首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A varied suite of mantle xenoliths from Malaita, Solomon Islands,was investigated to constrain the evolution of the mantle beneaththe Ontong Java Plateau. Comprehensive petrological and thermobarometricstudies make it possible to identify the dominant processesthat produced the compositional diversity and to reconstructthe lithospheric stratigraphy in the context of a paleogeotherm.PT estimates show that both peridotites and pyroxenitescan be assigned to a shallower or deeper origin, separated bya garnet-poor zone of 10 km between 90 and 100 km. This zoneis dominated by refractory spinel harzburgites (Fo91–92),indicating the occurrence of an intra-lithospheric depletedzone. Shallower mantle (  相似文献   

2.
Ultramafic xenoliths of garnet lherzolite (?rare spinel), spinellherzolites, spinel harzburgites, clinopyroxenites, and clinopyroxenemegacrysts were collected from Cenozoic basalts in all partsof eastern China. From their modal composition and mineral chemistryall the xenoliths may be placed into three types representing:a fertile or more primitive mantle (garnet lherzolite and spinellherzolite), a refractory or more depleted mantle (spinel harzburgiteand dunite), and inclusions cognate with the host alkali basaltsat mantle pressures (pyroxenite and megacrysts). There are systematicdifferences between the mineral compositions of each type. Spinelshows a wide compositional range and the spinel cr-number [100Cr/(Cr + Al)] is a significant indicator of the xenolithtype. Spinel cr-number and Al2O3 of coexisting minerals (spinel,clinopyroxene, and orthopyroxene) are useful as refractory indicatorsfor spinel peridotite in that the cr-number increases and thepercentage of Al2O3 decreases with increasing degrees of melting.In garnet peridotite, however, the same functions vary withpressure, not degree of melting. According to P–T estimates,the various xenoliths were derived from a large range of depthsin the upper mantle: spinel peridotite from approximately 11to 22 kb (37–66 km), spinel/garnet lherzolite from 19to 24 kb (62–80 km), and garnet lherzolite from 24 to25 kb (79–83 km). We conclude that the uppermost mantlebeneath eastern China is heterogeneous, with a north-northeastzone of more depleted mantle lying beneath the continental marginand a more primitive mantle occurring towards the continentalinterior.  相似文献   

3.
Seven alkali basalt centers in the southern Canadian Cordilleracontain mantle xenolith suites that comprise spinel Cr-diopsideperidotites, spinel augite-bearing wehrlites and orthopyroxene-poorlherzolites, and minor pyroxenites. The Cr-diopside peridotitesappear to be residues of the extraction of Mg-rich basalts byup to 15% partial melting (median 5–10%) of a pyrolite-likesource in the spinel stability field. The xenoliths are similarto other mantle xenolith suites derived from beneath convergentcontinental margins, but are less depleted, less oxidized, andhave lower spinel mg-number than peridotites found in fore-arcsettings. Their dominant high field strength element depletedcharacter, however, is typical of arc lavas, and may suggestthat fluids or melts circulating through the Canadian Cordilleralithosphere were subduction related. Modeling using MELTS isconsistent with the augite-bearing xenoliths being formed byinteraction between crystallizing alkaline melts and peridotite.Assimilation–fractional crystallization modeling suggeststhat the trace element patterns of liquids in equilibrium withthe augite xenoliths may represent the initial melts that reactedwith the peridotite. Moreover, the compositions of these meltsare similar to those of some glasses observed in the mantlexenoliths. Melt–rock interaction may thus be a viablemechanism for the formation of Si- and alkali-rich glass inperidotites. KEY WORDS: Canadian Cordillera; mantle xenolith; peridotite; wehrlite; melt–rock reaction  相似文献   

