首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is argued that a Salpeter initial luminosity function is consistent with the observed integral properties of giant elliptical galaxies if the gaseous material lost by evolving stars can be retained in the system for times of the order of 108 yr. One model which emerges is of a highly condensed system consisting mainly of metal-poor population II stars with an admixture (1.5%–15%) of super-metalrich stars born from the gaseous debris, which at the present time constitutes 0.05%–0.5% of the total mass. HighM/L ratios result from obscuration of the starlight, and the missing radiation reappears in the form of a strong I-R flux at wavelengths of the order of 100 . The difference in colour betweengE anddE galaxies is explained in terms of interstellar reddening, and strong interstellar metallic absorption lines are also expected. The model leads to a negligible evolutionary correction to the cosmological deceleration parameterq 0. An alternative model, in which the stars arenot metal poor, has a more condensed, heavily obscured nucleus, surrounded by the unobscured central bulge of the Galaxy which provides most of the light. In this version a large evolutionary correction would be required.  相似文献   

2.
The nonequilibrium dynamical theory of thermonuclear reaction in the stars is used to analyse the stabilities of P-PI reactions in the solar core and 3 reactions of helium burning in the core of red giant stars. The constant stability of stars on the main sequence and the helium flash instability have been explained from a new point of view. Calculations show that the (g - T) term in the dynamical equation has a damaging effect on the stability of the thermonuclear reaction, but its intensity in the core of red giant stars is ~ 107 times that in the solar core. It may be intimately related to some instability of the stellar structure. The effect on the flash instability is especially analysed.  相似文献   

3.
We investigate the influence of the following parameters on the crust properties of strange stars: the strange quark mass (m s), the strong coupling constant (αc) and the vacuum energy density (B). It is found that the mass density at the crust base of strange stars cannot reach the neutron drip density. For a conventional parameter set of m s=200 MeV, B 1/4 = 145 MeV and αc = 0.3, the maximum density at the crust base of a typical strange star is only 5.5 × 1010 gcm-3, and correspondingly the maximum crust mass is 1.4 ×10-6 M. Subsequently, we present the thermal structure and the cooling behavior of strange stars with crusts of different thickness, and under different diquark pairing gaps. Our work might provide important clues for distinguishing strange stars from neutron stars.  相似文献   

4.
We present further considerations regarding the strong 14C variation in AD 774/5. For its cause, either a solar super‐flare or a short gamma‐ray burst were suggested. We show that all kinds of stellar or neutron star flares would be too weak for the observed energy input at Earth in AD 774/5. Even though Maehara et al. (2012) present two super‐flares with ∼1035 erg of presumably solar‐type stars, we would like to caution: These two stars are poorly studied and may well be close binaries, and/or having a M‐type dwarf companion, and/or may be much younger and/or much more magnetic than the Sun – in any such case, they might not be true solar analog stars. From the frequency of large stellar flares averaged over all stellar activity phases (maybe obtained only during grand activity maxima), one can derive (a limit of) the probability for a large solar flare at a random time of normal activity: We find the probability for one flare within 3000 years to be possibly as low as 0.3 to 0.008 considering the full 1σ error range. Given the energy estimate in Miyake et al. (2012) for the AD 774/5 event, it would need to be ∼2000 stronger than the Carrington event as solar super‐flare. If the AD 774/5 event as solar flare would be beamed (to an angle of only ∼24°), 100 times lower energy would be needed. A new AD 774/5 energy estimate by Usoskin et al. (2013) with a different carbon cycle model, yielding 4 ot 6 time lower 14C production, predicts 4–6 times less energy. If both reductions are applied, the AD 774/5 event would need to be only ∼4 times stronger than the Carrington event in 1859 (if both had similar spectra). However, neither 14C nor 10Be peaks were found around AD 1859. Hence, the AD 774/5 event (as solar flare) either was not beamed that strongly, and/or it would have been much more than 4‐6 times stronger than Carrington, and/or the lower energy estimate (Usoskin et al. 2013) is not correct, and/or such solar flares cannot form (enough) 14C and 10Be. The 1956 solar energetic particle event was followed by a small decrease in directly observed cosmic rays. We conclude that large solar super‐flares remain very unlikely as the cause for the 14C increase in AD 774/5. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Positrinium atom is considered in a strong magnetic field in a vector-potential gauged asA x =–By. The energy spectrum is obtained including its dependence on the centre-of-mass wave vector across the magnetic field. The pole-like contributions into the photon polarization operator coming from the positronium states are calculated and dispersion curves of joint photon-positronium states are obtained as trajectories of poles of the photon Green function in momentum space.When propagating in a strong magnetic field (B0.1B cr 4×1012 G) with curved lines of force, a photon is canalized along the magnetic field by adiabatically transforming into a bound electron-positron pair, which is a stronger effect than the analogous photon capture by transforming into an unbound pair at the edge of the continuum discussed previously by the authors. The effect of bound pair formation by-quanta in a strong magnetic field may be important near pulsars,-burst sources, powerful X-ray sources in close binary systems and other astronomical objects, recognized as magnetic neutron stars.  相似文献   

