首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the general three-body problem, in a rotating frame of reference, a symmetric periodic solution with a binary collision is determined by the abscissa of one body and the energy of the system. For different values of the masses of the three bodies, the symmetric periodic collision orbits form a two-parametric family. In the case of equal masses of the two bodies and small mass of the third body, we found several symmetric periodic collision orbits similar to the corresponding orbits in the restricted three-body problem. Starting with one symmetric periodic collision orbit we obtained two families of such orbits. Also starting with one collision orbit in the Sun-Jupiter-Saturn system we obtained, for a constant value of the mass ratio of two bodies, a family of symmetric periodic collision orbits.  相似文献   

2.
We demonstrate the remarkable effectiveness of boundary value formulations coupled to numerical continuation for the computation of stable and unstable manifolds in systems of ordinary differential equations. Specifically, we consider the circular restricted three-body problem (CR3BP), which models the motion of a satellite in an Earth–Moon-like system. The CR3BP has many well-known families of periodic orbits, such as the planar Lyapunov orbits and the non-planar vertical and halo orbits. We compute the unstable manifolds of selected vertical and halo orbits, which in several cases leads to the detection of heteroclinic connections from such a periodic orbit to invariant tori. Subsequent continuation of these connecting orbits with a suitable end point condition and allowing the energy level to vary leads to the further detection of apparent homoclinic connections from the base periodic orbit to itself, or the detection of heteroclinic connections from the base periodic orbit to other periodic orbits. Some of these connecting orbits are of potential interest in space mission design.  相似文献   

3.
The problem of two-body linearized periodic relative orbits with eccentric reference orbits is studied in this paper. The periodic relative orbit in the target-orbital coordinate system can be used in fly-around and formation-flying orbit design. Based on the closed-form solutions to the Tschauner–Hempel equations, the initial condition for periodic relative orbits is obtained. Then the minimum-fuel periodic-orbit condition with a single impulse is analytically derived for given initial position and velocity vectors. When considering the initial coasting time, the impulse position of the global minimum-fuel periodic orbit is proved to be near to the perigee of the target and can be obtained by numerical optimization algorithms. Moreover, the condition for a special periodic orbit, i.e., the rectilinear relative orbit in the target-orbital frame, is obtained. Numerical simulations are used to demonstrate the efficacy of the method, and show the geometry of the periodic relative orbit and the rectilinear relative orbit.  相似文献   

4.
Analysis and design of low-energy transfers to the Moon has been a subject of great interest for many decades. This paper is concerned with a topological study of such transfers, with emphasis to trajectories that allow performing lunar capture and those that exhibit homoclinic connections, in the context of the circular restricted three-body problem. A fundamental theorem stated by Conley locates capture trajectories in the phase space and can be condensed in a sentence: “if a crossing asymptotic orbit exists then near any such there is a capture orbit”. In this work this fundamental theoretical assertion is used together with an original cylindrical isomorphic mapping of the phase space associated with the third body dynamics. For a given energy level, the stable and unstable invariant manifolds of the periodic Lyapunov orbit around the collinear interior Lagrange point are computed and represented in cylindrical coordinates as tubes that emanate from the transformed periodic orbit. These tubes exhibit complex geometrical features. Their intersections correspond to homoclinic orbits and determine the topological separation of long-term lunar capture orbits from short-duration capture trajectories. The isomorphic mapping is proven to allow a deep insight on the chaotic motion that characterizes the dynamics of the circular restricted three-body, and suggests an interesting interpretation, and together corroboration, of Conley’s assertion on the topological location of lunar capture orbits. Moreover, an alternative three-dimensional representation of the phase space is profitably employed to identify convenient lunar periodic orbits that can be entered with modest propellant consumption, starting from the Lyapunov orbit.  相似文献   