4.
We present the first data on the petrology of the mantle lithosphereof the Southeastern (SE) Slave craton, Canada. These are basedon petrographic, mineralogical and geochemical studies of mantlexenoliths in Pipe 5034 of the Cambrian Gahcho Kué kimberlitecluster. Major types of mantle xenoliths include altered eclogite,coarse garnet or spinel peridotite, and deformed garnet peridotite.The peridotites belong to the low-temperature suite and formedat T=600–1300°C and P= 25–80 kbar in a thick(at least 220–250 km), cool lithosphere. The SE Slavemantle is cooler than the mantle of other Archaean cratons andthat below other terranes of the Slave craton. The thick lithosphereand the relatively cool thermal regime provide favourable conditionsfor formation and preservation of diamonds beneath the SE Slaveterrane. Similar to average Archaean mantle worldwide, the SESlave peridotite is depleted in magmaphile major elements andcontains olivine with forsterite content of 91–93·5.With respect to olivine composition and mode, all terranes ofthe Slave mantle show broadly similar compositions and are relativelyorthopyroxene-poor compared with those of the Kaapvaal and Siberiancratons. The SE Slave spinel peridotite is poorer in Al, Caand Fe, and richer in Mg than deeper garnet peridotite. Thegreater chemical depletion of the shallow upper mantle is typicalof all terranes of the Slave craton and may be common for thesubcontinental lithospheric peridotitic mantle in general. Peridotiticxenoliths of the SE Slave craton were impregnated by kimberliticfluids that caused late-stage recrystallization of primary clinopyroxene,spinel, olivine and spinel-facies orthopyroxene, and formationof interstitial clinopyroxene. This kimberlite-related recrystallizationdepleted primary pyroxenes and spinel in Al. The kimberliticfluid was oxidizing, Ti-, Fe- and K-rich, and Na-poor, and introducedserpentine, chlorite, phlogopite and spinel into peridotitesat P < 35 kbar. KEY WORDS: kimberlite xenolith; lithosphere; mantle terrane; chemical zoning; thermobarometry; Slave craton  相似文献   

5.
This study characterizes the nature of fluid interaction andmelting processes in the lithospheric mantle beneath the Yingfenglingand Tianyang volcanoes, Leizhou Peninsula, South China, usingin situ trace-element analyses of clinopyroxene, amphibole andgarnet from a suite of mantle-derived xenoliths. Clinopyroxenesfrom discrete spinel lherzolites exhibit large compositionalvariations ranging from extremely light rare earth element (LREE)-depletedto LREE-enriched. Trace-element modelling for depleted samplesindicates that the Leizhou lherzolites are the residues of amantle peridotite source after extraction of 1–11% meltgenerated by incremental melting in the spinel lherzolite fieldwith the degree of melting increasing upwards from about 60km to 30 km. This process is consistent with gradational meltingat different depths in an upwelling asthenospheric column thatsubsequently cooled to form the current lithospheric mantlein this region. The calculated melt production rate of thiscolumn could generate mafic crust 5–6 km thick, whichwould account for most of the present-day lower crust. The formationof the lithospheric column is inferred to be related to Mesozoiclithosphere thinning. Al-augite pyroxenites occur in compositexenoliths; these are geochemically similar to HIMU-type oceanisland basalt. These pyroxenites postdate the lithospheric columnformation and belong to two episodes of magmatism. Early magmatism(forming metapyroxenites) is inferred to have occurred duringthe opening of the South China Sea Basin (32–15 Ma), whereasthe most recent magmatic episode (producing pyroxenites withigneous microstructures) occurred shortly before the eruptionof the host magmas (6–0·3 Ma). Trace-element traversesfrom the contacts of the Al-augite pyroxenite with the spinelperidotite wall-rock in composite xenoliths record gradientsin the strength and nature of metasomatic effects away fromthe contact, showing that equilibrium was not attained. Significantenrichment in highly incompatible elements close to the contacts,with only slight enrichment in Sr, LREE and Nb away from thecontact, is inferred to reflect the different diffusion ratesof specific trace elements. The observed geochemical gradientsin metasomatic zones show that Sr, La, Ce and Nb have the highestdiffusion rates, other REE are intermediate, and Zr, Hf andTi have the lowest diffusion rates. Lower diffusion rates observedfor Nb, Zr, Hf and Ti compared with REE may cause high fieldstrength element (HFSE) negative anomalies in metasomatizedperidotites. Therefore, metasomatized lherzolites with HFSEnegative anomalies do not necessarily require a carbonatiticmetasomatizing agent. KEY WORDS: China; lithosphere; mantle xenoliths; clinopyroxene trace elements; mantle partial melting; mantle metasomatism; trace-element diffusion rates  相似文献   

