首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Measurements of the primary and secondary velocity components were máde in two, active, braided river anabranch confluences with a simple Y-shaped plan form, in the gravelly Sunwapta River (D50 of approximately 30 mm). Flow velocity was measured at regularly-spaced intervals using a bidirectional electromagnetic current meter and the measured downstream and cross-stream velocities were converted to primary and secondary velocities to yield the secondary circulation. The primary (downstream) velocity field shows two high velocity streams from the two tributaries which merge (and, in some cases, accelerate) into a single high velocity core over the thalweg. Primary flow velocity declines as the flow expands and diverges at the downstream end of the confluence. The secondary circulation is dominated by two helical cells, back-to-back, plunging over the thalweg and diverging at the bed. This is the first confirmation of this flow structure in confluences, based on field measurements. The strength of the secondary cells declines downstream through each confluence, and laterally away from the thalweg area in cross-section. There is also a tendency for one cell, from the larger of the tributaries, to override the other. The secondary and primary flow structure and strength differs slightly between the two confluences and this is reflected in differences in scour hole form.  相似文献   

2.
Secondary circulation in river confluences results in a spatial and temporal variation of fluid motion and a relatively high level of morphodynamic change. Acoustic Doppler current profiler (aDcp) vessel-mounted flow measurements are now commonly used to quantify such circulation in shallow water fluvial environments. It is well established that such quantification using vessel-mounted aDcps requires repeated survey of the same cross-section. However, less attention has been given to how to process these data. Most aDcp data processing techniques make the assumption of homogeneity between the measured radial components of velocity. As acoustic beams diverge with distance from the aDcp probe, the volume of the flow that must be assumed to be homogeneous between the beams increases. In the presence of secondary circulation cells, and where there are strong rates of shear in the flow, the homogeneity assumption may not apply, especially deeper in the water column and close to the bed. To reduce dependence on this assumption, we apply a newly-established method to aDcp data obtained for two medium-sized (~60–80 m wide) gravel-bed river confluences and compare the results with those from more conventional data processing approaches. The comparison confirms that in the presence of strong shear our method produces different results to more conventional approaches. In the absence of a third set of fully independent data, we cannot demonstrate conclusively which method is best, but our method involves less averaging and so in the presence of strong shear is likely to be more reliable. We conclude that it is wise to apply both our method and more conventional methods to identify where data analysis might be impacted upon by strong shear and where inferences of secondary circulation may need to be made more cautiously. © 2019 John Wiley & Sons, Ltd.  相似文献   

