的非饱和土LC屈服面函数以及硬化规律。从土力学原理推导,得到土样由于在净应力和吸力作用下产生体积变形引起土样饱和度变化的关系式。由平均土骨架应力推广,得到三轴应力状态的椭圆屈服函数,这一非饱和土本构模型的优点在于考虑了应力作用后土样饱和度的变化,通过对已有试验数据的初步验证,表明提出的非饱和土本构模型的合理性和适用性。  相似文献   

18.
非饱和土的水力和力学特性及其弹塑性描述   总被引:6,自引:3,他引:3  
孙德安 《岩土力学》2009,30(11):3217-3231
简单回顾了非饱和土本构模型研究的发展历程,总结了近几年非饱和土弹塑性本构模型最新研究成果,重点介绍了能统一模拟非饱和土水力性状和力学性状耦合的弹塑性本构模型。通过对建立模型过程中的几个核心问题讨论,较详细地说明该类模型的结构、性能以及相关问题。非饱和土水力性状的滞回性用假定存在饱和度弹性区间的弹塑性过程来模拟;该类耦合模型不仅考虑了吸力对非饱和土水力性状和力学性状的影响,还考虑了饱和度对应力-应变关系和强度的影响以及土体变形对土-水特征曲线的影响。用同一套模型参数,耦合模型可统一预测在吸力控制或含水率控制下沿各种应力路径下非饱和土的水力-力学特性,并简单介绍了膨胀性非饱和土的弹塑性本构模型以及耦合模型在有限元数值计算中的应用。  相似文献   

19.
非饱和土弹塑性模型参数的试验确定及有限元法   总被引:1,自引:0,他引:1  
陈勇  刘德富  王世梅 《岩土力学》2009,30(2):542-546
简要介绍广泛应用的非饱和土Alonso模型的原理与发展,并通过3组共7个试样的非饱和土三轴试验,得到模型的11个参数。在饱和土Cam本构关系的基础上,推导出一个基于非饱和土Alonso模型的应力-应变增量方程的计算公式,该方程与饱和土的本构方程形式相同。编制了能够考虑净应力和吸力二者对土体硬化规律影响的有限元程序,从而为非饱和土弹塑性计算提供一条途径,便于进一步应用于实际工程。  相似文献   

20.
A thermodynamically consistent extension of the constitutive equations of saturated soils to unsaturated conditions is often worked out through the use of a unique ‘effective’ interstitial pressure, accounting equivalently for the pressures of the saturating fluids acting separately on the internal solid walls of the pore network. The natural candidate for this effective interstitial pressure is the space averaged interstitial pressure. In contrast experimental observations have revealed that, at least, a pair of stress state variables was needed for a suitable framework to describe stress–strain–strength behaviour of unsaturated soils. The thermodynamics analysis presented here shows that the most general approach to the behaviour of unsaturated soils actually requires three stress state variables: the suction, which is required to describe the invasion of the soil by the liquid water phase through the retention curve; two effective stresses, which are required to describe the soil deformation at water saturation held constant. However a simple assumption related to the plastic flow rule leads to the final need of only a Bishop-like effective stress to formulate the stress–strain constitutive equation describing the soil deformation, while the retention properties still involve the suction and possibly the deformation. Commonly accepted models for unsaturated soils, that is the Barcelona Basic Model and any approach based on the use of an effective averaged interstitial pressure, appear as special extreme cases of the thermodynamic formulation proposed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号