6.
The basanite tuffs of Bullenmerri and Gnotuk maars, Victoria,enclose abundant xenoliths of spinel lherzolites, many of whichcontain amphibole ± apatite ± phlogopite. Thexenolith suite also includes cumulate wehrlites, spinel metapyroxenitesand garnet metapyroxenites. All xenolith types contain abundantlarge CO2-rich fluid inclusions. Microstructural evidence forthe exsolution of spinel, orthopyroxene, garnet and rare plagioclasefrom complex clinopyroxenes suggests that all of the metapyroxeniteshave formed from clinopyroxene (± spinel ± orthopyroxene)cumulates by exsolution and recrystallization during coolingto the ambient geotherm. Pyroxene chemistry implies that a rangeof parental magma types was involved. Garnet pyroxenites showa series of reactions to successively finer-grained, lower-Pmineral assemblages, which imply a relatively slow initial upwardtransport of the xenoliths in the magma, prior to explosiveeruption. The same process has allowed crystallization of phenocrystsfrom small patches of interstitial melt within xenoliths oflherzolite, wehrlite and metapyroxenite. Critically selected P-T estimates for 16 garnet websteritesare consistent with published experimental studies of the spinel/garnetpyroxenite transition, and define a geotherm from 900 °C,11 kb to 1100 °C, 16 kb. Other published data extend thecurve down to c. 7 kb and up to 25 kb. This elevated geothermsuggests that the high regional heat flow is related to convectiveheat transfer by dike injection accompanying the vulcanism.T estimates for the lherzolites range from 850–1050 °C;comparison with the derived geotherm implies that the spinellherzolites are derived from depths of 30–55 km. Thiszone has low seismic velocities (Vp = 6.8–7.8 km/sec)and has thus previously been regarded as a thick, largely maficlower crust. The xenolith data show that this Mower crust' isdominantly ultramafic, with layers, dikes and some large bodiesof pyroxenites and mafic granulites. The anomalously low Vpmay be due to the high T, the high proportion of fluid-filledpore volume, and the magnesian composition of the lherzolites.The seismically defined Moho (Vp >8.0 km/sec) coincides withthe experimentally determined position of the spinel lherzolite-garnetlherzolite transition.  相似文献   

7.
Subsolidus phase relationships have been determined to pressuresof 15–27 kb for a garnet clinopyroxenite, a garnet-plagioclaseclinopyroxenite, a spinel-garnet websterite, and a two-pyroxenegranulite occurring as xenoliths in the Delegate basaltic brecciapipes. Assuming all the garnet pyroxenite suite xenoliths formedtogether or last equilibrated together, the experimental dataconstrain the P-T conditions of their formation to 13–17kb and 1050–1100 °C; for the pyroxene granulites,pressures of formation of 6–10 kb at temperatures around1100 °C are indicated. In the case of the spinel-garnetwebsterite, the texturally implied exsolution of garnet andorthopyroxene from clinopyroxene, and reaction of spinel withclinopyroxene to yield garnet, are shown to be explicable interms of approximately isobaric cooling of a pre-existing aluminousclinopyroxene+spinel aggregate. The garnet of the garnet andgarnet—plagioclase clinopyroxenites cannot, however, havebeen derived wholly by exsolution processes. New chemical data are presented for the xenoliths studied experimentallyand for several similar examples from Delegate and other easternAustralian localities. Consideration of available major andtrace element and isotopic data for garnet pyroxenite suitexenoliths from Delegate and elsewhere in the world stronglysuggests genetic relationships with their host basaltic rocks.The Delegate examples are interpreted as a series of accumulatesfrom local pockets of alkaline basaltic magma within the Earth'supper mantle, and which have subsequently undergone exsolutionand/or recrystallization in response to subsolidus cooling.A similar origin is suggested for the analogous garnet pyroxenitesfound as layers within western Mediterranean peridotite massifs.The Delegate two-pyroxene granulite xenoliths are consideredto be accidental fragments of metamorphic rocks from the deepcrust beneath eastern Australia.  相似文献   