3.
Saltwater intrusion is a serious issue in estuarine deltas all over the world due to rapid urban sprawl and water shortage. Therefore, detecting the major flow paths or locations at risk of saltwater intrusion in estuarine ecosystems is important for mitigating saltwater intrusion. In this paper, we introduce a centrality index, the betweenness centrality (BC), to address this problem. Using the BC as the weighted attribute of the river network, we identify the critical confluences for saltwater intrusion and detect the preferential flow paths for saltwater intrusion through the least‐cost‐path algorithm from a graph theory approach. Moreover, we analyse the responses of the BC values of confluences calculated in the river network to salinity. Our results show that the major flow paths and critical confluences for saltwater intrusion in a deltaic river network can be represented by the least cost paths and the BC values of confluences, respectively. In addition, a significant positive correlation between the BC values of confluences and salinity is determined in the Pearl River Delta. Changes in the salinity can produce significant variation in the BC values of confluences. Therefore, freshwater can be diverted into these major flow paths and critical confluences to improve river network management under saltwater intrusion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Secondary circulation is the component of three‐dimensional (3D) flow in river channels perpendicular to the primary flow direction. Secondary circulation calculated from acoustic Doppler current profiler (ADCP) transects is sensitive to the calculation method and is affected by the transect angle relative to the mean flow direction and variations in the flow direction along a transect. To quantify bounds on transect alignment relative to river flow for field data collection and examine tidal time‐scale variability in secondary circulation, the 3D hydrodynamic model UnTRIM was applied to simulate the hydrodynamics in the lower reach of the Sacramento River (CA, USA). Secondary circulation was calculated using the Rozovskii and the zero net discharge methods on repeated transects extracted from the model results in regions of both relatively uniform and complex flows. When the depth‐averaged flow direction along a transect varied by more than about 5 °, occurring when the transect was as little as 10 to 20 ° out of normal to the mean flow direction, the Rozovskii method produced more realistic secondary circulation than the zero net discharge method. Analysis indicated that ADCP transects should be within 20 ° of perpendicular to the mean flow direction when calculating secondary circulation. Secondary circulation strength around two tidally influenced bends generally increased with increasing flow and broke down near slack water. However, the strength of the secondary circulation was not only a function of the flow magnitude, but also depended on the direction of the water flow and the transect location relative to the river curvature, which varied with the tidal flow direction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Confluence–diffluence units are key elements within many river networks, having a major impact upon the routing of flow and sediment, and hence upon channel change. Although much progress has been made in understanding river confluences, and increasing attention is being paid to bifurcations and the important role of bifurcation asymmetry, most studies have been conducted in laboratory flumes or within small rivers with width:depth (aspect) ratios less than 50. This paper presents results of a field‐based study that details the bed morphology and 3D flow structure within a very large confluence–diffluence in the Río Paraná, Argentina, with a width:depth ratio of approximately 200. Flow within the confluence–diffluence is dominated largely by the bed roughness, in the form of sand dunes; coherent, channel‐scale, secondary flow cells, that have been identified as important aspects of the flow field within smaller channels, and assumed to be present within large rivers, are generally absent in this reach. This finding has profound implications for flow mixing rates, sediment transport rates and pathways, and thus the interpretation of confluence–diffluence morphology and sedimentology. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Previous studies have shown that flow curvature in river bends generates a secondary circulation in the plane normal to the mean flow direction. A similar circulation pattern is shown to exist in oceanic situations when flows are subject to curvature, mainly due to interaction with topographic features. However, it is shown that, due to differences between oceanic conditions and river bends, theory and prediction methods based on the assumptions for river bends are invalid for oceanic flows. Via scaling arguments based on the equations of motion, that include both the effects of flow curvature and the Coriolis force, parameters that govern the different flow regimes are identified. The maximum strength of the secondary flow is derived for each flow regime and is verified using a three-dimensional (3-D) numerical model applied to an idealized island. It is also shown that upwelling, due to the generation of secondary flow, occurs off the tips of the headland or island, and its influence can extend far downstream.Responsible Editor: Richard Signell  相似文献   

7.
Time series of velocity profiles at two Chesapeake Bay entrance sites were used to characterize the subtidal variability of transverse flows off a cape. A shallow sampling site was located near Cape Henry over 6 m of water and separated from a deep site, 20 m deep, by a distance of 4 km. The velocity profiles showed that wind-induced subtidal variations in general masked curvature effects (centrifugal accelerations) that may produce secondary circulation associated with tidal flow around a cape. Such secondary circulation, consisting of flow away from the cape at surface and toward the cape at depth, was observed only during periods of weak winds. Most of the time, transverse flows were unidirectional throughout the water column and moved in opposite directions at the two sites examined. This caused convergence of transverse flow between the two sites under the influence of northerly winds and divergence of transverse flow with southwesterly winds. In addition to unidirectional and curvature-induced secondary flows, other modes of subtidal variability consisted of (1) two-layered responses with surface flow toward the cape, and (2) three-layered responses. These two- and three-layered structures were observed more frequently at the deep site, where greater stratification is expected, than at the shallow site.Responsible Editor: Iris Grabemann  相似文献   

