首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bastar Craton of Central India has a thick sequence of volcano–sedimentary rocks preserved in Kotri–Dongargarh belt that developed on a tonalite-trondhjemite-granodiorite (TTG) basement followed upwards by the Amgaon, Bengpal, Bailadila, and Nandgaon Groups of rocks. Here, we report the U-Pb geochronology and Lu-Hf isotope systematics and whole rock geochemistry of volcanic rocks and associated granitoids belonging to the Pitepani basalts, Bijli rhyolites, and Dongargarh granite in the Nandgaon Group of the Kotri belt. The volcanic rocks of the Nandgaon Group are bimodal in nature in which the basalts exhibit intergranular, porphyritic to spherulitic texture composed of pyroxenes, plagioclase, tremolite, actinolite, and chlorite ± Fe oxides. The rhyolites display porphyritic texture consisting of K-feldspar, quartz, and plagioclase as phenocrysts. The associated porphyritic granitoids have K-feldspar, microcline, plagioclase, and biotite phenocrysts within a groundmass of similar composition. The bimodal suite displays LILE, LREE enrichment, and HFSE depletion with significant negative Nb-Ta anomalies combined with slightly fractionated REE patterns in the basalts and highly fractionated patterns and prominent negative Eu anomalies in the rhyolites endorsing their generation in an island-arc/back-arc tectonic setting. The geochemical features of the associated granitoids indicate that these are potassic and classify as within-plate A-type granites. Zircons from the basalts show clear oscillatory zoning in their CL images. They cluster as a coherent group with 207Pb/206Pb spot ages ranging from 2446 to 2522 Ma and weighted mean age of 2471 ± 7 Ma. Zircons from the rhyolite samples are subhedral to euhedral and show simple oscillatory zoning with some heterogeneous fractured domains. The data from two samples define upper intercept ages of 2479 ± 13 Ma and 2463 ± 14 Ma. Zircon grains in the granite show clear oscillatory zoning and their U-Pb data define an upper intercept age of 2506 ± 50 Ma. The Lu-Hf isotopic data on the zircons from the basalts show initial 176Hf/177Hf ratios from 0.280925 to 0.281018. Their εHf(t) values are in the range of − 10.0 to − 6.7. The Hf-depleted model ages (TDM) are between 3038 Ma and 3171 Ma, and Hf crustal model ages (TDMC) vary from 3387–3589 Ma. The zircons from the rhyolites show initial 176Hf/177Hf ratios from 0.280919 to 0.281020 and from 0.281000 to 0.281103, respectively, with εHf(t) values varying from − 10 to − 6.4 and from − 7.5 to − 3.9. Among these, one sample shows TDM between 3038 Ma and 3182 Ma, and TDMC varies from 3377 to 3596 Ma, whereas the other sample shows ages of 2925 Ma and 3072 Ma with TDMC varying from 3208 to 3432 Ma. The initial 176Hf/177Hf ratios of the granites range from 0.280937 to 0.281062 with εHf(t) values of − 8.8 to − 4.3. The TDM shows a range of 2979 Ma and 3170 Ma, and TDMC varies from 3269 to 3541 Ma. The predominant negative εHf(t) values of zircons from these rocks suggest that the source material was evolved from the Paleoarchean crust. The geological, geochemical, and geochronological evidence suggests coeval tectonic and magmatic episodes of volcanic and plutonic activity in an island-arc setting where the arc migrated toward the continental margin and played a significant role in the Neoarchean–Paleoproterozoic crustal growth of the Kotri belt of Central India.  相似文献   

2.
Archean tectonic history of the North China Craton (NCC) involved complex processes of amalgamation of microcontinents along multiple subduction zones prior to the consolidation of the major crustal blocks and their assembly into unified cratonic architecture. Here we report a suite of granitoids, diabase, metabasalts, volcanic tuff, banded iron formations and quartzite from the Yishui Complex along the southern margin of the Jiaoliao microblock within the Eastern Block of the NCC. The geochemical features of the magmatic suite are consistent with calc-alkaline magmatism in a convergent margin setting. In tectonic discrimination diagrams, the mafic suite shows variable IAB, MORB and OIB affinities typical of rocks formed in an arc-related subduction environment. Zircon grains in most of the rocks from Yishui Complex display core–rim texture with the cores showing magmatic crystallization and the narrow structureless rims corresponding to metamorphic overgrowth. The 207Pb/206Pb ages of magmatic zircons show 2504 ± 19 Ma for the volcanic tuff, 2581 ± 21 Ma for the granitoid, 2501 ± 19 Ma for the metavolcanics, 2537 ± 38 Ma for the pyroxenite, and 2506 ± 13 Ma for the diabase. Metamorphism is constrained from the 2451 ± 18 Ma and 2466 ± 23 Ma age groups in the metavolcanics and (meta-) pyroxenites. Zircons from BIF show multiple population with the oldest showing a spot age of 2503 Ma, followed by a number of distinct groups of Paleoproterozoic zircons corresponding to later thermal events. The oldest population of magmatic zircons from the quartzite shows 207Pb/206Pb mean age of 2495 ± 24 Ma. The dominantly positive εHf(t) values of the magmatic zircons from the Yishui suite are broadly consistent with a depleted mantle source with only minor input of crustal components. Their Hf crustal residence ages (TDMC) range from 2586 to 3181 Ma and Hf depleted mantle model ages (TDM) are in the range of 2548–2927 Ma. The data indicate that magma production involved Meso- to Neoarchean juvenile sources within a continental arc setting, suggesting the Jiaoliao microblock as one of the ancient continental nuclei in the NCC. We trace the continuity of a Neoarchean subduction system along the western and southern margins of the Jiaoliao microblock with convergence of the Qianhuai and Xuhuai microblocks towards the Jiaoliao microblock with subduction–accretion–collision during the Archean–Proterozoic transition.  相似文献   

