首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
First, the response of an ideal elastic half‐space to a line‐concentrated impulsive normal load applied to its surface is obtained by a computational method based on the theory of characteristics in conjunction with kinematical relations derived across surfaces of strong discontinuities. Then, the geometry is determined of the obtained waves and the source signature—the latter is the imprint of the spatiotemporal configuration of the excitation source in the resultant response. Behind the dilatational precursor wave, there exists a pencil of three plane waves extending from the vertex at the impingement point of the precursor wave on the stress‐free surface of the half‐space to three points located on the other two boundaries of the solution domain. These four wave‐arresting points (end points) of the three plane waves constitute the source signature. One wave is an inhibitor front in the behaviour of the normal stress components and the particle velocity, while in the behaviour of the shear stress component, it is a surface‐axis wave. The second is a surface wave in the behaviour of the horizontal components of the dependent variables, while the third is an inhibitor wave in the behaviour of the shear stress component. An inhibitor wave is so named, since beyond it, the material motion is dying or becomes uniform. A surface‐axis wave is so named, since upon its arrival, like a surface wave, the dependent variable in question features an extreme value, but unlike a surface wave, it exists in the entire depth of the solution domain. It is evident from this work that Saint‐Venant's principle for wave propagation problems cannot be formulated; therefore, the above results are a consequence of the particular model proposed here for the line‐concentrated normal load. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents transient deformation of an elastic half‐space under two types of line‐concentrated impulsive loads applied simultaneously. One load is a sustainable normal force, while the other is a momentarily applied vector shear force. For each of the two loads the author gave the respective solution in two separate papers. Here the two solutions are superimposed to determine the response of the half‐space under the combined loads. The present work is devoted to the salient wave propagation features seen in the resultant computer plots that disclose the strained half‐space. Since each critical deformation is explicitly indicated in the plots by a wave front, the interpretation of the response of the half‐space to the applied load is readily available at a glance. A comparison is then presented that identifies those deformation traits and wave fronts, among the nineteen here, that are more closely related to those found in previous works. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The response of an ideal elastic half‐space to a line‐concentrated impulsive vector shear force applied momentarily is obtained by an analytical–numerical computational method based on the theory of characteristics in conjunction with kinematical relations derived across surfaces of strong discontinuities. The shear force is concentrated along an infinite line, drawn on the surface of the half‐space, while being normal to that line as well as to the axis of symmetry of the half‐space. An exact loading model is introduced and built into the computational method for this shear force. With this model, a compatibility exists among the prescribed applied force, the geometric decay of the shear stress component at the precursor shear wave, and the boundary conditions of the half‐space; in this sense, the source configuration is exact. For the transient boundary‐value problem described above, a wave characteristics formulation is presented, where its differential equations are extended to allow for strong discontinuities which occur in the material motion of the half‐space. A numerical integration of these extended differential equations is then carried out in a three‐dimensional spatiotemporal wavegrid formed by the Cartesian bicharacteristic curves of the wave characteristics formulation. This work is devoted to the construction of the computational method and to the concepts involved therein, whereas the interpretation of the resultant transient deformation of the half‐space is presented in a subsequent paper. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
The analysis of the wave propagation in layered rocks masses with periodic fractures is tackled via a two-scale approach in order to consider shape and size of the rock inhomogeneities. To match the displacement fields at the two scales, an approximation of the micro-displacement field is assumed that depends on the first and second gradients of the macro-displacement through micro-fluctuation displacement functions obtained by the finite element solution of cell problems derived by the classical asymptotic homogenization. The resulting equations of motion of the equivalent continuum at the macro-scale result to be not local in space, thus a dispersive wave propagation is obtained from the model. The simplifying hypotheses assumed in the multi-scale kinematics limit the validity of the model to the first dispersive branch in the frequency spectrum corresponding to the lowest modes.Although the homogenization procedure is developed to study the macro-scale wave propagation in rock masses with bounded domain, the reliability of the proposed method has been evaluated in the examples by considering unbounded rock masses and by comparing the dispersion curves provided by the rigorous process of Floquet–Bloch with those obtained by the method presented. The accuracy of the method is analyzed for compressional and shear waves propagating in the intact-layered rocks along the orthotropic axes. Therefore, the influence of crack density in the layered rock mass has been analyzed. Vertical cracks have been considered, periodically located in the stiffer layer, and two different crack densities have been analyzed, which are differentiated in the crack spacing. A good agreement is obtained in case of compressional waves travelling along the layering direction and in case of both shear and compressional waves normal to the layering. The comparison between two crack systems with different spacing has shown this aspect to have a remarkable effect on waves travelling along the direction of layering, and limited in the case of waves propagating normal to the layers.The equivalent continuous model obtained through the dynamic homogenization technique here presented may be applied to the computational analysis of non-stationary wave propagation in rock masses of finite size, also consisting of sub-domains with different macro-mechanical characteristics. This avoids the use of computational models represented at the scale of the heterogeneities, which may be too burdensome or even unfeasible.  相似文献   