8.
Previous process-oriented field studies of stream confluences have focused mainly on fluvial dynamics at or immediately downstream of the location where the confluent flows enter the downstream channel. This study examines in detail the spatial evolution of the time-averaged downstream velocity, cross-stream velocity, and temperature fields between the junction apex, where the flows initially meet, and the entrance to the downstream channel. A well-defined, vertically oriented mixing interface exists within this portion of the confluence, suggesting that lateral mixing of the incoming flows is limited. The downstream velocity field near the junction apex is characterized by two high-velocity cores separated by an intervening region of low-velocity or recirculating fluid. In the downstream direction, the high-velocity cores move inwards towards the mixing interface and high-velocity fluid progressively extends downwards into a zone of scour, resulting in an increase in flow velocity in the centre of the confluence. The cross-stream velocity field is dominated by flow convergence, but also includes a component associated with a consistent pattern of secondary circulation. This pattern is characterized by two surface-convergent helical cells, one on each side of the mixing interface. The helical cells appear to be the mechanism by which high-momentum fluid near the surface is advected downwards into the zone of scour. For transport-ineffective flows, the dimensions and intensities of the cells are controlled by the momentum ratio of the confluent streams and by the extant bed morphology within the confluence. Although the flow structure of formative events was not measured directly in this study, documented patterns of erosion and deposition within the central region of the confluence suggest that these events are dynamically similar to the measured flows, except for the fact that formative flows are not constrained by, but can reshape, the bed morphology. The results of this investigation are consistent with and augment previous findings on time-averaged flow structure in the downstream portion of the confluence. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Recently Merkine, Mo and Kalnay (1985) have re-examined the possible existence of Fofonoff's (1954) steady free inertial solution and the role of Fofonoff's mode in numerical circulation models after Veronis (1966). Merkine et al. conclude that the Fofonoff mode does not occur, that such a mode would be barotropically unstable and that resemblances between numerical circulations and Fofonoff's mode are more dependent upon the natures of forcing and dissipation. On the contrary, I suggest that Fofonoff's mode very naturally does emerge and that forcing and dissipation only impede the full realization of Fofonoff's mode. Moreover, statistical mechanical arguments from Salmon, Holloway and Hendershott (1976) show that the Fofonoff mode is expected to co-exist with a transient eddy field whose statistics are in equilibrium with the mode; thus bartotropic instability does not argue for non-realization of Fofonoff's mode.  相似文献   

10.
This study investigates the impact of flow structure of different discharges on meander point bar morphology. We carried out mobile and terrestrial laser scanning campaigns before and after a flood on two sandy‐bed point bars. Between the scans, the flow structure was examined using an Acoustic Doppler Current Profiler at three flow stages. The results indicated that a meander point bar both affects and in turn, is itself modified by the flow at different discharges. The lower flow stages also have a significant effect on point bar morphology, especially on deposition over the bar head. Secondary circulation is responsible for scroll bar formation on the point bar margin beyond the apex. Flow separation at the inner bank, by contrast, does not require secondary circulation, but is dependent on flow depth over the point bar. A sudden increase in depth beyond the point bar top causes decreased stream power over the bar tail. The flow separation and decreased stream power cause a slow flow zone and net deposition over point bar tail. The backwater effect, if evident, may strengthen the process. Thus, filling over the bar tail seems generic for point bars and independent on secondary flow. Chutes and chute bars, scroll bars, bar head filling and bar platform filling, by contrast, require special fluvio‐morphological circumstances discussed in this paper. Whilst this paper confirms that the three‐dimensional flow structure has a major effect on point bar morphology, the flow structure seems to depend on how the point bar affects the flow trajectory which, in turn, depends upon the flow stage. Finally, the shape of the bend and the grain size distribution control the impacts of the flow structure, leading to divergent morphologies of point bars with certain generic features. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
12.
There is a paucity of field data to describe the transition in nearshore circulation between alongshore, meandering and rip current systems. A combination of in‐situ current meters and surf zone drifters are used to characterize the nearshore circulation over a transverse bar and rip morphology at Pensacola Beach, Florida in the presence of relatively low energy oblique waves. Current speeds vary in response to the relative wave height ratio (Hs/h), which defines the degree and extent of breaking over the shoal. In the absence of wave breaking the nearshore circulation was dominated by an alongshore current driven by the oblique waves. As waves begin to break across the shoal (0.2<Hs/ h<0.5) the nearshore circulation is characterized by a meandering alongshore current. As conditions became more dissipative (Hs/h>0.5), the meandering current is replaced by an unsteady rip circulation that moves offshore between the shoals before turning alongshore in the direction of wave advance outside the surf zone. The increase in wave dissipation is associated with an increase in very low frequency (VLF) variations in the current speed across the shoal and in the rip channel that caused the circulation to oscillate between an offshore and an alongshore flow. The unsteady nature of the nearshore circulation is responsible for 55% of all surf zone exits under these more dissipative conditions. In contrast, only 29% of the drifters released from the shoal exited the surf zone and bypassed the adjacent shoal with the alongshore‐meandering current. While the currents had a low velocity (maximum of ~0.4 m s‐1) and would not pose a significant hazard to the average swimmer, the results of this study suggest that the transverse bar and rip morphology is sufficient to create an alongshore variation in wave dissipation that forces alongshore meandering and low‐energy rip circulation systems under oblique wave forcing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Recent field and modeling investigations have examined the fluvial dynamics of confluent meander bends where a straight tributary channel enters a meandering river at the apex of a bend with a 90° junction angle. Past work on confluences with asymmetrical and symmetrical planforms has shown that the angle of tributary entry has a strong influence on mutual deflection of confluent flows and the spatial extent of confluence hydrodynamic and morphodynamic features. This paper examines three‐dimensional flow structure and bed morphology for incoming flows with high and low momentum‐flux ratios at two large, natural confluent meander bends that have different tributary entry angles. At the high‐angle (90°) confluent meander bend, mutual deflection of converging flows abruptly turns fluid from the lateral tributary into the downstream channel and flow in the main river is deflected away from the outer bank of the bend by a bar that extends downstream of the junction corner along the inner bank of the tributary. Two counter‐rotating helical cells inherited from upstream flow curvature flank the mixing interface, which overlies a central pool. A large influx of sediment to the confluence from a meander cutoff immediately upstream has produced substantial morphologic change during large, tributary‐dominant discharge events, resulting in displacement of the pool inward and substantial erosion of the point bar in the main channel. In contrast, flow deflection is less pronounced at the low‐angle (36°) confluent meander bend, where the converging flows are nearly parallel to one another upon entering the confluence. A large helical cell imparted from upstream flow curvature in the main river occupies most of the downstream channel for prevailing low momentum‐flux ratio conditions and a weak counter‐rotating cell forms during infrequent tributary‐dominant flow events. Bed morphology remains relatively stable and does not exhibit extensive scour that often occurs at confluences with concordant beds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The dispersion and deposition of particulate organic matter from a fish cage located in an idealized curved channel with a 90° bend are studied for different horizontal grid resolutions. The model system consists of a three-dimensional, random-walk particle tracking model coupled to a terrain-following ocean model. The particle tracking model is a Lagrangian particle tracking simulator which uses the local flow field, simulated by the ocean model, for advection of the particles and random walk to simulate the turbulent diffusion. The sinking of particles is modeled by imposing an individual particle settling velocity. As the homogeneous water flows through the bend in the channel, the results show that a cross-channel secondary circulation is developed. The motion of this flow is similar to a helical motion where the water in the upper layers moves towards the outer bank and towards the inner bank in the lower layers. The intensity of the secondary circulation will depend on the viscosity scheme and increases as the horizontal grid resolution decreases which significantly affects the distribution of the particles on the seabed. The presence of the secondary circulation leads to that most of the particles that settle, settle close to the inner bank of the channel.  相似文献   