3.
Compared to the extensively documented ultrahigh-pressure metamorphism at North Qaidam, the pre-metamorphic history for both continental crust and oceanic crust is poorly constrained. Trace element compositions, U–Pb ages, O and Lu–Hf isotopes obtained for distinct zircon domains from eclogites metamorphosed from both continental and oceanic mafic rocks are linked to unravel the origin and multi-stage magmatic/metamorphic evolution of eclogites from the North Qaidam ultrahigh-pressure metamorphic (UHPM) belt, northern Tibet.For continental crust-derived eclogite, magmatic zircon cores from two samples with U–Pb ages of 875–856 Ma have both very high δ18O (10.6 ± 0.5‰) and mantle-like δ18O (averaging at 5.2 ± 0.7‰), high Th/U and 176Lu/177Hf ratios, and steep MREE-HREE distribution patterns (chondrite-normalized) with negative Eu anomalies. Combined with positive εHf (t) of 3.9–14.3 and TDM (1.2–0.8 Ga and 1.3–1.0 Ga, respectively), they are interpreted as being crystallized from either subduction-related mantle wedge or recycled material in the mantle. While the metamorphic rims from the eclogites have U–Pb ages of 436–431 Ma, varying (inherited, lower, and elevated) oxygen isotopes compared with cores, low Th/U and 176Lu/177Hf ratios, and flat HREE distribution patterns with no Eu anomalies. These reflect both solid-state recrystallization from the inherited zircon and precipitation from external fluids at metamorphic temperatures of 595–622 °C (TTi-in-zircon).For oceanic crust-derived eclogite, the magmatic cores (510 ± 19 Ma) and metamorphic rims (442.0 ± 3.7 Ma) also show distinction for Th/U and 176Lu/177Hf ratios, and the REE patterns and Eu anomalies. Combined with the mantle-like δ18O signature of 5.1 ± 0.3 ‰ and two groups of model age (younger TDM close to the apparent ages and older > 700 Ma), two possible pools, juvenile and inherited, were involved in mixing of mantle-derived magma with crustal components. The relatively high δ18O of 6.6 ± 0.3‰ for metamorphic zircon rims suggests either the protolith underwent hydrothermal alteration prior to the ~ 440 Ma oceanic crust subduction, or external higher δ18O fluid activities during UHP metamorphism at ~ 440 Ma.Therefore, the North Qaidam UHPM belt witnesses multiple tectonic evolution from Late Mesoproterozoic–Neoproterozoic assembly/breakup of the Rodinia supercontinent with related magmatic emplacement, then Paleozoic oceanic subduction, and finally transition of continental subduction/collision related to UHP metamorphism.  相似文献   

4.
The Madurai Block in southern India is a composite collage of at least three sub-blocks, with Neoarchean–Paleoproterozoic segments in the north and central domains, and a Neoproterozoic segment in the south. Here we investigate a suite of rocks with magmatic protoliths that constitute the basement in the southern margin of the Madurai Block including alkali granites, charnockites, enderbites and gabbros. The alkali granites are dominantly composed of perthitic K-feldspar, minor plagioclase and quartz, with hornblende as the main mafic mineral suggesting a calc-alkaline nature. The enderbites and charnockites have a broadly similar mineralogical constitution except for the variation in the modal content of plagioclase, K-feldspar and quartz, as well as the additional presence of clinopyroxene in some of the enderbites. The high modal content of hornblende in the gabbros suggests crystallization from hydrous basaltic melts. The geochemical features of this suite are identical to those of arc magmatic rocks, with distinct Nb, Ta, and Ti depletion suggesting magmatism in a subduction-related environment. We envisage that the underplating of basaltic magmas within a convergent margin setting provided the heat input for lower crustal melting generating the charnockitic suite of rocks. The intrusion of the underplated mafic melts as gabbroic dykes and sills into the crystallizing felsic magmas resulted in magma mixing and mingling generating the widespread enclaves of gabbroic rocks. The alkali granites were derived from the differentiation of lower crustal melts. Zircon U–Pb data from the alkali granites yield weighted mean 206Pb/238U ages of 786 ± 10 to 772 ± 11 Ma for the oldest and the most dominant group of magmatic grains, with a 662 ± 20 Ma subordinate group. The oldest group of magmatic zircons in the charnockite samples shows ages of 938 ± 27 Ma, 896 ± 12 Ma, and 786 ± 9 Ma, suggesting multiple magmatic pulses during early and mid-Neoproterozoic. A subordinate population of magmatic zircons with ages of 661 ± 9 Ma and 632 ± 7 Ma is also present. In the enderbites, the magmatic zircon population yields weighted mean ages of 926 ± 22 Ma, 923 ± 36 Ma, 889 ± 13 Ma, 803 ± 10 Ma, 787 ± 23 Ma, 786 ± 10 Ma, 748 ± 27 Ma, 742 ± 11 Ma, 717 ± 8 Ma and 692 ± 10 Ma suggesting continuous and multiple pulses of magmas emplaced throughout early to mid-Neoproterozoic. Magmatic zircons from the gabbros show weighted mean 206Pb/238U ages of 903 ± 13 Ma, 777 ± 10 Ma, 729 ± 10 Ma and 639 ± 27 Ma. Metamorphic zircons from all the rock types show latest Neoproterozoic-Cambrian ages in the range of 567 ± 19 Ma to 510 ± 8 Ma suggesting prolonged heating. Zircon Lu–Hf data show that the alkali granite-charnockite-enderbite suite has depleted mantle ages (TDM) in the range of 1164–2172 Ma and crustal residence ages (TDMC) of 1227–3023 Ma. These spots show both negative εHf(t) and positive εHf(t) values (− 22.1 to 10.6), suggesting magma derivation from mixed juvenile mid- to late-Mesoproterozoic components and reworked Mesoarchean to mid-Mesoproterozoic components. Zircon grains from the gabbroic rocks show depleted mantle ages and (TDM) in the range of 1112–2046 Ma, crustal residence ages (TDMC) of 1306–2816 Ma, and both negative and positive εHf(t) values (− 17.8 to 7.9), suggesting that the magmas were dominantly derived from juvenile mid-Mesoproterozoic to Neoproterozoic components as well as reworked Mesoarchean to mid-Mesoproterozoic sources.Our data clearly reveal multiple arc magmatism along the southern Madurai Block during distinct pulses throughout early to late Neoproterozoic, suggesting an active convergent margin along this zone at this time. Crustal thickening occurred through relamination by mafic magmas associated with slab melting. Continental outbuilding and southward growth of the Madurai Block were associated with the lateral accretion of the vast sedimentary belt of Trivandrum Block, culminating in collisional metamorphism during latest Neoproterozoic–Cambrian associated with Gondwana assembly.  相似文献   

