首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the first infrared light curves of the binary V1430 Aql, in the bands J and K, plus V, R and I light curves and spectra covering the ranges of Hβ, Hα and Ca II-IRT lines. Our VRIJK data, together with published radial velocity curves, are analyzed to determine the orbital and stellar parameters of the system. Both stellar components present spectroscopic evidence of chromospheric activity, with emission excesses in the Hβ, Hα and Ca II-IRT lines. The measured ratio of the lines Hβ/Hα emission excesses can be interpreted as originated in plages. Our light curves also show photometric evidence of cool spots at least on one of the stars.  相似文献   

2.
We present long-term spectral observations (R = 20000) of IN Com in the region of the Hα, Hβ, and He I 5876 lines. One distinguishing characteristic of the stellar spectrum is the presence in the Hα line of an extended two-component emission with limits up to ±400 km/s. Emission parameters show the rotation modulation with the stellar rotation period and a significant variability on the long-term scale. Similar emissions are also observed in the Hβ and He I 5876 lines. Our results allow us to conclude that observational emission profiles are formed in an optically thin hot gas. This is a result of the presence of a circumstellar gas disk around IN Com. Its size does not exceed several stellar radii. The material for the disk is supported by the stellar wind from IN Com. The detected variability of Hα-emission parameters shows a clear connection with the photopolarimetric activity of the star. This fact allows us to associate the long-term spectral variability with cycles of stellar activity of IN Com.  相似文献   

3.
Monochromatic photographs of the Orion Nebula taken through narrow bandpass interference filters (Δλ=10 Å) centred on Hα, Hβ and [NII] lines are presented. Ratio contours of Hα/[NII] and Hα/Hβ are derived. They enable a detailed study of the point-to-point variation in ionization structure and temperature throughout the nebula. Dust located within the ionized gas is studied from the Hα/Hβ ratio which varies from point to point over the nebula. Its strongest concentration, apart in the obvious ‘dark bay’, occurs in a shell surrounding the exciting stars, with about 2′ of diameter. Close to Θ1 Ori the Hα/Hβ ratio, corrected for interstellar reddening, is about 3.0 in good agreement with the predicted value (Brocklehurst, 1971). To account for these measures, the following arguments are proposed:
  1. Dust grains are completely or partially destroyed in region close to the exciting stars.
  2. Radiation pressure and stellar wind push the remaining dust up to some equilibrium distance outwards. The consequence of this action is obviously the formation of a ‘dust mantle’ which is seen as a ring in projection.
  相似文献   

4.
The results of investigations of the Hα and Hβ lines in the spectrum of the star HD 206267 are presented. Observations were carried out in 2011–2014 at the Cassegrain focus of the 2-m telescope of the Tusi Shamakhy Astrophysical Observatory of the National Academy of Sciences of Azerbaijan using an echelle spectrometer. The following features have been revealed for the first time: the moving discrete absorption components in the core of the Hα line from the red side to the violet, the stable emission in the violet wing of the Hα line, the antiphase variation of the radial velocities and equivalent widths of the Hα line, and the independence of the changes of the equivalent widths of the Hβ line from the phase of the orbital period. No spectral features according to which this star could be considered as a source of X-ray radiation have been found.  相似文献   

5.
High-resolution optical spectroscopy of the V2324 Cyg variable star associated with the IR source IRAS 20572+4919 is performed for the first time. More than 200 absorption features (mostly Fe II, Ti II, Cr II, Y II, Ba II, and Y II) are identified in the wavelength interval from 4549 to 7880 Å. The spectral type and rotation velocity of the star are found to be F0 III and V sin i = 69 km/s, respectively. Neutral-hydrogen and NaI D lines have complex P Cyg-type profiles. Neither systematic trend of radial velocity Vr with line depth Ro nor temporal variability of Vr have been found. We found that the value for the average heliocentric radial velocity is Vr = ?16.8 ± 0.6 km/s. The radial velocities inferred from the cores of the absorption components of the Hβ and NaI wind lines vary from ?140 to ?225 km/s (and the expansion velocities of the corresponding layers, from about 120 to 210 km/s). The maximum expansion velocity is found for the blue component of the split Hα absorption: 450 km/s for December 12, 1995. The method of model atmospheres is used to determine the following parameters of the star: effective temperature T eff = 7500 K, surface gravity log g = 2.0, microturbulence velocity ξ t = 6.0 km/s, and metallicity, which is equal to the solar value. The main peculiarity of the chemical composition of the star is the overabundance of lithium and sodium. The results cast some doubt on the classification of V2324 Cyg as a post-AGB star.  相似文献   