8.
Mantle xenoliths included in the alkaline basic lavas from thePaleogene Veneto Volcanic Province (VVP) consist of predominantspinel lherzolites (21–6% clinopyroxene) and minor spinelharzburgites (4–2% clinopyroxene), mainly protogranulartextured. Most of the xenoliths show superimposed textural evidenceof metasomatic processes, consisting of reaction patches andspongy clinopyroxenes, variably associated with glass and secondaryolivine, clinopyroxene, spinel and feldspar. Whole-rock andmineral major and trace element data indicate a complex historyof depletion and enrichment processes undergone by the continentallithospheric mantle beneath a within-plate region. Protogranular-texturedclinopyroxenes from lherzolites show heavy rare earth element(HREE) contents  相似文献   

9.
The dissolution rates of the major upper mantle minerals olivine,orthopyroxene, clinopyroxene, spinel, and garnet have been determinedin an alkali basalt melt at superliquidus temperatures and 5,12, and 30 kb. At low pressure where olivine is the liquidusphase of the basalt, olivine has a slower dissolution rate thanclinopyroxene; however, at higher pressure where clinopyroxeneis the liquidus phase, clinopyroxene has a slower dissolutionrate than olivine. The relative rates of dissolution of olivineand clinopyroxene at each pressure are, therefore, governedby their relative stabilities in the melt and hence by the structureof the melt. As the degree of superheating above the liquidusincreases at each pressure, the dissolution rates of olivineand clinopyroxene converge, suggesting that the melt undergoestemperature-induced structural changes. Orthopyroxene has a dissolution rate similar to olivine at highpressure and similar to clinopyroxene at low pressure. Spinelhas the slowest dissolution rate at each pressure. Garnet dissolvesvery rapidly at 12 kb and at a comparable rate of olivine at30 kb. The dissolution rates determined in the experiments varyfrom 9.21 ? 10–9cm s–1 for spinel at 5 kbar and1250?C to 3.83 ? 10–5cm s–1 for garnet at 30 kband 1500?C. Textures produced during the dissolution experiments are relatedto mineral stability in the melt at each pressure and are independentof the degree of superheating. The mineral phases that are stableon or near the liquidus exhibit no reaction; whereas complexreaction textures and crystallization characterize dissolutionof minerals that are relatively unstable in the melt. Concentration profiles in the melt adjacent to the same crystalfor different experimental durations are identical, indicatingthat dissolution is time-independent and a steady-state process.However, cation diffusion coefficients calculated for single-componentoxides in the melt reveal that dissolution may not be completelycontrolled by diffusion of cations away from the crystal/meltinterface. The apparent diffusivities positively correlate withthe dissolution rate, which suggests that the stability of themineral is an important factor to consider when deriving diffusioncoefficients from these experiments. Other factors that maybe involved are multi-component effects and the nature of thediffusing species in the melt. A simple model has been constructed that predicts the survivalof ultramafic xenoliths in alkali basalt magmas as a functionof xenolith radius, magma ascent time and superheating. Theresults of the model suggest that the relative proportions ofperidotite and pyroxenite xenoliths brought to the surface inalkali basalts are generally representative of their proportionsas constituents of the upper mantle. Further experiments usingdifferent melt compositions are required to extend the model.  相似文献   

10.
Several spinel peridotite xenoliths from Spitsbergen have Sr–Ndisotopic compositions that plot to the right of the ‘mantlearray’ defined by oceanic basalts and the DM end-member(depleted mantle, with low 87Sr/86Sr and high 143Nd/144Nd).These xenoliths also show strong fractionation of elements withsimilar compatibility (e.g. high La/Ce), which cannot be producedby simple mixing of light rare earth element-depleted peridotiteswith ocean island basalt-type or other enriched mantle melts.Numerical simulations of porous melt flow in spinel peridotitesapplied to Sr–Nd isotope compositions indicate that thesefeatures of the Spitsbergen peridotites can be explained bychemical fractionation during metasomatism in the mantle. ‘Chromatographic’effects of melt percolation create a transient zone where thehost depleted peridotites have experienced enrichment in Sr(with a radiogenic isotope composition) but not in Nd, thusproducing Sr–Nd decoupling mainly controlled by partitioncoefficients and abundances of Sr and Nd in the melt and theperidotite. Therefore, Sr–Nd isotope decoupling, earlierreported for some other mantle peridotites worldwide, may bea signature of metasomatic processes rather than a source-relatedcharacteristic, contrary to models that invoke mixing with hypotheticalSr-rich fluids derived from subducted oceanic lithosphere. Pbisotope compositions of the Spitsbergen xenoliths do not appearto be consistently affected by the metasomatism. KEY WORDS: Spitsbergen; lithospheric mantle; metasomatism; radiogenic isotopes; theoretical modelling  相似文献   