5.
The Eastern Qinling Orogen (EQO) is a major composite collisional zone located between the North China and the Yangtze cratons. This contribution combines geological and Hf–isotopic data from magmatic rocks associated with mineralization to gain insights into links between the crust architecture and metallogeny, and to focus exploration in the orogen.The new zircon U–Pb dates reported in this study are 434 ± 2 Ma for diorite, 433 ± 2 and 436 ± 2 Ma for monzogranite, and 454 ± 2 Ma for granodiorite in the Nanzhao area; 225 ± 2 Ma for syenite and 160 ± 1 Ma for monzogranite at Songxian; and 108 ± 1 and 102 ± 1 Ma for syenogranite in eastern Fangcheng. Combining our data with those from the entire EQO reveals seven major magmatic events since the Cambrian. These magmatic events took place during the Cambrian–Silurian associated with subduction, Early Devonian magmatism related to a collisional event, Early Permian to Late Triassic magmatism related to subduction, Late Triassic collisional magmatism, Late Triassic to Early Jurassic post–collision magmatism, and Jurassic–Cretaceous magmatism during intra–continental subduction.Lu-Hf isotopic data collected from granitic rocks for this study give εHf(t) values of: − 1.4 to 10.9 for diorite and monzogranite at Nanzhao; − 27.1 to − 15.6 for syenite and − 27.5 to − 25.1 for monzogranite at Songxian; and − 12.9 to − 3.4 for syenogranite in the eastern Fangcheng. Combining Hf isotopic data for the EQO from previous studies, we have evaluated the spatio–temporal distribution of Hf isotopic compositions. The resultant Hf isotopic maps highlight the location of the Kuanping Suture as an important tectonic boundary between the North China and the Yangtze cratons, which separates the EQO into a north part with an old and reworked lower crust and a southern part representing a juvenile lower crust.The Hf isotopic mapping of the EQO also provides information on the distribution of mineral deposits. Porphyry and porphyry–skarn Mo(–W) deposits are associated with magmatic rocks were emplaced in zones with low–εHf and high TDMc values representing old and reworked crustal components. In contrast, porphyry and porphyry–skarn Cu(–Mo) deposits are associated with magmatic rocks emplaced in domains with variable εHf and TDMc values characterized by dominantly reworked old crustal components with minor juvenile material. The magmatic source for the intrusions is characterized by low–εHf and high TDMc values, which are granite–related Mo or Pb–Zn–Ag mineralization.  相似文献   

6.
We have identified late Early Cambrian metaigneous rocks very poorly exposed at the Estancia El Carancho, in central La Pampa province, Argentina. They comprise calc–alkaline metadiorite and metagranite, and tholeiitic metapyroxenite and metagabbro. They are jointly referred to as the El Carancho Igneous Complex, and regarded to pertain to the Pampean magmatic arc and backarc, respectively. Titanite U–Pb SHRIMP dating of the metapyroxenite yielded 528 ± 5 Ma, and zircon U–Pb SHRIMP dating of the metadiorite yielded 520 ± 1.4 Ma. Hafnium isotope determinations on the dated zircons show 176Hf/177Hf ratios corresponding to positive εHf values from + 7.18 to + 9.37; Hf model ages of the Cambrian zircons yielded 884 Ma. It is interpreted that the metadiorites of the Complex crystallized from an Early Neoproterozoic (Tonian) juvenile source. We argue that the inferred occurrence of juvenile Tonian magmatic rocks in the (otherwise, mostly Paleo-Mesoproterozoic) substratum of the southern Pampia terrane could indicate a zone of thinned basement possibly associated with the early stage of Rodinia's breakup. In addition, the studied segment of the Pampean magmatic arc is contaminated by also juvenile, Late Mesoproterozoic crust, as evidenced by the presence of xenocrystic cores of 1140–1194 Ma – TDM-Hf 1720 Ma and εHf values of + 3.24 to + 4.85 – in the Cambrian zircons, hence suggesting that the studied segment of the Pampean magmatic arc was intruded into juvenile Late Mesoproterozoic magmatic arc rocks. The El Carancho Igneous Complex would be located at the tectonic boundary between the Pampia terrane and the Río de la Plata craton. This boundary stands out in the aeromagnetic data as a change in the structural orientation about a roughly N-S line located approximately at 65° W and representing the suture zone between the Pampia terrane and the Río de la Plata craton. Our geotectonic model envisages westward dipping subduction of oceanic crust beneath the Pampia terrane; the El Carancho Igneous Complex would, therefore, have been originated on the Pampia side (upper plate) of the suture. Slivers of the arc- and backarc-type rocks would have been tectonically imbricated in the suture zone during the Pampean orogeny.  相似文献   