6.
The T Tauri variable V1331 Cyg is characterized by an intensive emission spectrum, by signatures of a high rate of mass loss, and also by presence of a circular reflection nebula. According to these characteristics, the star can be considered as a possible pre-FUor star. Up to the present the photospheric spectrum of the star has not been recorded. In this work we analyze the high-resolution spectra of V1331 Cyg that were obtained by G.H. Herbig with the HIRES spectrograph at the Keck-1 telescope in 2004 and 2007. For the first time the numerous photospheric lines of the star have been detected and the spectral class has been estimated, viz., G7-K0 IV. It is revealed that the projection of the rotation velocity is lower than the width of instrumental profile (vsini < 6 km/s); this means that the angle between the stellar axis of rotation and the line of sight is small. The radial velocity of the star derived from the photospheric lines is RV = ?15.0 ± 0.3 km/s. The difference in radial velocities for 2004 and 2007 is lower than the measurement error. The photospheric spectrum is veiled considerably, but the amount of veiling is not the same in different lines. This depends on the line strength in the template spectrum of the G7 IV star: in the weakest lines (EW = 5–10 mÅ in the template spectrum) VF ≈ 1 and it increases up to 4–5 in stronger lines. The Hα and Hβ lines demonstrate classical P Cyg profiles, which testifies to an intensive wind with a maximal velocity of about 400 km/s. In addition, the emission lines of Fe II, Mg I and K I and of several other elements are accompanied by a narrow blue-shifted absorption at ?150...?250 km/s. The emission spectrum of V1331 Cyg is rich in the narrow (FWHM = 30–50 km/s) lines of neutral and ionized metals showing the excitation temperature T exc = 3800 ± 300 K. The stellar mass M* ≈ 2.8M and radius R* ≈ 5R are estimated.  相似文献   

7.
The results of six years of spectroscopic studies of the Herbig Be star IL Cep (HD216629) are reported. Various spectral parameters of the Hα and Hβ emission lines and those of the He I λ 5876 Å absorption feature are found for the first time to have exhibited slow variations in 2006–2011 and to have reached their extrema in 2009–2010. The Na I D1 and D2 lines reproduce, in a weaker form, the Hα radialvelocity variations. It is suggested that the variations found in the spectrum of the star may be due to the presence of additional bodies in the system.  相似文献   

8.
The magnetochemical synthesis, as presented, derives from an integration of the magnetic property systematics developed with corresponding bulk chemistry and petrology, and the results of mixing and reduction responses which feature in the production of the lunar regolith. Magnetochemical properties of the lunar soils are correlated with the Al/Si ratio and telescope spectral reflectivity curves. Magnetochemical diagrams utilizingχ p(paramagnetic susceptibility ? FeO) andI S(saturation magnetization ? Fe metal) serve to classify lunar samples, indicate the extent of mixing, and demonstrate that although reduction does take place in production of the regolith, the role of mixing is quite significant. The relative metal size distribution and magnetic stability for various rock types and soils of varying Al/Si values are reflected in theR I(ratio of saturation isothermal remanence-I R, to saturation magnetization -I S) vsR H(ratio of remanent coercive force -H R, to coercive force -H C) plot. All magnetic hysteresis loop parameters considered vary systematically according to the Al/Si values. All Apollo landing sites have distinct telescope curves correlated with petrology, chemistry, Al/Si values, and magnetic properties. Magnetic properties of sites not visited can now be reasonably estimated based on telescope reflectivity curves and orbital geochemical experiments.  相似文献   

9.
We present photoelectric and spectral observations of a hot candidate proto-planetary nebula—early B-type supergiant with emission lines in spectrum—IRAS 19336-0400. The light and color curves display fast irregular brightness variations with maximum amplitudes \(\Delta V = 0_ \cdot ^m 30\), \(\Delta B = 0_ \cdot ^m 35\), \(\Delta U = 0_ \cdot ^m 40\) and color-brightness correlations. By the variability characteristics IRAS 19336-0400 appears similar to other hot proto-planetary nebulae. Based on low-resolution spectra in the range λ4000–7500 Å we have derived absolute intensities of the emission lines Hα, Hβ, Hγ, [S II], [N II], physical conditions in gaseous nebula: n e = 104 cm?3, T e = 7000 ± 1000 K. The emission line Hα, Hβ equivalent widths are found to be considerably variable and related to light changes. By UBV-photometry and spectroscopy the color excess has been estimated: E B-V = 0.50–0.54. Joint photometric and spectral data analysis allows us to assume that the star variability is caused by stellar wind variations.  相似文献   