16.
Understanding flow structures in river confluences has largely been the product of interpretations made from measured flow velocity data. Here, we turn the attention to the investigation of the patterns of both the average and standard deviations of the micro‐topography of the water surface at an asymmetrical natural discordant confluence for different flow conditions. Water surface topography is measured using a total station to survey the position of a reflector mounted on a custom‐built raft. To limit error problems related to changes in the water level, measurements are taken and analysed by cross‐stream transects where five water surface profiles are taken before moving to the next transect. Three‐dimensional numerical simulations of the flow dynamics at the field site are used to examine predicted water surface topography for a steady‐state situation. The patterns are interpreted with respect to flow structure dynamics, visual observations of boils, and bed topography. Results indicate that coherent patterns emerge at the water surface of a discordant bed confluence for different flow conditions. The zone of stagnation and the mixing layer are characterized by super‐elevation, a lateral tilt is present at the edge of the mixing layer, and a zone of super‐elevation is present on the tributary side at the downstream junction corner. The latter seems associated with periodical upwelling and is not present in the numerical simulations that do not take into account instantaneous velocity fluctuations. Planform curvature, topographic steering related to the tributary mouth bar, and turbulent structures associated with the mixing layer all play a key role in the pattern of both the average and standard deviation of the water surface topography at confluences. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Observations of the flow field over an elongated hollow (bathymetric depression) in the lower Chesapeake Bay showed tidally asymmetric distributions. Current speed increased over the landward side of the hole during flood tides and decreased in the deepest part of the hollow during ebb tides. A simple conceptual analysis indicated that the presence of a horizontal density gradient can generate the asymmetric spatial variations of flow structure depending on the sign of the horizontal density gradient. When water density decreases downstream, the velocity increases over the downstream edge of the hollow. Conversely when water density increases downstream, the flow decreases over the hollow more than a case without a horizontal density gradient. The conceptual analysis is confirmed by numerical experiments of simplified hollows in steady open channel flows and of an idealized tidal estuary. These hollows also alter the local current field of tidally averaged estuarine exchange flows. The residual depth-averaged currents over a hollow show a two-cell circulation when Coriolis forcing is neglected and an asymmetric two-cell circulation, with a stronger cyclonic eddy, when Coriolis forcing is included.  相似文献   