5.
徐慧峰  钱彦岭  邱静  谢迪波 《岩土力学》2010,31(5):1651-1656
在地下管线弹性波探测中,由位于地下圆孔边界上有限时长的力源激发形成瞬态场,应用波函数展开法对此波场进行建模。以波函数和待定系数组成的级数序列描述探测波场中的势函数,根据界面处应力和位移连续的边界条件求解待定系数,从而得到波场中弹性波的解析解。据此进行数值研究,分析探测波场中弹性波的传播特征,说明了散射波的类型以及能量对比关系,并总结了反射信号幅值与地下管线物理参数之间由声阻抗匹配程度支配的反射信号强度变化规律,而管线半径对反射信号强度的影响要大于物理参数的作用。最后以实验结果验证上述结论。  相似文献   

6.
Since the attenulation of propagating waves through soil/rock is related to the localized material properties as well as the strain developed, the commonly used Rayleigh-type damping model and its variations are not suitable for dynamic finite element analysis of such materials. A linear viscoelastic material model based on the concept of the relaxation spectrum is manipualted in place of the damping model in this paper. The method proposed by Day and Minster11 to transform the convolutional form of the stress–strain relationship to a set of differential operators using the Pade approximant method is generalized to non-scalar waves and implemented for transient finite element analyses. A time-marching scheme is also proposed to incorporate the resultant differential operators into the governing equation of motion. The accuracy related to the Pade approximant method and the time-marching scheme is investigated by critically analysing some scalar wave propagation problems. The proposed technique is further verified using two one-dimensional stress wave propagation problems and a two-dimensional transient propagating wave through an unbounded linear viscoelastic medium. Some encouraging results have been obtained using the proposed technique and guidelines for using this technique are also presented. Comparisons of analytical solutions obtained by Fourier synthesis and numerical results have been provided.  相似文献   

7.
The propagation characteristic of Rayleigh waves in a fluid‐saturated non‐homogeneous poroelastic half‐plane is addressed. Based on Biot's theory for fluid‐saturated media, which takes the inertia, fluid viscosity, mechanical coupling, compressibility of solid grains, and fluid into account, the dispersion equations of Rayleigh waves in fluid‐saturated non‐homogeneous soils/rocks are established. By considering the shear modulus of solid skeleton variation with depth exponentially, a small parameter, which reflects the relative change of shear modulus, is introduced. The asymptotic solution of the dispersion equation expressing the relationship between the phase velocity and wave number is obtained by using the perturbation method. In order to analyze the effects of non‐homogeneity on the propagation characteristic of Rayleigh waves, the variation of the phase velocity with the wave number is presented graphically and discussed through numerical examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Propagation of surface waves is discussed in a cylindrical borehole through a liquid-saturated porous solid of infinite extent. The porous medium is assumed to be a continuum consisting of a solid skeletal with connected void space occupied by a mixture of two immiscible inviscid fluids. This model also represents the partial saturation when liquid fills only a part of the pore space and gas bubbles span the remaining void space. In this isotropic medium, potential functions identify the existence of three dilatational waves coupled with a shear wave. For propagation of plane harmonic waves along the axially-symmetric borehole, these potentials decay into the porous medium. Boundary conditions are chosen to disallow the discharge of liquid into the borehole through its impervious porous walls. A dispersion equation is derived for the propagation of surface waves along the curved walls of no-liquid (all gas) borehole. A numerical example is studied to explore the existence of cylindrical waves in a particular model of the porous sandstone. True surface waves do not propagate along the walls of borehole when the supporting medium is partially saturated. Such waves propagate only beyond a certain frequency when the medium is fully-saturated porous or an elastic one. Dispersion in the velocity of pseudo surface waves is analysed through the changes in consolidation, saturation degree, capillary pressure or porosity.  相似文献   