6.
This paper reports on the microscopic calculation of ground and excited states Gamow-Teller (GT) strength distributions, both in the electron capture and electron decay direction, for 54,55,56Fe. The associated electron and positron capture rates for these isotopes of iron are also calculated in stellar matter. These calculations were recently introduced and this paper is a follow-up which discusses in detail the GT strength distributions and stellar capture rates of key iron isotopes. The calculations are performed within the framework of the proton-neutron quasiparticle random phase approximation (pn-QRPA) theory. The pn-QRPA theory allows a microscopic state-by-state calculation of GT strength functions and stellar capture rates which greatly increases the reliability of the results. For the first time experimental deformation of nuclei are taken into account. In the core of massive stars isotopes of iron, 54,55,56Fe, are considered to be key players in decreasing the electron-to-baryon ratio (Y e ) mainly via electron capture on these nuclide. The structure of the presupernova star is altered both by the changes in Y e and the entropy of the core material. Results are encouraging and are compared against measurements (where possible) and other calculations. The calculated electron capture rates are in overall good agreement with the shell model results. During the presupernova evolution of massive stars, from oxygen shell burning stages till around end of convective core silicon burning, the calculated electron capture rates on 54Fe are around three times bigger than the corresponding shell model rates. The calculated positron capture rates, however, are suppressed by two to five orders of magnitude.  相似文献   

7.
We calculate the effects of hyperons and resonance particles on the vibrations of neutron stars. Vibrating neutron stars can store large amounts of energy in their vibrations; the interaction of the vibrations with the atmosphere would produce electromagnetic radiation. If any process damps out the vibrations rapidly on an astronomical time scale ( 1000 years) then vibrating neutron stars are not likely to be found. Previous work indicates that radiation by a neutrino URCA process (N+NP+N+e + ) does not rapidly damp many of the neutron star models. Some neutron stars are predicted to contain massive baryons; here we study thermal damping by nonequilibrium reactions involving these baryons.During vibrations the thermodynamic equilibrium state is changed and particle reactions attempt to restore equilibrium. If the reaction rates per particle are very rapid or slow compared to the frequency of vibration the system follows almost the same pressure-volume curve through both parts of the gas cycle, and very little work is done. In the intermediate case, when reaction rates are comparable to the frequency, damping is rapid.We find that the reaction rates for weak interactions such asN+NP+ (the is the first hyperon to appear with increasing density in degenerate neutron star matter) are of the right magnitude to cause rapid damping. If there is a hyperon region in the star then it cannot sustain vibrations. We also consider the much faster (and hence less important) processN+NP+.  相似文献   

8.
Abstract— The classical model of s-process nucleosynthesis, based on the concept of a steady neutron flux under astrophysical conditions pertaining to the He-burning phase of red giant stars, has successfully described observed isotopic abundances and provided information on the physical conditions of the s-process environment. Because most of the isotopes on the s-process path are stable, their relevant nuclear parameters can be measured in the laboratory so that as more accurate elemental abundance and neutron capture cross-section data have become available, the classical model has been tested under increasingly stringent conditions. Accurate determinations of the neutron capture cross sections at appropriate astrophysical conditions for the Ba isotopes have shown that the abundance of the s-only isotope 136Ba is under-produced by ~20% according to the classical model. This paper describes the accurate assessment of the meteoritic abundance of Ba by the stable isotope dilution mass spectrometric technique, based on the Cl carbonaceous chondrites Orgueil and Ivuna. Repeated analyses of these two Cl chondrites give an abundance that is identical to the presently accepted solar system value for Ba within experimental errors, which indicates a deficiency in the classical model. When combined with similar data for the s-only nuclides 116Sn and 142Nd, it is apparent that the classical model, having served a valuable function for many years, must be replaced by stellar models that more accurately reflect the dynamic nature of the He-burning phase in red giant stars, in particular, during the thermal pulses of low-mass asymptotic giant branch (AGB) stars.  相似文献   