5.
We study two and three-dimensional resonant periodic orbits, usingthe model of the restricted three-body problem with the Sun andNeptune as primaries. The position and the stability character ofthe periodic orbits determine the structure of the phase space andthis will provide useful information on the stability and longterm evolution of trans-Neptunian objects. The circular planarmodel is used as the starting point. Families of periodic orbitsare computed at the exterior resonances 1/2, 2/3 and 3/4 withNeptune and these are used as a guide to select the energy levelsfor the computation of the Poincaré maps, so that all basicresonances are included in the study. Using the circular planarmodel as the basic model, we extend our study to more realisticmodels by considering an elliptic orbit of Neptune and introducingthe inclination of the orbit. Families of symmetric periodicorbits of the planar elliptic restricted three-body problem andthe three-dimensional problem are found. All these orbitsbifurcate from the families of periodic orbits of the planarcircular problem. The stability of all orbits is studied. Althoughthe resonant structure in the circular problem is similar for allresonances, the situation changes if the eccentricity of Neptuneor the inclination of the orbit is taken into account. All theseresults are combined to explain why in some resonances there aremany bodies and other resonances are empty.  相似文献   

6.
In this paper three results on the linearized mapping associated with the plane three body problem near a periodic orbit are established. It is first shown that linear stability of such an orbit is independent of initial position on the orbit and of coordinate system. Second, the relation of Hénon connecting the rates of change of rotation angle and period on an isoenergetic family of periodic orbits is proved, together with a similar relation for families of orbits closing exactly in a rotating coordinate system. Finally, a condition for a critical orbit is given which is applicable to any family of periodic orbits.  相似文献   

7.
We study the periodic orbits and the escapes in two different dynamical systems, namely (1) a classical system of two coupled oscillators, and (2) the Manko-Novikov metric which is a perturbation of the Kerr metric (a general relativistic system). We find their simple periodic orbits, their characteristics and their stability. Then we find their ordered and chaotic domains. As the energy goes beyond the escape energy, most chaotic orbits escape. In the first case we consider escapes to infinity, while in the second case we emphasize escapes to the central ??bumpy?? black hole. When the energy reaches its escape value, a particular family of periodic orbits reaches an infinite period and then the family disappears (the orbit escapes). As this family approaches termination it undergoes an infinity of equal period and double period bifurcations at transitions from stability to instability and vice versa. The bifurcating families continue to exist beyond the escape energy. We study the forms of the phase space for various energies, and the statistics of the chaotic and escaping orbits. The proportion of these orbits increases abruptly as the energy goes beyond the escape energy.  相似文献   

8.
We study the change of phase space structure of the rectilinear three-body problem when the mass combination is changed. Generally, periodic orbits bifurcate from the stable Schubart periodic orbit and move radially outward. Among these periodic orbits there are dominant periodic orbits having rotation number (n − 2)/n with n ≥ 3. We find that the number of dominant periodic orbits is two when n is odd and four when n is even. Dominant periodic orbits have large stable regions in and out of the stability region of the Schubart orbit (Schubart region), and so they determine the size of the Schubart region and influence the structure of the Poincaré section out of the Schubart region. Indeed, with the movement of the dominant periodic orbits, part of complicated structure of the Poincaré section follows these orbits. We find stable periodic orbits which do not bifurcate from the Schubart orbit.  相似文献   

9.
We distinguish between regular orbits, that bifurcate from the main families of periodic orbits (those that exist also in the unperturbed case) and irregular periodic orbits, that are independent of the above. The genuine irregular families cannot be made to join the regular families by changing some parameters. We present evidence that all irregular families appear inside lobes formed by the asymptotic curves of the unstable periodic orbits. We study in particular a dynamical system of two degrees of freedom, that is symmetric with respect to the x-axis, and has also a triple resonance in its unperturbed form. The distribution of the periodic orbits (points on a Poincaré surface of section) shows some conspicuous lines composed of points of different multiplicities. The regular periodic orbits along these lines belong to Farey trees. But there are also lines composed mainly of irregular orbits. These are images of the x-axis in the map defined on the Poincaré surface of section. Higher order iterations of this map , close to the unstable triple periodic orbit, produce lines that are close to the asymptotic curves of this unstable orbit. The homoclinic tangle, formed by these asymptotic curves, contains many regular orbits, that were generated by bifurcation from the central orbit, but were trapped inside the tangle as the perturbation increased. We found some stable periodic orbits inside the homoclinic tangle, both regular and irregular. This proves that the homoclinic tangle is not completely chaotic, but contains gaps (islands of stability) filled with KAM curves.  相似文献   