7.
The Archean lithospheric root of the North China Craton (NCC) has been considerably eroded and modified by Phanerozoic magmatic processes. Here we investigate the decratonization of the NCC through U–Pb and Hf isotopic analyses of zircons from Cenozoic basalts in the Liaodong Peninsula using ion-probe and MC-ICPMS techniques. The U–Pb zircon geochronology identifies three zircon populations: Precambrian, Paleozoic and Mesozoic. The Precambrian zircons yield 207Pb/206Pb ages of 2275–2567 Ma with a peak at around 2.5 Ga. They define a U–Pb discordia with upper intercept ages of 2447 ± 50 Ma to 2556 ± 50 Ma and a wide range of Hf TDM ages with a mode at 2.7–2.8 Ga. Our results clearly demonstrate the presence of an Archean lower crust in the Liaodong region. The Paleozoic zircons from the Liaodong region lack the clear internal zoning and are subhedral to rounded in shape, and yield a narrow 206Pb/238U concordant ages of 419–487 Ma with a weighted mean age of 462 ± 16 Ma. The Mesozoic zircons predominantly show crystallization in the early Cretaceous and yield a relatively large range in 206Pb/238U ages from 100 to 138 Ma (n = 53) with a peak around 120 Ma. Three samples give indistinguishable weighted mean 206Pb/238U ages of 120 ± 5 Ma, 120 ± 4 Ma and 121 ± 2 Ma. These early Cretaceous zircons have enriched Hf isotope compositions with εHf(t) values from ?26 to ?16. Our results provide important constraints on episodic magmatism during the Phanerozoic in the Liaodong region, which led to substantial reactivation of the Archean basement of the North China Craton.  相似文献   

8.
The Sri Lankan fragment of Gondwana preserves the records of Neoproterozoic tectonothermal events associated with the final assembly of the supercontinent. Here we investigate a suite of magmatic rocks from the Wanni, Kadugannawa and Highland Complexes through geological, petrological, geochemical and zircon U–Pb and Lu–Hf isotopic techniques. The hornblende biotite gneiss, charnockites, metagabbro and metadiorites investigated in this study show geochemical features consistent with calc-alkaline affinity and subduction-related signature including LILE enrichment relative to HFSE coupled with distinct Nb–Ta depletion and weak negative Zr–Hf anomalies. The felsic suite falls in the volcanic arc granites (VAGs) field and the mafic suite shows island arc basalt affinity in tectonic discrimination plots, suggesting that the protoliths of the rocks were derived from arc-related magmas in a convergent margin setting. LA-ICPMS zircon U–Pb analyses show crystallization of charnockite and dioritic mafic magmatic enclave from the Highland Complex during ca. 565 and 576 Ma corresponding to bimodal magmatism. The diorite also contains metamorphic zircons of ca. 525 Ma. Hornblende–biotite gneiss from the Kadugannawa Complex shows protolith emplacement age at 973–980 Ma, followed by new zircon growth during repeated thermal events through late Neoproterozoic. The dioritic enclaves in these rocks are much younger, and form part of a deformed and metamorphosed dyke suite with emplacement ages of 559 Ma, broadly coeval with the bimodal magmatism in the Highland Complex at that time. The youngest group of zircons in this rock shows ages of 508 Ma, corresponding to the latest thermal event. A charnockite from this locality shows oldest group of zircons at 962 Ma, corresponding to emplacement age similar to that of the magmatic protolith of the hornblende biotite gneiss. This rock also shows zircon growth during repeated thermal events at 832 Ma, 780 Ma, 721 Ma and 661–605 Ma. The lower intercept age of 543 Ma marks the timing of collisional metamorphism. Charnockite from the Wanni Complex shows emplacement age at 1000 Ma, followed by thermal event at 570 Ma, the latter correlating with the bimodal magmatic event in the Highland Complex. The dioritic enclave within this charnockite shows an age of ca. 980 Ma, suggesting intrusion of mafic magma into the felsic magma chamber. Zircons in the diorite also record multiple zircon events during 950 to 750 Ma. Zircons in the Highland Complex charnockite possess negative εHf(t) values in the range − 6.7 to − 12.6 with TDMC of 2039–2306 Ma suggesting magma derivation through melting of Paleoproterozoic source. In contrast, the εHf(t) range of − 11.1 to 1.6 suggests a mixed source of both of older crustal and juvenile material. The εHf(t) values of − 4.5 to 4.5 and TDMC of 1546–1962 Ma for the hornblende biotite gneiss also shows magma derivation from mixed sources that included Paleoproterozoic components. The younger dioritic intrusive, however, has a more juvenile magma source as indicated by the mean εHf(t) value of 1.3. The associated charnockite shows a tight positive cluster of εHf(t) from 0.6 to 5.1, suggesting juvenile input. Charnockite from the Wanni Complex shows clearly positive εHf(t) values of up to 13.1, and TDMC in the range 937–1458 Ma suggesting much younger and depleted mantle source. The diorite enclave also has positive εHf(t) values with an average value of 8.5 and TDMC in the range of 709–1443 Ma clearly suggesting younger juvenile sources. The early and late Neoproterozoic bimodal suites are correlated to convergent margin magmatism associated with the assembly of Sri Lanka within the Gondwana supercontinent.  相似文献   

9.
The age and composition of the 14 × 106 km2 of Antarctica's surface obscured by ice is unknown except for some dated detrital minerals and erratics. In remedy, we present four new analyses (U–Pb age, TDMC, εHf, and rock type) of detrital zircons from Neogene turbidites as proxies of Antarctic bedrock, and review published proxies: detrital hornblendes analysed for Ar–Ar age and bulk Sm–Nd isotopes; Pb isotope compositions of detrital K-feldspars; erratics and dropstones that reflect age and composition; and recycled microfossils that reflect age and facies. This work deals with the 240°E–0°–015°E sector, and complements Veevers and Saeed's (2011) analysis of the 70°E–240°E sector. Each sample is located in its ice-drainage basin for backtracking to the potential provenance. Gaps in age between sample and upslope exposure are specifically attributable to the provenance. The major provenance of detritus west of the Antarctic Peninsula (AP) is West Antarctica, and of detritus east of the AP East Antarctica. We confirm that the Central Antarctic provenance about a core of the Gamburtsev Subglacial Mountains (GSM) and the Vostok Subglacial Highlands (VSH) contains a basement that includes igneous (mafic granitoids) and metamorphic rocks with peak U–Pb ages of 0.65–0.50, 1.20–0.9, 2.1–1.9, 2.8–2.6, and 3.35–3.30 Ga, TDMC of 3.6–1.3 Ga, and mainly negative εHf. The potential provenance of zircons of 650–500 Ma age with TDMC ages of 1.55 Ga, and of zircons of 1200–900 Ma age with positive εHf lies beneath the ice in East Antarctica south and southeast of Dronning Maud Land within the Antarctic part of the East African–Antarctic Orogen. Zircons with the additional ages of 1.7–1.4 Ga, 2.1–1.9 Ga, and 3.35–3.00 Ga have a potential provenance in the GSM.  相似文献   