9.
The first generation of stars was formed from primordial gas. Numerical simulations suggest that the first stars were predominantly very massive, with typical masses M≥100M . These stars were responsible for the reionization of the universe, the initial enrichment of the intergalactic medium with heavy elements, and other cosmological consequences. In this work, we study the structure of Zero Age Main-Sequence stars for a wide mass and metallicity range and the evolution of 100, 150, 200, 250 and 300M galactic and pregalactic Pop III very massive stars without mass loss, with metallicity Z=10−6 and 10−9, respectively. Using a stellar evolution code, a system of 10 equations together with boundary conditions are solved simultaneously. For the change of chemical composition, which determines the evolution of a star, a diffusion treatment for convection and semiconvection is used. A set of 30 nuclear reactions are solved simultaneously with the stellar structure and evolution equations. Several results on the main sequence, and during the hydrogen and helium burning phases, are described. Low-metallicity massive stars are hotter and more compact and luminous than their metal-enriched counterparts. Due to their high temperatures, pregalactic stars activate sooner the triple alpha reaction self-producing their own heavy elements. Both galactic and pregalactic stars are radiation pressure dominated and evolve below the Eddington luminosity limit with short lifetimes. The physical characteristics of the first stars have significant influence in predictions of the ionizing photon yields from the first luminous objects; also they develop large convective cores with important helium core masses which are important for explosion calculations.  相似文献   

10.
According to the work of Truran and Cameron, and of others, on the chemical evolution of the Galaxy, the first generation of stars in the Galaxy contained principally massive objects. If big-bang nucleosynthesis was responsible for the formation of helium, the first generation of stars would contain about 80% hydrogen and 20% helium, to be consistent with the approximately 22% helium found in recent stellar evolutionary studies of the Sun. The present investigation has followed the pre-main sequence evolution and the main sequence evolution of stars of 5, 10, 20, 30, 100, and 200M . Normal stars in this entire mass range normally convert hydrogen into helium by the CN-cycle on the main sequence. the present hydrogen-helium stars of 5 and 10M must reach higher central temperatures in order to convert hydrogen to helium by the proton-proton chains. Consequently, the mean densities in the stars are greater, and the surface temperatures are higher than in normal stars. In the stars of 20M and larger, the proton-proton chains do not succed in supplying the necessary luminosity of the stars by the time the contraction has produced a central temperature near 108K. At that point triple-alpha reactions generate small amounts of C12, which then acts as a catalyst in the CN-cycle, the rate of which is then limited by the beta-decays occurring within the cycle. During the evolution of these more massive stars, the central temperature remains in the vicinity of 108 K, and the surface temperature on the main sequence approaches 105 K. The star of 200M becomes unstable against surface mass loss through radiation pressure in the later stages of its main sequence evolution, and these mass loss effects were not followed. Young galaxies containing these massive stars will have a very high luminosity, but if they have formed at one-tenth the present age of the universe or later, then the light from them will mainly reside in the visible or ultraviolet, rather than in the infrared as has been suggested by Partridge and Peebles.  相似文献   

11.
We investigate the decay of bound electron-positron pairs (positronium) in strong magnetic fields (of order 1012 Gauss, which are assumed for neutron stars) on the basis of a correct treatment of the two-body problem, thus improving previous work by Carr and Sutherland (1978). We find that, even in the presence of a strong magnetic field, the decay of the ground state of positronium must be momentum conserving, whereby the possibility of the one-photon decay is ruled out. We calculate the transition rate for the two-photon annihilation process which turns out to be larger than the field free transition rate by a factor (1/)2 B/B cr (where is the electromagnetic coupling constant, andB cr=m e 2 c 2/(e)=4.41×1013 Gauss).  相似文献   