10.
With the multi-wavelength data from UV to sub-millimeter in the region of H-ATLAS (Herschel Astrophysical Terahertz Large Area Survey) Science Demonstration Phase (SDP), in combination with the population synthesis model and dust model, the total infrared luminosities of the galaxies were calculated. On this basis, for respectively the strong and weak star-forming galaxies, we studied the differences in the star formation rates calculated by the UV luminosity, infrared luminosity and Hα line, as well as the intrinsic physical origin of such differences. It was found that for the galaxies of strong star-formation activity, the 3 kinds of star formation rate indicators give the basically consistent results with a small dispersion. But at the end of high star formation rate, the star formation rate calculated by the UV luminosity is slightly smaller than that calculated by the Hα-line flux; at the end of low star formation rate, the UV indicator tends to be greater than the Hα indicator; and at both ends, the infrared indicator and Hα indicator have no significant difference. For the weak star-forming galaxies, significant differences exist among the 3 kinds of indicators, and there is a rather large dispersion. The dispersions and systematic difference of the star formation rates calculated by the UV luminosity and Hα line increase with the galactic age and mass. The main cause for the increased systematic difference is that when the extinction of an weak star-forming galaxy is calibrated by its UV continuum spectral slope β, the UV extinction of the galaxy is overestimated, it makes the UV luminosity tends to be large after the extinction correction. In addition, the star formation rates (Hα) of weak starforming galaxies in the MPA/JHU (Max Planck Institute for Astrophysics/Johns Hopkins University) database are generally less than the real values.  相似文献   

11.
An observational program at the Sacramento Peak Observatory in 1965 provided high-dispersion spectra of the solar chromosphere in several spectral regions simultaneously. These regions included various combinations of the spectral lines Hα, Hβ and H?, the D3-line of Hei, the infrared triplet of Oi, and the H- and K-lines and the infrared triplet of Caii. With the use of an image slicer the observations were made simultaneously at two heights in the solar chromosphere separated by several thousand kilometers. From these data we draw the following conclusions:
  1. Emission of different lines arises in the same chromospheric features. The intensity ratio of lines of different elements varies significantly from spicule to spicule. For the H- and K-lines of ionized calcium, this ratio remains constant, independent of wavelength throughout the line, overall intensity, and height in the chromosphere. Two rare-earth lines in the wing of the H-line show no spicular structure at all.
  2. The line-of-sight velocities of many features reverse as a function of time, although most spicules show velocities in only one direction. The simultaneous spectra at two heights show most spicules to have the same line-of-sight velocity at both. There may be an additional class of features, mostly rapidly moving, whose members have line-of-sight velocities that increase with height. These features comprise perhaps 10% of the total. Velocity changes occur simultaneously, to within 20 sec, at two heights separated by 1800 km, indicating velocities of propagation of hundreds of km/sec. The velocity field of individual features is often quite complicated; many spectral features are inclined to the direction of dispersion, implying that differential mass motions are present.
  3. The existence of anomalously broad H and K profiles is real. Even with high dispersion and the best seeing, such profiles are not resolved into smaller features. The central reversal in K, H and Hα appears to remain unshifted when the wings are displaced in wavelength, indicating that the reversal is non-spicular.
  相似文献   

12.
We present differential Hα and Hβ photometry of the very bright RS CVn‐binary α Aurigae (Capella)obtained with theVienna automatic photoelectric telescope in the years 1996 through 2000. Low‐level photometric variations of up to 0m.04 are detected in Hα. A multifrequency analysis suggests two real periods of 106 ± 3 days and 8.64 ± 0.09 days, that we interpret to be the rotation periods of the cool and the hot component of the Capella binary, respectively. These periods confirm that the hotter component of Capella rotates asynchronously, while the cooler component appears to be synchronized with the binary motion. The combined Hα data possibly contains an additional period of 80.4 days that we, however, believe is either spurious and was introduced due to seasonal amplitude variations or stems from a time‐variable circumbinary mass flow. The rotational periods result in stellar radii of 14.3 ± 4.6 R and 8.5 ± 0.5 R for the cool and hot component, respectively, and are in good agreement with previously published radii based on radiometric and interferometric techniques. The long‐period eclipsing binary Aurigae served as our check star, and we detected complex light variations outside of eclipse of up to 0m.15 in H α and 0m.20 in Hβ. Our frequency analysis suggests the existence of at least three significant periods of 132, 89, and 73 days. One of our comparison stars (HD 33167, F5V) was discovered to be a very‐low amplitude variable with a period of 2.6360 ± 0.0055 days.  相似文献   