10.
The NW–SE trending Longshoushan is in the southwestern margin of the Alxa Block, which was traditionally considered the westernmost part of the North China Craton (NCC). Precambrian crystalline basement exposed in the Longshoushan area was termed the “Longshoushan Complex”. This complex's formation and metamorphism are significant to understand the geotectonics and early Precambrian crustal evolution of the western NCC. In this study, field geology, petrology, and zircon U–Pb and Lu–Hf isotopes of representative orthogneisses and paragneisses in the Longshoushan Complex were investigated. U–Pb datings reveal three Paleoproterozoic magmatic episodes (ca. 2.33, ca. 2.17 and ca. 2.04 Ga) and two subsequent regional metamorphic events (ca. 1.95–1.90 Ga and ca. 1.85 Ga) for metamorphic granitic rocks in the Longshoushan Complex. U–Pb dating of the detrital magmatic zircons from two paragneisses yields concordant 207Pb/206Pb ages between 2.2 Ga and 2.0 Ga, and a small number of metamorphic zircon rims provide a ca. 1.95 Ga metamorphic age, suggesting that the depositional time of the protolith was between 2.0 and 1.95 Ga and that the sedimentary detritus was most likely derived from the granitic rocks in the Longshoushan Complex itself. Zircon Lu–Hf isotopic analyses indicate that nearly all magmatic zircons from ca. 2.0 Ga to ca. 2.17 Ga orthogneisses have positive εHf(t) values with two-stage Hf model ages (TDMC) ranging from 2.45 to 2.65 Ga (peak at ca. 2.5 Ga), indicating that these Paleoproterozoic granitic rocks were derived from the reworking of the latest Neoarchean–early Paleoproterozoic juvenile crust. Detrital magmatic zircons from two paragneisses yield scattered 176Hf/177Hf ratios, εHf(t) and TDMC values, further indicating that the sedimentary detritus was not only derived from these plutonic rocks but also from other unreported or denuded Paleoproterozoic igneous rocks. The ca. 2.15 Ga detrital magmatic zircons from one paragneiss have negative εHf(t) values with TDMC ranging from 2.76 to 3.04 Ga, indicating another important crustal growth period in the Longshoushan region. These data indicate that the Longshoushan Complex experienced Neoarchean–Early Paleoproterozoic crustal growth, approximately ca. 2.3–2.0 Ga experienced multiphase magmatic events, and approximately ca. 1.95–1.90 Ga and ca. 1.85 Ga experienced high-grade metamorphic events. The sequence of tectonothermal events is notably similar to that of the main NCC. Together with the datasets from an adjacent area, we suggest that the western Alxa Block was most likely an integrated component of the NCC from the Neoarchean to the Paleoproterozoic.  相似文献   

11.
The recently-discovered Wenquan porphyry Mo deposit hosted in the Wenquan granite of the West Qinling Orogen has been recognized as a product of the Indosinian metallogenesis. Three generations of mineral assemblage for the deposit are identified as follows: (1) quartz–biotite–K-feldspar; (2) quartz–sulfide and (3) sulfide–calcite. Geochemical study shows that the mafic microgranular enclaves (MMEs) in the ore-bearing Wenquan granite have lower SiO2, and higher Mg# and Nb/Ta ratios than the host granite itself. Different from the granite which have zircon εHf(t) values of − 3.6–3.0 and TDM2 of 1234–890 Ma, the MMEs are characterized by the εHf(t) values of − 10.1–10.8 and TDM1 of 865–441 Ma. This can be interpreted to indicate a mixture origin of the Meso- and Neoproterozoic crust-derived component and Neoproterozoic SCLM-derived materials for the formation of the Wenquan granite, which played an essential role in the Mo mineralization. Comparative Pb isotopic data between ores and K-feldspar suggest that the Wenquan granitic magma originated from the middle-lower crust of the South China Block and the ore-forming materials were incorporated by hydrothermal fluid differentiated from the Triassic magmatic system, with minor contribution of sedimentary rocks. The δ34S values of 5.0–11.7‰ with a pronounced mode at 5.0 to 6.1‰ for the ores probably represent the sulfur incorporation of a typical magmatic hydrothermal fluid contaminated by heavy sulfur of Devonian sediments. The granite yielded the zircon U–Pb ages of 218 ± 2.4 Ma and 221 ± 1.3 Ma, as the same as the ages of 217 ± 2.0 Ma and 218 ± 2.5 Ma obtained for the MMEs. These ages are indistinguishable with the molybdenite Re–Os isochron age of 219 ± 5.2 Ma which is the timing for the Mo mineralization. Tectonically, the magmatic mixture processes of the Wenquan granite and the Mo mineralization to form the Wenquan Mo deposit contemporaneously occurred during the transition of tectonic regime from syn- to post-collision orogeny in the Qinling Orogen in the Late Triassic.  相似文献   