18.
We investigated to what extent the isentropic, non-geostrophic formulation of zonally averaged circulation derived for stratospheric conditions is applicable to climatological transport in the extratropical troposphere and lower stratosphere. The study is based on 10 years of daily data of ECMWF analysis and on the ECHAM3 climate model of the German Climate Computing Centre. The main result is a scalar isentropic mixing coefficient, Kyy, and a mean meridional transport circulation consistently derived from the same data base. For both data sources, isentropic mean meridional circulation is derived from horizontal mass flow rate for 4 representative months. Alternatively, a mean meridional circulation is calculated from total diabatic heating rates of the ECHAM3 model. It is shown that only the latter is in good agreement with the ECMWF mean meridional circulation. Isentropic analysis also comprises the seasonal cycle of the climatological meridional gradient and flux of Ertels potential vorticity (PV). Application of Tungs flux-gradient relation yields that for all seasons Kyy is positive in height-latitude regions where statistical significance is reached. Large Kyy values, marking regions of more efficient mixing, have been found in the subtropical vertical band of weak westerly wind and in mid-latitudes in regions of upward-propagating baroclinic wave activity in the middle and upper troposphere. Based on the ECMWF data and results of baroclinic-wave behaviour, strong indications are presented that positive zonally averaged PV flux polewards of the jet core in the NH is strengthened by stationary waves and nonlinear effects. Reduced eddy transport is apparent in winter and spring slightly below the subtropical tropopause jet. The seasonal cycle of Kyy from ECHAM3 data is to a great extent in agreement with the result based on ECMWF analysis. In the model, reduced interannual variability enlarges the height-latitude range where sign of Kyy is significant.  相似文献   

19.
《国际泥沙研究》2022,37(5):619-638
The large confluence between the Yangtze River and the outflow channel of Poyang Lake is receiving attention due to its importance in flood control and ecological protection in the Yangtze River basin. There is a large floodplain along the outflow channel of Poyang Lake, which is submerged during high flow and dry during low flow. The effects of the submergence of this floodplain on sediment and morphological characteristics at this large confluence have not been known. Hence, a field investigation was done in March 2019 (relatively high flow, Survey 3) to complement the previous field studies done in August (high flow, Survey 1) and December 2018 (low flow, Survey 2) to identify the temporal variations of sediment and morphological characteristics considering the submergence of this large floodplain. The predominant sediment transport modes were wash load for Poyang Lake and confluence particles and mixed bedload/suspended load for the Yangtze River particles. The sediment transport processes were largely affected by both the secondary flows and the water density contrast between the tributaries with a lock-exchange sediment rich, denser flow moving across the inclined mixing interface in Surveys 1 and 2. The sediment flux across the mixing interface was weakened in Survey 3 when the density contrast was very small. The stagnation zone near the confluence apex had a low sediment concentration and played a role in preventing the sediment flux exchange between the two flows, and its size, and, thus, its importance as a barrier to sediment mixing were related to the submergence of the floodplain. The bed morphology with the local scour holes at the confluence was largely affected by the large-size helical cells, and this kind of effect was weakened as the secondary flows got restricted in Survey 3. The current results expand the database and knowledge on the sediment transport and morphological features of large river confluences.  相似文献   

20.
The main characteristics of river flow and grainsize in a bend of the sand bedded meandering river Dommel, The Netherlands, are presented. Measurements were carried out at a relatively low discharge in a sharply curved bend following a long straight reach. In the studied bend, secondary circulation is restricted to the thalweg area; only in the downstream part of the bend it exists over the entire cross-section. Therefore, on the entire pointbar platform, which comprises the larger part of the bend, the median sedimentation diameter of the bedload material is governed by the distribution of the longitudinal components of the bed shear stress only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号