9.
In this paper, frequency domain dynamic response of a pile embedded in a half‐space porous medium and subjected to P, SV seismic waves is investigated. According to the fictitious pile methodology, the problem is decomposed into an extended poroelastic half‐space and a fictitious pile. The extended porous half‐space is described by Biot's theory, while the fictitious pile is treated as a bar and a beam and described by the conventional 1‐D structure vibration theory. Using the Hankel transformation method, the fundamental solutions for a half‐space porous medium subjected to a vertical or a horizontal circular patch load are established. Based on the obtained fundamental solutions and free wave fields, the second kind of Fredholm integral equations describing the vertical and the horizontal interaction between the pile and the poroelastic half‐space are established. Solution of the integral equations yields the dynamic response of the pile to plane P, SV waves. Numerical results show the parameters of the porous medium, the pile and incident waves have direct influences on the dynamic response of the pile–half‐space system. Significant differences between conventional single‐phase elastic model and the poroelastic model for the surrounding medium of the pile are found. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
We analyze experimental data collected in Vityaz Bay of the Sea of Japan during study of the peculiarities of spreading of hydroacoustic waves over a shelf with decreasing depth. We found that the waves propagate over a shelf with depths greater than half of the hydroacoustic wave according to the law of cylindrical divergence with least losses of the wave energy. If the depths are shallower than half of the hydroacoustic wave, they spread along the water-bottom boundary as Rayleigh waves of decaying and undamped types with significant absorption of the wave energy by the bottom.  相似文献   

11.
Based on the Biot's poroelastic theory and using scalar potential functions both the ring load and point load displacement Green's functions for a transversely isotropic saturated porous full‐space composed of an upper half‐space, a finite thickness middle layer and a lower half‐space is analytically presented for the first time. It is assumed that each region consists of a different transversely isotropic material. The equations of poroelastodymanics in terms of the solid displacements and the pore fluid pressure are uncoupled with the help of two scalar potential functions, so that the governing equations for the potential functions are either a second order wave equation or a repeated wave‐heat transfer equation of sixth order. With the aid of Fourier expansion with respect to circumferential direction and Hankel integral transforms with respect to the radial direction in cylindrical coordinate system, the response is determined in the form of line integrals in the real space, followed by theorem of inverse Hankel integral transforms. The solutions degenerate to a single phase elastic material, and the results are compared with previous studies, where an excellent agreement may be observed with the results provided in the literature. Some examples of displacement Green's functions are finally given to illustrate the solution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The driving response of thin‐walled open‐ended piles is studied using numerical simulation of the wave propagation inside the soil plug and the pile. An elastic finite element analysis is carried out to identify the stress wave propagation in the vicinity of the pile toe. It is found that the shear stress wave has the highest magnitude above the bottom of the soil plug. Below the bottom of the soil plug, the vertical stress wave has the highest magnitude. Although the shear stress wave propagating in the radial direction is similar in magnitude to the vertical stress wave at the bottom of the soil plug, it decays rapidly while travelling downwards. The highest vertical stress at the bottom of the soil plug appears after the vertical stress wave interacts with the shear stress wave travelling in the radial direction. Initially, the vertical stress wave propagates with the dilation wave velocity in both the radial and vertical directions. After it interacts with the shear stress wave, the vertical stress wave starts to propagate with the shear wave velocity in the radial direction and with the axial wave velocity downwards. It is concluded that at the bottom of the soil plug, the interaction between the waves travelling in radial and vertical directions is important. The capabilities of several one‐dimensional pile‐in‐pile models to reproduce the driving response given by a two‐dimensional axisymmetric finite element model is studied. It is seen that when the base of the soil plug fails, a one‐dimensional pile‐in‐pile model can be used to achieve results in agreement with the finite element model. However, when the pile is unplugged, where the base of the soil plug does not fail, a reduced finite element mesh that permits the radial wave propagation inside the soil plug must be used. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
This paper shows the presence of noises and technique to reduce these noises during the surface wave analysis. The frequency-dependent properties of Rayleigh-type surface waves can be used for imaging and characterizing the shallow subsurface. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the phase velocities of Rayleigh waves. Among these interferences by non-planar, non-fundamental mode Rayleigh waves (noise) are body waves, scattered and non-source-generated surface waves, and higher-mode surface waves. For the reduction of noise, the filtering technique is implemented in this paper for the multichannel analysis of surface wave method (MASW). With the de-noising technique during the MASW method, more robust and reliable outcome is achieved. The significance of this paper is to obtain pre-awareness about noises during surface wave analysis and take better outcomes with de-noising performance in near surface soil investigations.  相似文献   