12.
This work presents an integrated study of zircon U–Pb ages and Hf isotope along with whole-rock geochemistry on Silurian Fengdingshan I-type granites and Taoyuan mafic–felsic intrusive Complex located at the southeastern margin of the Yangtze Block, filling in a gap in understanding of Paleozoic I-type granites and mafic-intermediate igneous rocks in the eastern South China Craton (SCC). The Fengdingshan granite and Taoyuan hornblende gabbro are dated at 436 ± 5 Ma and 409 ± 2 Ma, respectively. The Fengdingshan granites display characteristics of calc-alkaline I-type granite with high initial 87Sr/86Sr ratios of 0.7093–0.7127, low εNd(t) values ranging from −5.6 to −5.4 and corresponding Nd model ages (T2DM) of 1.6 Ga. Their zircon grains have εHf(t) values ranging from −2.7 to 2.6 and model ages of 951–1164 Ma. The Taoyuan mafic rocks exhibit typical arc-like geochemistry, with enrichment in Rb, Th, U and Pb and depletion in Nb, Ta. They have initial 87Sr/86Sr ratios of 0.7053–0.7058, εNd(t) values of 0.2–1.6 and corresponding T2DM of 1.0–1.1 Ga. Their zircon grains have εHf(t) values ranging from 3.2 to 6.1 and model ages of 774–911 Ma. Diorite and granodiorite from the Taoyuan Complex have initial 87Sr/86Sr ratios of 0.7065–0.7117, εNd(t) values from −5.7 to −1.9 and Nd model ages of 1.3–1.6 Ga. The petrographic and geochemical characteristics indicate that the Fengdingshan granites probably formed by reworking of Neoproterozoic basalts with very little of juvenile mantle-derived magma. The Taoyuan Complex formed by magma mixing and mingling, in which the mafic member originated from a metasomatized lithospheric mantle. Both the Fengdingshan and Taoyuan Plutons formed in a post-orogenic collapse stage in an intracontinental tectonic regime. Besides the Paleozoic Fengdingshan granites and Taoyuan hornblende gabbro, other Neoproterozoic and Indosinian igneous rocks located along the southeastern and western margin of the Yangtze Block also exhibit decoupled Nd–Hf isotopic systemics, which may be a fingerprint of a previous late Mesoproterozoic to early Neoproterozoic oceanic subduction.  相似文献   

13.
We synthesize more than 2600 Hf isotope data on the Archean-Paleoproterozoic zircons from the North China Craton (NCC). Recalculation of the data based on single stage and two-stage Hf model ages of the Eastern Block of the NCC shows peak ages of 3902 ± 13 Ma and 3978 ± 18 Ma, respectively, and also small peaks at 3.5–4.0 Ga. The majority of zircon εHf(t) values are positive, suggesting the possibility of the crust and the mantle differentiation at ca. 3.9–4.0 Ga in the Eastern Block of the NCC. Most magmatic zircons from the whole of NCC have their Hf model age range of 2.4–2.9 Ga, and the single stage model ages is cluster at 2698 ± 4 Ma, whereas the two-stage model ages concentrate at 2714 ± 5 Ma, implying that the protoliths were juvenile crustal rocks. The most prominent peak at 2.7 Ga indicates that this period marks the most important stage of the crust-mantle differentiation and crust formation of the NCC. The widespread 2.5 Ga rocks in the NCC and the absence of the 2.5 Ga peaks in Hf model ages are consistent with the partial melting and reworking of the juvenile rocks at 2.5 Ga. Furthermore, the 2.5–1.7 Ga zircon Hf isotope features are also related to the reworking of the crustal rocks. Our results from the integration of a large database suggest that the Eastern Block and the Trans-North China Orogen have undergone similar crust-mantle differentiation and magmatism, leading to the conclusion that the essential cratonization of the North China took place at the end of Neoarchean.  相似文献   

14.
The Archean tectonic realm of the North China Craton (NCC) is considered in recent models as a collage of several microblocks which were amalgamated along zones of ocean closure during late Neoarchean. Here we report the finding of a dismembered ophiolite suite from the southern margin of the Jiaoliao microblock in the interior of the unified Eastern Block of the NCC. The suite is composed of lherzolite, pyroxenite, noritic and hornblende gabbro, and hornblendite intruded by veins and sheets of leuco granite. Together with transposed layers and bands of metavolcanics and amphibolites, banded iron formation (BIF), and diabase dykes in the adjacent locations, the Yishui complex corresponds well with a dismembered suprasubduction zone ophiolite suite. Clinopyroxene in the pyroxenite and gabbroic rocks is Mg rich and range in composition from augite to diopside. Among orthopyroxenes, those in lherzolite show the highest XMg of 0.84–0.85. Plagioclase in hornblende gabbro shows high anorthite content (An50–64). Calcic amphiboles in the gabbroic rocks range in composition from ferropargasite to ferro-edenite, edenite and pargasite. Spinel inclusions in lherzolite are Cr-rich magnesiospinel. Geochemically, the mafic rocks from Yishui complex show subalkaline basaltic source, whereas the granitoids show volcanic arc affinity. The hornblende gabbro and gabbro, lherzolite and hornblendite show compositional similarity to E-MORB and N-MORB respectively. The lherzolite and hornblendite possess arc-related ultramafic cumulate nature, with overall features straddling the fields of IAT and IAT-MORB. The geochemical features are consistent with evolution in a suprasubduction regime with no significant crustal contamination. The majority of zircon grains in the Yishui suite exhibit magmatic texture and high Th/U ratios. Zircon grains from hornblendite define 207Pb/206Pb upper intercept age of 2538 ± 30 Ma. Zircons from the granite show ages of 2538 ± 16 Ma and 2503 ± 21 Ma, and those from the gabbros yield ages of 2503 ± 16 Ma and 2495 ± 10 Ma. The well defined major age peak at 2500 Ma is broadly coeval with Neoarchean ages reported from the microblocks in the North China Craton. The zircon Lu–Hf data from the Yishui suite display εHf(t) values between − 2.5 and 5.0, with corresponding model ages suggesting magma derivation from Neoarchean juvenile sources together with limited reworked Paleo-Mesoarchean crustal components.Our study is the first report of Neoarchean suprasubduction-type ophiolites from a locality far from the margins of the major crustal blocks and suture zones in the NCC and strengthens the concept that the craton is a mosaic of several microblocks with intervening oceans that closed along multiple subduction zones. We envisage that the amalgamation between the Xuhuai and the Jiaoliao microblocks resulted in the accretion of the Yishui suprasubduction zone ophiolitic assemblages onto the southern margin of the Jiaoliao microblock. The Neoarchean microblock amalgamation in the North China Craton provides new insights into continental growth in the early Earth and confirms that modern style plate tectonics might have been initiated early in the history of our planet.  相似文献   