11.
Xenoliths hosted by Quaternary basanites and alkali basaltsfrom Marsabit (northern Kenya) represent fragments of Proterozoiclithospheric mantle thinned and chemically modified during riftingin the Mesozoic (Anza Graben) and in the Tertiary–Quaternary(Kenya rift). Four types of peridotite xenoliths were investigatedto constrain the thermal and chemical evolution of the lithosphericmantle. Group I, III and IV peridotites provide evidence ofa cold, highly deformed and heterogeneous upper mantle. Textures,thermobarometry and trace element characteristics of mineralsindicate that low temperatures in the spinel stability field(750–800°C at <1·5 GPa) were attained bydecompression and cooling from initially high pressures andtemperatures in the garnet stability field (970–1080°Cat 2·3–2·9 GPa). Cooling, decompressionand penetrative deformation are consistent with lithosphericthinning, probably related to the development of the Mesozoicto Paleogene Anza Graben. Re-equilibrated and recrystallizedperidotite xenoliths (Group II) record heating (from 800°Cto 1100°C). Mineral trace element signatures indicate enrichmentby mafic silicate melts, parental to the Quaternary host basanitesand alkali basalts. Relationships between mineral textures,P–T conditions of equilibration, and geochemistry canbe explained by metasomatism and heating of the lithosphererelated to the formation of the Kenya rift, above a zone ofhot upwelling mantle. KEY WORDS: East African Rift System; Anza Graben; in situ LA-ICPMS; peridotite xenoliths; thermobarometry  相似文献   

12.
The Pliocene (7 Ma) Nb-enriched arc basalts of the ValovayamVolcanic Field (VVF) in the northern segment of the Kamchatkaarc, Russia, host abundant mantle xenoliths, including spinelIherzolites. Textural and microstructural evidence for high-temperature,multi-stage, creep-related deformations in spinel Iherzolitessupports a sub-arc mantle derivation. Pyroxene chemistry indicatesthe existence of two compositional suites: (1) a Cr-diopsidesuite with low-Tt, moderate-Al clinopyroxene compositions, and(2) an Al-augite suite with high Al and Tt, and low Cr concentrationsin clinopyroxene. Some spinel lherzolite xenoliths contain metasomaticAl-augite-type clinopyroxene, Al-Tt spinel, and felsic veinssimilar to trondhjemite melt. The Al-augite series xenolithstypically contain high-Na plagioclase, Cr-poor, Al-Fe-Mg andAl-Tt-Fe spinels, with occasional almandine-grossularite garnetand high-Al and -Na pargasitic amphibole. Pyroxene and spinel compositional trends suggest that the Crdiopsideseries xenoliths from the VVF Nb-enriched arc basalts representan island-arc mantle affected by a metasomatic event. Occurrenceof high-Na plagioclase and trondhjemitic veins favors the additionof a metasomatic component with high Na, Al and Si to the northernKamchatka arc mantle. Trondhjemitic veins, representing siliceousslab melts, compositionally exemplify the metasomatic component.Na metasomatism by peridotite-slab melt interaction is an importantmantle hybridization process responsible for arc-related alkalinemagma generation from a veined sub-arc mantle. KEY WORDS: metasomatism; island arc; mantle xenoliths; Kamchatka; mantle  相似文献   