13.
With the sample of 105 emission line galaxies selected from the Sloan Digital Sky Survey Data Release 4 (SDSS DR4), we have investigated the relations of the [OII]λ3727/Hα flux ratio with the dust extinction, the ionization state of interstellar gas and the metal abundance of galaxies. It is found that the dust extinction correction has a significant effect on the [OII]λ3727/Hα flux ratio. Before and after the dust distinction correction is made, the mean [OII]λ3727/Hα flux ratios are 0.48 and 0.89, respectively. After the dust extinction is corrected, the dispersion of the distribution of F([OII]λ3727) as a function of F(Hα) is obviously reduced. The [OII]λ3727/Hα flux ratio of metal-poor galaxies decreases with the increasing ionization degree of interstellar gas, but this relation does not exist in metal-rich galaxies. Besides, it is found that the [OII]λ3727/Hα flux ratio is correlated with the metal abundance. When 12 + lg(O/H) > 8.5, the [OII]λ3727/Hα flux ratio decreases with the increasing metal abundance; for the galaxies of 12 + lg(O/H) > 8.5, the spectral flux ratio correlates positively with the metal abundance. Finally, by using the parameters of gas ionization degree and metal abundances of galaxies, the formulae for calculating the [OII]λ3727/Hα flux ratios of different types of galaxies are given. With the [OII]λ3727/Hα flux ratio given by these formulae, the star formation rate can be derived by using the [OII]λ3727-line flux, for the galaxies of the redshift z > 0.4, such as the large number of galaxies to be observed by the LAMOST telescope.  相似文献   

14.
We present an atlas of spectra of high signal-to-noise ratio and high spectral resolution (R ≥ 60000) in a poorly studied short-wavelength region up to 3055 Å. The spectra of well-studied stars of close temperatures (β Ori, α Lyr and α Cyg) are compared with the spectrum of a low-metallicity A-type supergiant KSPer, the atmosphere of which is poor in hydrogen, H/He = 3 × 10?5.We study the velocity field in the expanding atmospheres and envelopes of these stars. A complete atlas and detailed identification of spectral features are available in the Internet.  相似文献   

15.
This paper is the next one in the series of our works aimed at determining the atmospheric parameters and chemical composition of southern-hemisphere Cepheids. We present the results of our study for six bright Cepheids: V Cen, V737 Cen, BB Sgr, W Sgr, X Sgr, and Y Sgr. We have analyzed 14 high-resolution spectra taken with the 1.9-m telescope at the South African Astronomical Observatory. In addition to determining the chemical composition and atmospheric parameters, we point out and discuss several features in the spectra of individual Cepheids. In particular,we have detected emission in the cores of the Hβ and Hα lines forWSgr near its maximum light, while X Sgr shows the splitting of metal absorption lines into individual components without any change of the hydrogen lines. These peculiarities can be explained by different manifestations of shock waves in the Cepheid atmospheres and by the presence of circumstellar envelopes around X Sgr and W Sgr. The chemical composition has been estimated for V737 Cen, BB Sgr, and X Sgr for the first time. On the whole, our abundance estimates for α-elements, iron-peak elements, and r- and s-process elements are close to the solar ones for all objects, carbon is underabundant, the oxygen abundance is nearly solar, the “odd” elements, Na and Al, are overabundant (except X Sgr), magnesium is underabundant for V Cen and X Sgr and overabundant for the remaining objects. Such a chemical composition is typical of yellow supergiants after the first dredge-up. Keywords: Cepheids, spectra, atmospheric parameters, chemical composition.  相似文献   