10.
For conservative dynamical systems having two degrees of freedom Birkhoff has established the existence of two classes of periodic orbits. The first consists of stable-unstable pairs close to periodic orbits of the stable type, and the second of orbits having fixed points (in a suitable surface of section) close to homoclinic points. In this paper orbits of the latter type are listed, and their evolution followed as a function of the energy. For the energy at which they were first computed, all were unstable; but they evolved, with diminishing energy, into one orbit of the stable type which appears to be a member of the first class of orbits mentioned above.Presented at the Conference on Celestial Mechanics, Oberwolfach, Germany, August 27–September 2, 1972.  相似文献   

11.
Several families of planar planetary-type periodic orbits in the general three-body problem, in a rotating frame of reference, for the Sun-Jupiter-Saturn mass-ratio are found and their stability is studied. It is found that the configuration in which the orbit of the smaller planet is inside the orbit of the larger planet is, in general, more stable.We also develop a method to study the stability of a planar periodic motion with respect to vertical perturbations. Planetary periodic orbits with the orbits of the two planets not close to each other are found to be vertically stable. There are several periodic orbits that are stable in the plane but vertically unstable and vice versa. It is also shown that a vertical critical orbit in the plane can generate a monoparametric family of three-dimensional periodic orbits.  相似文献   

12.
Numerical orbit integrations have been conducted to characterize the types of trajectories in the one-dimensional Newtonian three-body problem with equal masses and negative energy. Essentially three different types of motions were found to exist. They may be classified according to the duration of the bound three-body state. There are zero-lifetime predictable trajectories, finite lifetime apparently chaotic orbits, and infinite lifetime quasi-periodic motions. The quasi-periodic orbits are confined to the neighbourhood of Schubart's stable periodic orbit. For all other trajectories the final state is of the type binary + single particle in both directions of time. The boundaries of the different orbit-type regions seem to be sharp. We present statistical results for the binding energies and for the duration of the bound three-body state. Properties of individual orbits are also summarized in the form of various graphical maps in a two-dimensional grid of parameters defining the orbit. Supported by the Academy of Finland.  相似文献   

13.
We study the families of simple periodic orbits in a three-dimensional system that represents the inner parts of a perturbed triaxial galaxy. The perturbations depend on two control parameters. We find the regions where each family is stable, simply unstable, doubly unstable, or complex unstable. the stable and simply unstable families produce other families by bifurcation. Several families reach a maximum (or minimum) perturbation and then are continued by other families. The bifurcations are direct or inverse. The transition from one type of bifurcation to the other is theoretically explained. Another important phenomenon is the splitting of one family into two, or the joining of two families into one. We do not have any complex instability in the limiting cases of two-dimensional motions (when one control parameter is zero).The two main families of periodic orbits are in most cases stable when the energy is smaller than the escape energy. Most high energy orbits are unstable. However, we found stable orbits even for energies about four times larger than the escape energy.  相似文献   

14.
The three-dimensional general three-body problem is formulated suitably for the numerical determination of periodic orbits either directly or by continuation from the three-dimensional periodic orbits of the restricted problem. The symmetry properties of the equations of motion are established and the algorithms for the numerical determination of families of periodic orbits are outlined. A normalization scheme based on the concept of the invariable plane is introduced to simplify the process. All three types of symmetric orbit, as well as the general type of asymmetric orrbit, are considered. Many threedimmensional p periodic orbits are given.  相似文献   

15.
We analyze nearly periodic solutions in the plane problem of three equal-mass bodies by numerically simulating the dynamics of triple systems. We identify families of orbits in which all three points are on one straight line (syzygy) at the initial time. In this case, at fixed total energy of a triple system, the set of initial conditions is a bounded region in four-dimensional parameter space. We scan this region and identify sets of trajectories in which the coordinates and velocities of all bodies are close to their initial values at certain times (which are approximately multiples of the period). We classify the nearly periodic orbits by the structure of trajectory loops over one period. We have found the families of orbits generated by von Schubart’s stable periodic orbit revealed in the rectilinear three-body problem. We have also found families of hierarchical, nearly periodic trajectories with prograde and retrograde motions. In the orbits with prograde motions, the trajectory loops of two close bodies form looplike structures. The trajectories with retrograde motions are characterized by leafed structures. Orbits with central and axial symmetries are identified among the families found.  相似文献   