12.
Assuming the Big-Bang nucleosynthesis was responsible for the formation of helium, the evolution of first-generation intermediate-mass stars of 5, 7, and 9M with no metals have been studied from the threshold of stability through the stage of helium exhaustion in the cores of the stars. Hydrogen Main-Sequence positions are marked at effective temperatures higher than those of normal stars. The evolutionary tracks during the hydrogen burning phase start to be similar to those of normal stars when the CN-cycle reactions, which are controlled by the triple-alpha reactions, become operative for hydrogen depletion. Helium Main Sequence of Population III stars of intermediate mass occurs at the high effective temperature region of the H-R diagram and stars stay as blue stars until the end of the core helium exhaustion phase. The total time elapsed is in the range of 3×107 and 108yr. The stars with the initial masses of 5, 7, and 9M developed a moderately electron degenerate complete hydrogen-exhausted region with masses of 0.77, 1.06, and 1.42M , respectively, in which the most abundant element is carbon.  相似文献   

13.
Abstract— Analyses of the isotopic compositions of multiple elements (Mo, Zr, and Ba) in individual mainstream presolar SiC grains were done by resonant ionization mass spectrometry (RIMS). While most heavy element compositions were consistent with model predictions for the slow neutron capture process (s‐process) in low‐mass (1.5–3 M) asymptotic giant branch stars of solar metallicity when viewed on single‐element three‐isotope plots, grains with compositions deviating from model predictions were identified on multi‐element plots. These grains have compositions that cannot result from any neutron capture process but can be explained by contamination in some elements with solar system material. Previous work in which only one heavy element per grain was examined has been unable to identify contaminated grains. The multi‐element analyses of this study detected contaminated grains which were subsequently eliminated from consideration. The uncontaminated grains form a data set with a greatly reduced spread on the three‐isotope plots of each element measured, corresponding to a smaller range of 13C pocket efficiencies in parent AGB stars. Furthermore, due to this reduced spread, the nature of the stellar starting material, previously interpreted as having solar isotopic composition, is uncertain. The constraint on 13C pocket efficiencies in parent stars of these grains may help uncover the mechanism responsible for formation of 13C, the primary neutron source for s‐process nucleosynthesis in low‐mass stars.  相似文献   

14.
In the presence of a strong magnetic field (such as those believed to be characteristic of neutron stars:B-1012 Gauss) positronium may annihilate through the emission of a single photon, the magnetic field providing the photon momentum. We report on calculations of the one-photon and two-photon annihilation rates for the ground state of positronium, for magnetic fields in the range (1–44)×1012 Gauss, and give, in the two-photon case, the minimum energy half-width of the emission line due to the momentum contributions from the magnetic field. We find that unless neutron stars have magnetic fields in excess of 1013 Gauss, it is unlikely that the one-photon process will be observable.Research supported in part by the National Research Council of Canada.  相似文献   

15.
Physical arguments suggest the spiral arms may be manifestations of the galaxy not being in dynamical equilibrium — in the sense that the kinetic energy of tis stars and gas is less relative to its binding energy than that dictated by the virial theorem. Without constant cooling of the galactic disk (i.e., a progressive increase in the binding energy of the galaxy) such a departure from dynamical equilibrium would be corrected and the spiral arms destroyed in about 109 yr due to an increase in the velocity dispersion of the stars in the disk resulting from their interacting with the spiral arms. The rate of cooling required to maintain the spiral arms, about 6×104 L , may be provided by mass loss from stars in the disk population. The cooling arises from the average scale-heights and velocities of these stars being larger than that of the gas in the disk, so that there is a net loss of kinetic energy and an increase in the binding energy of the galaxy due to the ejected gas settling down to a lower terminal velocity and scale-height in the galactic disk.  相似文献   