13.
One mantle xenolith from a basanite host of the Mt. Melbourne Volcanic Field (Ross Sea Rift) is extraordinary in containing veins filled with leucite, plagioclase, clinopyroxene, nepheline, Mg-ilmenite, apatite, titaniferous mica, and the rare mineral zirconolite. These veins show extensive reaction with the dunitic or lherzolitic host (olivine+spinel+orthopyroxene+clinopyroxene). The reaction areas contain skeletal olivine and diopside crystals, plagioclase, phlogopite, aluminous spinel and ilmenite in a fine grained groundmass of aluminous spinel, clinopyroxene, olivine, plagioclase and interstitial leucite. The vein composition estimated from modal abundances and microprobe analyses is a mafic leucite-phonolite with high amounts of K, Al, Ti, Zr and Nb but low volatile contents. The melt is unrelated to the host basanite and was probably derived by smallscale melting of incompatible element-enriched phlogopite-bearing mantle material and must have lost most of its volatile content during migration, crystallization and reaction with the host dunite. While the veins are completely undeformed the dunitic host shows slight deformation. Vein minerals crystallized at high temperatures above 1000°C and pressures below 5 kbar according to the phase assemblage including leucite, nepheline and K-feldspar. Spinel/olivine geothermometry yielded 800–920°C for the re-equilibration of the host peridotite. Thus the xenolith must have been at shallow depth prior to and during the late veining event. Mantle material at shallow depths is consistent with rifting and the regional extreme displacement at the transition from the rifted Victoria Land Basin in the Ross Sea to the uplifted Trans-Antarctic Mountains.  相似文献   

14.
WITT  G.; SECK  H. A. 《Journal of Petrology》1987,28(3):475-493
Mantle xenoliths from the West Eifel, West Germany revealingdistinct disequilibrium textures were formed by strong sheardeformation from coarse grained, high temperature spinel peridotites.Foliated structures are caused by the roughly parallel alignmentof elongated orthopyToxenc porphyroclasts up to 8 ? 2 mm insize and streched patches of clinopyroxene and spinel in a matrixof recrystallized olivine, orthopyroxene, clinopyroxene, andspinel. Bulk chemical disequilibrium finds its expression in a highdegree of chemical heterogeneity which is most evident in orthopyroxene.In orthopyroxene porphyroclasts, unmixed lamellae of clinopyroxeneand chromium-aluminium spinel are confined to the grain cores,because concentration gradients of Al, Cr, and Ca existed atthe time of their exsolution. Orthopyroxene neoblasts also revealdiffusion controlled concentration gradients of Al, Cr, andCa, which decrease from core to rim. The temperature historydetermining the orthopyroxene chemistries was derived from Al-solubilitiesin orthopyroxene using an empirical geothermometer. From thetextural relationships, in conjunction with the temperaturehistory, it is inferred that the shear process causing the deformationof the porphyroclastic xenoliths was associated with a temperaturedecrease from at least 1100 to about 800?C. The observed linkage of deformation and cooling in the xenolithsis related to the diapiric uplift of hot mantle material intoa cooler uppermost mantle beneath the West Eifel. It rules outa deformation due to secular mantle flow or movements along‘cold’ shear zones.  相似文献   

15.
Mantle xenoliths from Tenerife show evidence of metasomatismand recrystallization overprinting the effects of extensivepartial melting. The evidence includes: recrystallization ofexsolved orthopyroxene porphyroclasts highly depleted in incompatibletrace elements into incompatible-trace-element-enriched, poikiliticorthopyroxene with no visible exsolution lamellae; formationof olivine and REE–Cr-rich, strongly Zr–Hf–Ti-depletedclinopyroxene at the expense of orthopyroxene; the presenceof phlogopite; whole-rock CaO/Al2O3 >> 1 (Ca metasomatism) inrecrystallized rocks; and enrichment in incompatible elementsin recrystallized rocks, relative to rocks showing little evidenceof recrystallization. The ‘higher-than-normal’ degreeof partial melting that preceded the metasomatism probably resultsfrom plume activity during the opening of the Central AtlanticOcean. Sr–Nd isotopic compositions are closely similarto those of Tenerife basalts, indicating resetting from theexpected original mid-ocean ridge basalt composition by themetasomatizing fluids. Metasomatism was caused by silicic carbonatitemelts, and involved open-system processes, such as trappingof elements compatible with newly formed acceptor minerals,leaving residual fluids moving to shallower levels. The compositionsof the metasomatizing fluids changed with time, probably asa result of changing compositions of the melts produced in theCanary Islands plume. Spinel dunites and wehrlites representrocks where all, or most, orthopyroxene has been consumed throughthe metasomatic reactions. KEY WORDS: Canary Islands; Tenerife; mantle xenoliths; geochemistry; Ca metasomatism; open-system processes; lithosphere; ocean islands  相似文献   