16.
A periodic orbit of the restricted circular three-body problem, selected arbitrarily, is used to generate a family of periodic motions in the general three-body problem in a rotating frame of reference, by varying the massm 3 of the third body. This family is continued numerically up to a maximum value of the mass of the originally small body, which corresponds to a mass ratiom 1:m 2:m 3?5:5:3. From that point on the family continues for decreasing massesm 3 until this mass becomes again equal to zero. It turns out that this final orbit of the family is a periodic orbit of the elliptic restricted three body problem. These results indicate clearly that families of periodic motions of the three-body problem exist for fixed values of the three masses, since this continuation can be applied to all members of a family of periodic orbits of the restricted three-body problem. It is also indicated that the periodic orbits of the circular restricted problem can be linked with the periodic orbits of the elliptic three-body problem through periodic orbits of the general three-body problem.  相似文献   

17.
A systematic approach to generate periodic orbits in the elliptic restricted problem of three bodies in introduced. The approach is based on (numerical) continuation from periodic orbits of the first and second kind in the circular restricted problem to periodic orbits in the elliptic restricted problem. Two families of periodic orbits of the elliptic restricted problem are found by this approach. The mass ratio of the primaries of these orbits is equal to that of the Sun-Jupiter system. The sidereal mean motions between the infinitesimal body and the smaller primary are in a 2:5 resonance, so as to approximate the Sun-Jupiter-Saturn system. The linear stability of these periodic orbits are studied as functions of the eccentricities of the primaries and of the infinitesimal body. The results show that both stable and unstable periodic orbits exist in the elliptic restricted problem that are close to the actual Sun-Jupiter-Saturn system. However, the periodic orbit closest to the actual Sun-Jupiter-Saturn system is (linearly) stable.  相似文献   

18.
In this paper we present a two-parametric family of symmetric periodic orbits of the three-dimensional general three-body problem, found numerically by continuation of a vertical critical orbit of the circular restricted three-body problem. The periodic orbits refer to a suitably defined rotating frame of reference.  相似文献   

19.
We study orbits of planetary systems with two planets, for planar motion, at the 1/1 resonance. This means that the semimajor axes of the two planets are almost equal, but the eccentricities and the position of each planet on its orbit, at a certain epoch, take different values. We consider the general case of different planetary masses and, as a special case, we consider equal planetary masses. We start with the exact resonance, which we define as the 1/1 resonant periodic motion, in a rotating frame, and study the topology of the phase space and the long term evolution of the system in the vicinity of the exact resonance, by rotating the orbit of the outer planet, which implies that the resonance and the eccentricities are not affected, but the symmetry is destroyed. There exist, for each mass ratio of the planets, two families of symmetric periodic orbits, which differ in phase only. One is stable and the other is unstable. In the stable family the planetary orbits are in antialignment and in the unstable family the planetary orbits are in alignment. Along the stable resonant family there is a smooth transition from planetary orbits of the two planets, revolving around the Sun in eccentric orbits, to a close binary of the two planets, whose center of mass revolves around the Sun. Along the unstable family we start with a collinear Euler–Moulton central configuration solution and end to a planetary system where one planet has a circular orbit and the other a Keplerian rectilinear orbit, with unit eccentricity. It is conjectured that due to a migration process it could be possible to start with a 1/1 resonant periodic orbit of the planetary type and end up to a satellite-type orbit, or vice versa, moving along the stable family of periodic orbits.  相似文献   

20.
It is shown in this paper that the only potentials corresponding to central force for which all the bounded orbits are periodic are the potential of the harmonic oscillator and of the two body problem. A discussion is given in the case where a circular orbit exists and when the orbits near the circular orbit are periodic.We calculate in these cases the angle between pericentre and apocentre.Celestial Mechanics  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号