16.
Photospheric models were calculated for 90 stars with effective temperatures between 2500 K and 41600 K for five logg-values ranging from 1 to 5. Molecule formation was taken into account. In order to have an idea about possible instabilities in the different stellar layers some quantities, characteristic for convection and turbulence were calculated, such as the Rayleigh-, Reynolds-, Prandtl- and Péclet-numbers. It turned out that all the investigated stars contain unstable layers, including the hottest. Nevertheless, only stars with effective temperatures of 8300 K or less contain layers where the convective energy transport is important. For all stars the convective velocities were calculated and also the generated mechanical fluxes in the convection zones were tabulated.Under the hypothesis that this mechanical energy flux is responsible for the heating of the corona, coronal models were constructed for the Sun and for some stars with effective temperatures between 5000 K and 8320 K for logg-values of 4 or 5.For Main Sequence stars the largest fluxes are generated in F-stars; stars withT eff=7130 K and logg=4 possess also the hottest and most dense coronas with a computed temperature of 3.7·106 K and logN e =10.5.The solar corona computed in this way, on the basis of a photospheric mechanical flux of 0.14·108 erg cm–2 sec–1, has a temperature of 1.3·106 K and logN e =9.8. This density is apparently too high, but even when including in the computations all theoretical refinements proposed in the last few years by various authors it does not appear possible to obtain a solar coronal model with a smaller density.However, when taking into account the inhomogeneous structure of the chromosphere and by associating the calculated mechanical fluxes to the coarse mottles, and lower fluxes to the undisturbed regions we find a mean coronal temperature of 1.1·106 K and a mean logN e -values of 9. The computed velocity of the solar wind at a distance of 104 km above the photosphere has a value between 7 and 11 km sec–1. These latter values are in fair agreement with the observations.  相似文献   

17.
The bright stellar content for fifteen binary star clusters and their adjoining fields in the Large Magellanic Cloud (LMC) were studied here. Film copies of plates taken with the 1.2 U.K. Schmidt telescope were used for deriving the spectral types of the stars in the studied regions. All classified stars are brighter thanV=17.5 mag and situated in large areas around each pair and in a neighbouring field. Seven of the pairs, the brightest and most populous are young clusters (located mainly at the north part of the parent galaxy). The derived distributions of spectral types of their stars give strong evidence that each pair consists of similar stellar content with ages 0.6–8×107 yr.Eight more binary star clusters were studied as well, selected among the rest of the binaries in the LMC. It is found that their stars were faint for our limit of detection so the poor statistics did not allow a comparison among the two cluster members of each pair. However the bright limit of their stars implies ages >6×108 yr. Considering that these objects were randomly selected it is unlikely that all are projected pairs. So it seems that binarity in star clusters is a phenomenon (favourable in the LMC) which did not happen only once in the life of this galaxy.  相似文献   

18.
Photoelectric and photographic photometry of 72 stars was done in the field of the not-well-studied open cluster Czernik 20= OCl 427 in the direction of the Auriga constellation. Of these stars, a total of 43 have been found to be probable members down tom v− 15.75 mag. There is apparently a variable extinction across the field of the cluster withE(B-V) ranging from 0.53 to 0.38 mag. The cluster stars show a range in their ages from 1.0 × 107 to 7.1 × 107 years, indicating that Czernik 20 is young enough to be considered as a spiral-arm tracer in the study of our Galaxy. The distance of this cluster is found to be 4.27 ±0.14 kpc and it is located inside the outer Perseus arm of the Milky Way  相似文献   

19.
The degree of polarization of light from stars in 44 O B associations as a function of interstellar absorption is investigated. It is shown that the character of the dependence of P on A V for stars in associations and stars not in associations depends on the value of A V: for A V 2 m .5 it has a linear character and is the same for both groups of stars. For A V > 2 m .5 the dependence of P on A V for stars in and not in associations departs from linearity and for A V = 4 m .5 it reaches P ass = 1.8% and P nonass = 1%, respectively. Such a difference is explained by the additional depolarization in stellar associations. Such strong depolarization in associations may be due to the overall magnetic field of the Galaxy and to physical peculiarities in the association itself.  相似文献   

20.
Starting from a general solution for the birth functionB(m, t) of stars described in detail in Casusoet al. (1989), we have obtained a first-order analytical approximation to this function as a function of metallicityZ. Using this, we obtained a fit to the observational curve compiled by Tinsley (1980) for the cumulative function of stars with metallicity lower than a given value in the solar neighbourhood. In addition, using the same expression, with its numerical fit to previous data, we obtain a good fit to the differential distributions of stars at low metallicity given in the review by Pagel (1987), given a bifurcation in the birth function at low values ofZ, which would correspond to two distinct epochs of onset of star formation. The analysis gives an infall of gas towards the solar neighbourhood up to the epoch of metallicityZ=6.7×10–3 with a correspondingly increased star formation rate, which subsequently stabilized, and another similar inflow up toZ=1.2×10–3, followed again by a steady star formation rate for largerZ. Although the assumptions made are still relatively crude, and the numbers should be considered tentative, the flexibility of the model in handling the problem is that we wish to show here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号