15.
《Gondwana Research》2014,25(3-4):1031-1037
Although the Sibumasu terrane in Asia was previously considered to be composed of Phanerozoic rocks with Cambrian crystalline basement, no reliable or direct radiometric dating evidences of such crystalline basement was ever reported. Our new in-situ zircon U/Pb dating of the Khao Tao orthogneiss yields a concordant age of 501.5 ± 7.5 Ma (2σ), which provides the first robust evidence for the Cambrian crust in Upper Peninsula of Thailand. The zircon εHf(T) values range from + 3.7 to − 6.1 with model ages (TCDM) of 1244–1827 Ma, suggests a mixed crust-mantle source. The chemical similarity and spatial continuity of the Khao Tao orthogneiss with other pre-Neotethys marginal Eurasian and Sibumasu granitoids indicate the linear paleogeographic association under a similar magmatic arc-related regime along the Gondwana India–Australia margin as part of the Pan-African Orogeny system.  相似文献   

16.
The Sittampundi Anorthosite Complex (SAC) in southern India is one of the well exposed Archean layered anorthosite-gabbro-ultramafic rock associations. Here we present high precision geochemical data for the various units of SAC, coupled with zircon U-Pb geochronology and Hf isotopic data for the anorthosite. The zircon ages define two populations, the older yield a concordia age of 2541 ± 13 Ma, which is interpreted as the best estimate of the magmatic crystallization age for the Sittampundi anorthosite. A high-grade metamorphic event at 2461 ± 15 Ma is suggested by the upper intercept age of the younger zircon population. A Neoproterozoic event at 715 ± 180 Ma resulted in Pb loss from some of the metamorphic zircons. The magmatic age of the anorthosite correlates well with the timing of crystallization of the arc-related ~ 2530 Ma magmatic charnockites in the adjacent Salem Block, while the metamorphic age is synchronous with the regional metamorphic event. The geochemical data suggest that the rocks were derived from a depleted mantle source. Sub-arc mantle metasomatism of slab derived fluids and subsequent partial melting produced hydrous, aluminous basalt magma. The magma fractionated at depth to produce a variety of high-alumina basalt compositions, from which the anorthositic complex with its chromite-rich and amphibole-rich layers formed as cumulates within the magma chamber of a supra-subduction zone arc. The coherent initial176Hf/177Hf ratios and positive εHf values (1.7 – 4.5) of the magmatic zircons in the anorthosite are consistent with derivation of a rather homogeneous juvenile parent magma from a depleted mantle source. Our study further confirms that the southern part of the Dharwar Craton was an active convergent margin during the Neoarchean with the generation and emplacement of suprasubduction zone arc magmas which played a significant role in continental growth.  相似文献   

17.
The Jinchang gold deposit is located in the easternmost portion of the Central Asian Orogenic Belt (CAOB), and represents one of the major gold districts in eastern Jilin–Heilongjiang provinces of China. The gold ore bodies are hosted mainly in altered Mesozoic granitoids, breccia pipes and ring and radial faults. Gold mineralization consists of alteration (stockwork in hydrothermally altered granites), breccia, and quartz-sulfide vein-types. Alteration assemblages around the alteration-style ore body show a vertical sequence of potassic, phyllic, and propylitic zones.In this study, we present U–Pb and Lu–Hf isotope data on zircons derived from mineralized granophyric granite, biotite monzogranite, granodiorite, and granite porphyry, and sericite Rb–Sr ages from the Jinchang gold deposit. The results show 206Pb/238U ages of 201 ± 3 Ma (MSWD = 1.1), 203 ± 4 Ma (MSWD = 1.4), 201 ± 5 Ma (MSWD = 2.1), and 110 ± 3 Ma (MSWD = 1.6), respectively. Sericite from the gold-mineralized phyllic-altered granodiorite and granite porphyry returns Rb–Sr isochron ages of 110 ± 4 Ma (MSWD = 1.04) and 107 ± 5 Ma (MSWD = 0.91), respectively. Our new data indicate that the gold mineralization at Jinchang took place at ca. 110 Ma and was temporally related to intrusion of the granite porphyry. Zircon ε Hf (200 Ma) values of the ca. 200 Ma granites vary from − 4.8 to + 8.1, with TCDM model ages of 727–1535 Ma, reflecting their derivation mainly by partial melting of juvenile Proterozoic crust. The gold-bearing 110 Ma granite porphyry returns ε Hf (110 Ma) values in the range of − 1.6 to + 9.8, with TCDM model ages of 542–1069 Ma, suggesting partial melts of juvenile Proterozoic crust with notable input of mantle components as compared to the ca. 200 Ma granites. Compiled oxygen (δ18OSMOW =  0.7–10.1) and hydrogen (δDSMOW =  99 to − 70) stable isotopic values of quartz from ores indicate that the ore-forming fluids were predominantly exsolved from magmas with minor amount of meteoric water in quartz-sulfide veins at the late stage. The Hf isotope data from the granite porphyry, integrated with the results from previous data on S and Pb isotopic composition of ores, constrain the source of ore-forming components as lower crust with discernible mantle inputs and wall rock assimilation. Our results have implications bearing on the widespread magmatism and metallogenic event during the Early Cretaceous time in East China, and link them to mantle upwelling that contributed both heat and volatiles for crustal melting and scavenging of metals which in turn were concentrated in upper crustal levels through exsolution for the magmas.  相似文献   