16.
A suite of large and fresh peridotite xenoliths from a picritetuff deposit in the Cenozoic Vitim volcanic field, {small tilde}200km east of Lake Baikal, shows a continuous gradation from protogranularspinel through garnet–spinel to very abundant garnet peridotites.This includes composite nodules in which all these lithologiescoexist on the scale of a few centimeters. Garnet and many spinellherzolites are remarkably fertile in terms of their ‘basaltic’major element contents (CaO 30–37%, MgO 37–40%,Ca/Al=11, Cr/Al<013), whereas some garnet–spineland spinel peridotites are moderately depleted (Cr/Al 014–045).T estimates are 850–880C for the fertile spinel lherzolitesapparently brought up from shallow depths of 40–50 km.This contrasts with 980–1030C for depleted spinel peridotitesand 1000–1150C for the garnet-bearing peridotites forwhich equilibration pressures between 16 and 23 kbar are inferred.The data suggest that garnet and spinel peridotites coexistin the sub-Vitim mantle at a pressure of {small tilde}18 kbarover an interval of {small tilde}2 kbar, with the appearanceof garnet, and with the garnetto-spinel ratio in this transitionalzone primarily being controlled by bulk rock contents of Ca,Al, Cr, and Cr/Al ratios, in addition to P–T conditions. The Vitim peridotites show little evidence for metasomatic enrichment:they commonly show depletion of LREE compared with intermediateREE; this includes also rare amphibole-bearing veins. The fertilespinel and garnet lherzolites have very similar bulk rock majoroxide contents and REE distribution patterns; these featuresindicate a lack of significant chemical vertical mantle stratificationin that region. Garnet peridotites from Vitim show large differencesin modal and chemical composition from garnet peridotite xenolithsfrom Yakutian and South African kimberlites, suggesting distinctlithospheric mantle structure and composition in Archean cratonsand post-Archean mobile belts. * Present address: School of Earth Sciences, Macquarie University, N.S.W. 2109, Australia  相似文献   

17.
The lithospheric and sublithospheric processes associated with the transition from continental to oceanic magmatism during continental rifting are poorly understood, but may be investigated in the central Main Ethiopian Rift (MER) using Quaternary xenolith-bearing basalts. Explosive eruptions in the Debre Zeyit (Bishoftu) and Butajira regions, offset 20 km to the west of the contemporaneous main rift axis, host Al-augite, norite and lherzolite xenoliths, xenocrysts and megacrysts. Al-augite xenoliths and megacrysts derived from pressures up to 10 kb are the dominant inclusion in these recent basalts, which were generated as small degree partial melts of fertile peridotite between 15 and 25 kb. Neither the xenoliths nor the host basalts exhibit signs of carbonatitic or hydrous (amphibole + phlogopite) metasomatism, suggesting that infiltration of silicate melts resulting in pervasive Al-augite dyking/veining dominates the regional lithospheric mantle. Recent geophysical evidence has indicated that such veining/dyking is pervasive and segmented, supporting the connection of these Al-augite dykes/veins to the formation of a proto ridge axis. Al-augite xenoliths and megacrysts have been reported in other continental rift settings, suggesting that silicate melt metasomatism resulting in Al-augite dykes/veins is a fundamental processes attendant to continental rift development.  相似文献   

18.
 Ultramafic xenoliths are found in Kishyuku Lava, Fukue-jima, Southwest Japan. These include spinel lherzolite, harzburgite and dunite, as well as pyroxenite. The compositions of the constituent minerals of the peridotite xenoliths are in the range of upper mantle peridotites. Variable Cr/(Cr+Al) ratios (0.1–0.5) of spinel, together with a limited range in olivine composition (Fo90–Fo92), indicate that the xenoliths are derived from slightly to highly depleted residual mantle. The combination of previously published clinopyroxene-olivine geothermobarometry and clinopyroxene-orthopyroxene geothermometry applied to the xenoliths yields a high geotherm of 1070° C at 1.0 GPa up to 1200° C at 2.2 GPa. Existence of such depleted upper mantle is compatible with the existing model of asthenospheric injection during the rifting of the Northeast China and the Japan Sea. The high geotherm is caused by thermal perturbation due to the injection of the hot asthenosphere and/or post-rifting uprise of mantle diapirs since 11 Ma. Received: 15 May 1995 / Accepted: 3 January 1996  相似文献   