16.
We study the variability of the Hγ, Hβ, and Hα line profiles in the spectrum of the supergiant κ Cas. The variability pattern proved to be the same for all the lines considered: their profiles are superimposed by blueshifted, central, and redshifted emission. For Hγ the positions of the emissions coincide with the positions of the corresponding emissions for He I λλ 5876, 6678 Å lines, and are equal to about ?135 ± 30.0 km s?1, ?20 ± 20 kms?1, and 135 ± 30.0 kms?1, respectively, whereas the three emissions in the Hβ profiles are fixed at about ?170.0 ± 70.0 kms?1, 20 ± 30 kms?1, and 170.0 ± 70.0 km s?1, respectively. The positions of the blueshifted and central emissions for Hα are the same as for Hβ, with additional blueshifted emission at ?135.0 ± 30.0 kms?1, whereas no traces of emission can be seen in the red wing of the line. These emissions show up more conspicuously in wind lines, however, their traces can be seen in all photospheric lines. When passing from wind lines to photospheric lines the intensity of superimposed emission components decreases and the same is true for the absolute values of their positions in line wings expressed in terms of radial velocities. The V/R variations of the lines studied found in the spectrum of κ Cas and the variability of the Hα emission indicate that the star is a supergiant showing Be phenomenon.  相似文献   

17.
We present our synchronous spectroscopy and photometry of DI Cep, a classical T Tauri star. The equivalent widths and radial velocities of the individual components and Hα, Hβ, D1 and D2 Na I, and HeI λ5876 Å emission line profiles exhibit variability. We have found a clear positive correlation between the brightness and equivalent width for the Hα and Hβ emission lines. The photometric and spectroscopic data are satisfactorily described in phases of a 9-day period. The expected magnetic field of the star has been estimated using existing magnetospheric models to be 655–1000 G. The star is suspected to be a binary.  相似文献   

18.
The asymmetry of Hα line profiles is an important characteristic in the spectral observations of chromospheric flares, as well as one of the important observational facts of the dynamical process in solar flares. Based on the observed data of the solar spectrograph of Purple Mountain Observatory, some typical asymmetric Hα line profiles are presented. Taking the effects of the nonthermal excitation and ionization of hydrogen atoms into consideration, the asymmetry characteristics of Hα line profiles under different atmospheric models are calculated, and a semi-empirical study on the observed line profiles is thereby made. The results indicate that the downward motion of the chromospheric condensation region can cause the red and blue asymmetries of Hα spectra. We have tried to reproduce the observed asymmetry characteristics in specific flares. It is found that, besides the energy flux of nonthermal particles, the magnitude of spectral index and the height of the velocity field affect the line profile, the flare's atmospheric background model also has some influence on the line profile.  相似文献   

19.
We present here the optical CCD observations and long slit spectra of the galactic supernova remnants G59.5+0.1, G84.9+0.5 and G67.7+1.8, the first two being observed for the first time. The observations were carried out with the 1.5 m Russian-Turkish joint Telescope (RTT150) at TÜB?TAK National Observatory (TUG). The images were taken with Hα, [SII] and their continuum filters. After subtracting the continuum from Hα and [SII], [SII]/Hα ratio is obtained. The average ratio is found to be 0.41 for G59.5+0.1 and 0.44 for G84.9+0.5, in a very good agreement with the ratios obtained from the optical spectra, namely 0.46 and 0.40, respectively, indicating that these remnants are close to, or interacting with, HII regions. G59.5+0.1 and G84.9+0.5 remnants show diffuse-shell morphology while G67.7+1.8 shows arc-shell morphology. From the emission lines of the spectra, the electron density N e , pre-shock density n c , explosion energy E, interstellar extinction E(B-V), and neutral hydrogen column density N(HI) are calculated and shock velocity V s is estimated for these remnants.  相似文献   

20.
《New Astronomy Reviews》2000,44(7-9):511-517
The width of the broad Hβ emission line is the primary defining characteristic of the NLS1 class. This parameter is also an important component of Boroson and Green’s optical “Eigenvector 1” (EV1), which links steeper soft X-ray spectra with narrower Hβ emission, stronger Hβ blue wing, stronger optical Fe II emission, and weaker [O III] λ5007. Potentially, EV1 represents a fundamental physical process linking the dynamics of fueling and outflow with the accretion rate. We attempted to understand these relationships by extending the optical spectra into the UV for a sample of 22 QSOs with high quality soft-X-ray spectra, and discovered a whole new set of UV relationships that suggest that high accretion rates are linked to dense gas and perhaps nuclear starbursts. While it has been argued that narrow (BLR) Hβ means low Black Hole mass in luminous NLS1s, the C IV λ1549 and Lyα emission lines are broader, perhaps the result of outflows driven by their high Eddington accretion rates. We present some new trends of optical-UV with X-ray spectral energy distributions. Steeper X-ray spectra appear associated with stronger UV relative to optical continua, but the presence of strong UV absorption lines is associated with depressed soft X-rays and redder optical–UV continua.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号