18.
Crustal xenoliths can provide new insights into the unexposed crust, and those from the northeastern Yangtze Block have rarely been studied. This paper reports U–Pb–Hf isotopes and trace-element compositions of zircons from six felsic xenoliths hosted by the Neogene alkali basalts in the Donghai region (i.e. Anfengshan and Pingmingshan) of the Sulu orogen in central eastern China. The xenoliths are mainly composed of orthoclase and quartz, or orthoclase and natrolite, with accessory minerals of Fe–Ti oxides and zircon. Most zircon grains show core-rim structures, with the cores and rims being magmatic and metamorphic in origin, respectively. The zircon cores mainly yield ages of ca. 827–794 Ma, while the zircon rims give ages of ca. 232–212 Ma. We interpret the zircon core ages as the time of an early Mid-Neoproterozoic magmatic event in the northeastern Yangtze Block and the zircon rim ages as the time of collision between the Yangtze and North China Blocks. Our data suggest that much more ca. 830–800 Ma magmatic records are possibly preserved in the unexposed deep crust, and the early Mid-Neoproterozoic is an important era for the crust evolution of the northeastern Yangtze Block. The new zircon Hf isotopic analyses show that the Anfengshan sample (south of Donghai) has zircon εHf (820 Ma) values ranging from −15.3 to −9.4, and two-stage Hf model ages of 2.66–2.30 Ga; the Pingmingshan sample (southeast of Donghai) has zircon εHf (820 Ma) values ranging from −1.4 to +3.8, and two-stage Hf model ages of 1.80–1.47 Ga. These data suggest that ancient crust as old as Neoarchean to Mesoproterozoic was involved in the early Mid-Neoproterozoic magmatism. Combined with the previously reported zircon U–Pb–Hf results of the exposed rocks, it is highlighted that crustal recycling was dominant in the early Mid-Neoproterozoic (ca. 830–800 Ma) magmatism, whereas both crustal recycling and addition of mantle-derived melts were significant in the late Mid-Neoproterozoic (ca. 800–720 Ma) magmatism in the northeastern Yangtze Block.  相似文献   

19.
The Dongping gold deposit, located in Chongli County (Hebei Province) about 200 km northwest of Beijing, is one of the largest gold-producing areas along the northern margin of the North China Craton. It is located in the of Shuiquangou alkaline igneous complex of Middle Devonian age (394.3 ± 3.2 Ma), composed chiefly of highly alkaline syentite and quartz syenites. This study reveals the age of the Carboniferous in the deposit at 351.7 ± 2.8 Ma (MSWD = 1.9). The Dongping deposit is locally hosted in Cretaceous (~143 ± 1 Ma) alkali granites that intruded the older and the gold mineralization is closely associated genetically with this event. Hydrothermal zircons in the alkali granites have Th/U ratios mostly ranging between 0.01 and 0.7 indicating oscillatory zoning. A few grains with high Th/U ratios (1.31–2.07) may be from metamorphic domains. Negative εHf(t) values of the zircon mainly range between −19.75 and −16.93, suggesting that they originated principally by the melting of recycled continental crust. Less abundant zircons with εHf(t) ranging from −25.76 to −23.46, with Hf model ages (TDM2) of 2.54 to 2.67 Ga, (mainly 2.2 to 2.3 Ga) suggest that recycled Neoarchean basement was also present in the source region. The Devonian syenites and quartz syenites have TDM1 ages ranging from 1.96 to 2.08 Ga. Zircons from these rocks have εHf(t) values of −11.9 to −18.9. Certain zircons from the gold-bearing granite of Paleozoic age have an initial 176Hf/177Hf ratio of 0.281816 to 0.282058 and 0.282147 to 0.282348, reflecting a homogenous distribution of hafnium isotopes typical of magmatic sources. The TDM1 and TDM2 of the latest intrusion varying 1.33 to 1.59 Ga and 1.72 to 2.11 Ga respectively, indicating that the Neoproterozoic to Mesoproterozoic rocks of this area are an important source for the younger magma which are important to forming ore deposits. The TDM2 indicate that the magma may be derived from a very old crustal basement (~2.67 Ga) in the northern margin of North China Craton by partial melting.  相似文献   

20.
A combined study of zircon U–Pb ages and Lu–Hf isotopes, mineral O isotopes, whole-rock elements and Sr–Nd isotopes was carried out for Mesozoic granitoids from the Shandong Peninsula in east-central China, which tectonically corresponds to the eastern part of the Sulu orogen that formed by the Triassic continental collision between the South and North China Blocks. Four plutons were investigated in this region, with the Linglong and Guojialing plutons from the northwestern part (Jiaobei) and the Kunyushan and Sanfoshan plutons from the southeastern part (Jiaodong). The results show that these granitoids mostly have high Sr, low Yb and Y contents, high (La/Yb)N and Sr/Y ratios with negligible to positive Eu anomalies (Eu/Eu* = 0.69–1.58), which are similar to common adakites. On the other hand, they have relatively low MgO, Cr, Ni contents and thus low Mg#. Zircon U–Pb dating yields Late Jurassic ages of 141 ± 3 to 157 ± 2 Ma for the Linglong and Kunyushan plutons, but Early Cretaceous ages of 111 ± 2 to 133 ± 3 Ma for the Guojialing and Sanfoshan plutons. Some zircon cores from the Linglong and Kunyushan granitoids have Neoproterozoic U–Pb ages. All the granitoids have variably negative zircon εHf(t) values of ?39.6 to ?5.4, with Mesoproterozoic to Paleoproterozoic Hf model ages of 1515 ± 66 to 2511 ± 97 Ma for the Sanfoshan pluton, but Paleoproterozoic to Paleoarchean Hf model ages of 2125 ± 124 to 3310 ± 96 Ma for the other three plutons. These indicate that the Mesozoic granitoids formed in the postcollisional stage and were derived mainly from partial melting of the subducted South China Block that is characterized by Paleoproterozoic juvenile crust and Neoproterozoic magmatic rocks along its northern edge. However, there are some differences between the Jiaobei and Jiaodong plutons. Compared to the Jiaodong granitoids, the Jiaobei granitoids have very old zircon Hf model ages of 3310 ± 96 Ma suggesting the possible involvement of a Paleoarchean crust that may be derived from the North China Block. Therefore, the continental collision between the two blocks would bring crustal materials from both sides into the subduction zone in the Triassic, yielding subduction-thickened crust as the magma source for the adakite-like granitoids. While lithospheric extension and orogenic collapse are considered a major cause for postcollisional magmatism, anatexis of the subducted mafic crust is proposed as a mechanism for chemical differentiation of the continental crust towards felsic composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号