19.
Spinel-facies mantle xenoliths occur in a diatreme cutting throughthe Neogene Southern Patagonia Plateau at Gobernador Gregores(Santa Cruz Province, Argentina). This plateau is in a back-arcposition with respect to the Chile trench. Xenoliths differin their whole-rock composition from other South America occurrences,having higher CaO/Al2O3 ratios and, in some samples, TiO2 enrichment,whereas the Na2O/Al2O3 variation range is similar. Three assemblagescan be distinguished. Assemblage 1, in anhydrous protogranularlherzolites and harzburgites, contains clinopyroxene with adepleted major and trace element composition, indicating pre-metasomaticdepletion processes. This assemblage fully recrystallized toAssemblage 2 (amphibole ± phlogopite ± Cl-apatite-bearing)during a metasomatic episode. This causes clinopyroxene to acquiregeochemical characteristics often attributed to carbonate-meltmetasomatism. Noticeably, amphibole is markedly enriched inNb (up to 298 ppm), especially when depleted in Ti. A furtherevent, related to decompression during xenolith uplift to thesurface, induces closed-system (perhaps with the exception ofCO2 addition) disequilibrium melting of Assemblage 2, dominantlyof amphibole. It is found in pockets (where amphibole is a residualphase) consisting of Na–Si-rich glass and carbonate (Mg-richcalcite) drops, and in veins originating from the pockets (Assemblage3). Euhedral olivine, clinopyroxene and spinel crystallize onlyin the silicate glass. So do new, euhedral apatite crystalswhen glass is in contact with previous Assemblage 2 apatite.Textural evidence and comparison with experimental work suggestthat silicate glass and carbonates are the result of unmixingof a former homogeneous melt. Because of the different flowrates of carbonate and silicate melt, the xenoliths become enrichedin carbonate, which is found in the veins during their migration.Thus, the high CaO/Al2O3 ratio of whole rocks provides inconclusiveevidence of carbonatite metasomatism. This factor, and otherminor deviations from the expected results of carbonatite metasomatism,lead us to hypothesize an aqueous, Cl-rich fluid, possibly slabderived, as an alternative agent. Amphibole, resulting fromreactive porous flow of this agent in the mantle, could fullyexplain the observed geochemical features, as indicated by estimatesof its partition coefficients. KEY WORDS: carbonated xenoliths; Gobernador Gregores; LAM–ICP-MS; mantle metasomatism; silicate glass  相似文献   

20.
Mantle xenoliths in alkaline lavas of the Kerguelen Islandsconsist of: (1) protogranular, Cr-diopside-bearing harzburgite;(2) poikilitic, Mg-augite-bearing harzburgite and cpx-poor lherzolite;(3) dunite that contains clinopyroxene, spinel phlogopite, andrarely amphibole. Trace element data for rocks and mineralsidentify distinctive signatures for the different rock typesand record upper-mantle processes. The harzburgites reflectan initial partial melting event followed by metasomatism bymafic alkaline to carbonatitic melts. The dunites were firstformed by reaction of a harzburgite protolith with tholeiiticto transitional basaltic melts, and subsequently developed metasomaticassemblages of clinopyroxene + phlogopite ± amphiboleby reaction with lamprophyric or carbonatitic melts. We measuredtwo-mineral partition coefficients and calculated mineral–meltpartition coefficients for 27 trace elements. In most samples,calculated budgets indicate that trace elements reside in theconstituent minerals. Clinopyroxene is the major host for REE,Sr, Y, Zr and Th; spinel is important for V and Ti; orthopyroxenefor Ti, Zr, HREE, Y, Sc and V; and olivine for Ni, Co and Sc. KEY WORDS: mantle xenoliths; mantle metasomatism; partition coefficients; Kerguelen Islands; trace elements  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号