14.
In this study, the dynamic response of a poroelastic half‐space to a point fluid sink is investigated using Biot's dynamic theory of poroelasticity. Based on Biot's theory, the governing field equations are re‐formulated in frequency domain with solid displacement and pore pressure. In a cylindrical coordinate system, a method of displacement potentials for axisymmetric displacement field is proposed to decouple the Biot's field equations to three scalar Helmholtz equations, and then the general solution to axisymmetric problems are obtained. The full‐space fundamental singular solution for a point sink is also derived using potential methods. The mirror‐image method is finally applied to construct the fundamental solution for a point sink buried in a poroelastic half‐space. Furthermore, a numerical study is conducted for a rock, that is, Berea sandstone, as a representative example. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A time‐domain viscous‐spring transmitting boundary is presented for transient dynamic analysis of saturated poroelastic media with linear elastic and isotropic properties. The u–U formulation of Biot equation in cylindrical coordinate is adopted in the derivation. By this general viscous‐spring boundary, the effective stress and pore fluid pressure on the truncated boundary of the computational area are replaced by a set of continuously distributed spring and dashpot elements, of which the parameters are defined assuming an infinite permeability and considering the two dilatational waves. Numerical examples demonstrate good absorption of both the two cylindrical dilatational waves by the proposed ‘drained’ boundary. For general two‐dimensional wave propagation problems, acceptable accuracy can still be achieved by setting the proposed boundary relatively far away from the scatter. Numerical comparison shows that the results obtained by using this boundary are more accurate for all permeability values than those by the traditional viscous‐spring or viscous boundaries established for u–U formulation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In the framework of elastostatics, a mathematical treatment is presented for the boundary value problem of the interaction of a flexible cylindrical pile embedded in a transversely isotropic half‐space under transverse loadings. Taking the pile region as a stiffened subdomain of an extended half‐space, the formulation of the interaction problem is reduced to a Fredholm integral equation of the second kind. The necessary set of Green's functions for the transversely isotropic half‐space is obtained by means of a method of potentials. The resulting Green's functions are incorporated into a numerical procedure for the solution of the integral equation. The theoretical response of the pile is presented in terms of bending moment, displacement and slope profiles for a variety of transversely isotropic materials so that the effect of different anisotropy parameters can be meaningfully discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The study of surface wave in a layered medium has their possible application in geophysical prospecting. In the present work, dispersion equation for torsional wave in an inhomogeneous isotropic layer between inhomogeneous isotropic half‐spaces has been derived. Two cases are discussed separately for torsional wave propagation in inhomogeneous layer between homogeneous and non‐homogeneous half‐spaces, respectively. Further, two possible modes for torsional wave propagation are obtained in case of inhomogeneous layer sandwiched between non‐homogeneous half‐spaces. Closed form solutions for displacement in the layer and half‐spaces are obtained in each case. The study reveals that the layer width, layer inhomogeneity, frequency of inhomogeneity, as well as inhomogeneity in the half‐space has significant effect on the propagation of torsional surface waves. Displacement and implicit dispersion equation for torsional wave velocities are expressed in terms of Heun functions and their derivatives. Effects of inhomogeneity on torsional wave velocity are also discussed graphically by plotting the dimensionless phase velocity against dimensionless and scaled wave number for different values of inhomogeneity parameter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
表面波有效相速度近似分析方法   总被引:1,自引:0,他引:1  
分层介质中瑞利面波有多个模态,表面瞬态响应是多个模态响应的叠加。在近场,面波模态响应传播速度随传播距离而变化;在远场,其趋于模态相速度。由分层介质表面两不同点响应互谱分析(SASW)得到的有效相速度并不对应于面波基阶模态相速度,它与波场中高阶模态能量分配比例有关。有效相速度随传播距离而变化,近场体波对有效相速度影响较大。对分层介质在简谐荷载下表面质点位移响应进行了互谱分析,得到了有效相速度理论值,通过理论值与测试值匹配分析可估算分层参数,该分析方法考虑了近场及高阶面波模态对有效相速度的影响。  相似文献   

19.
土结构动力相互作用影响的TMD控制研究   总被引:3,自引:0,他引:3  
对均质剪切梁—埋置刚性基础—粘弹性半空间模型应用子结构方法, 对垂直入射 SH 波, 导出了调频质量阻尼器( TMD)控制时结构反应的解析解。 通过设置 TMD 将上行波完全吸收, 实现对结构的控制, 由此得到 TMD 参数的频率依赖性。 进而选择确定的TMD 参数, 控制相互作用体系的第一振型。 通过算例, 对无控、全控和主控三种工况下的结构反应及控制效果进行了比较分析。  相似文献   

20.
点源激发瑞利波的半空间波场   总被引:1,自引:0,他引:1  
赵东  钟和  谭海平 《物探与化探》1999,23(2):128-132
用改进的Cagniard Dehoop方法导出均匀弹性半空间表面点源激发的瑞利波波场位移精确表达式,由此式求得弹性半空间任意点的位移,描绘了稳态和瞬态震源激发的瑞利波波场.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号