首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Increasing losses of life and property and damages to the environment due to sleet and related winter storm conditions have increased the need for long-term sleet storm data to better assess the point and regional risks of sleet and their long-term variations. The areas of greatest losses and frequency of catastrophes caused by sleet during 1971–2007 are the Northeast and Central regions of the U.S. These two regions experienced 72% of all the nation’s sleet losses. Most of the western U.S. had no damaging sleet-related events or losses. When sleet losses occurred, they tended to be in 2, 3, or 4 adjacent states. Sleet catastrophes were most common in January with 15 of the 30 events. The earliest storm occurred in October and the latest in March. The temporal distributions of catastrophes and their losses during 1971–2007 were similar. Both showed a secondary peak in 1976–1979, a low in 1988–1991, and then high values during the 1996–2007 period. The temporal distributions of damaging storms and losses indicate an upward trend over time.  相似文献   

2.
Almost saturated scintillations of radio beacons from geostationary satellites received at an equatorial station during night-time have been shown to occur even during complete absence of spreadF on the vertical incidence ionograms at the same location. These scintillation events were observed when the ionograms showed blanketing type of sporadicE layers simultaneously at different heights. It is suggested that strong equatorial radio wave scintillations during night-time are caused by multiple scattering between different levels of large plasma density gradients in theF or sometimes in theE regions of the ionosphere.  相似文献   

3.
A database was compiled for the period 1977–2007 to assess the threat to life in the conterminous United States from nontornadic convective wind events. This study reveals the number of fatalities from these wind storms, their causes, and their unique spatial distributions. Nontornadic convective wind fatalities occur most frequently outdoors, in vehicles including aircraft, or while boating. Fatalities are most common in the Great Lakes and Northeast, with fewer fatalities observed in the central United States despite the climatological peak in severe thunderstorms in this region. Differences in fatality locations between tornadoes and nontornadic convective wind events highlight the unique combination of physical and social vulnerabilities involved in these deaths. Understanding these vulnerabilities is important to future reduction of nontornadic convective wind fatalities.  相似文献   

4.
Records of very damaging snowstorms, those causing more than $25 million in property losses, across the United States were assessed to define the spatial and temporal dimensions of the nation’s snowstorm activity during 1949–2000. In this 52-year period 155 snowstorms occurred and caused losses totaling $21.6 billion (2000 dollars). The northeastern U.S. had the nation’s maximum storm occurrences (79 storms), total losses ($7.3 billion), and storm intensity. Two-thirds of all U.S. losses occurred in the Northeast, Southeast, and Central climate regions, and storm occurrences and losses were least in the western U.S. The incidence of storms peaked in the 1976–1985 period and exhibited no up or down trend during 1949–2000. However, national losses had a significant upward time trend, as did storm sizes and intensity. States with the greatest number of storms were New York (62) and Pennsylvania (58) with only 2 storms in Montana, Idaho, and Utah. Storm losses in the northeastern and southeastern U.S. had U-shaped time distributions with flat time trends for 1949–2000, but losses in the western regions and Deep South had distinct upward trends in losses and storm size. More than 90% of all storm losses in the western U.S. occurred after 1980. These findings indicating increased losses over time reflect that a rapidly growing population and vulnerability of more property at risk have been major factors affecting losses, and the lack of a change over time in snowstorm incidences suggests no change in climate during 1949–2000.  相似文献   

5.
Winter storms are a major weather problem in the United States and their losses have been rapidly increasing. A total of 202 catastrophic winter storms involving ice storms, blizzards, and snowstorms, each causing >$5 million in damages, occurred during 1949–2003, and their losses totaled $35.2 billion (2003 dollars). Catastrophic winter storms occurred in most parts of the contiguous United States, but were concentrated in the eastern half of the nation where 88% of all storm losses occurred. They were most frequent in the Northeast climate district (95 storms), and were least frequent in the West district (14 catastrophic storms). The annual average number of storms is 3.7 with a 1-year high of nine storms, and one year had no storms. Temporal distributions of storms and their losses exhibited considerable spatial variability across the nation. For example, when storms were very frequent in the Northeast, they were infrequent elsewhere, a result of spatial differences in storm-producing weather conditions over time. The time distribution of the nation’s 202 storms during 1949–2003 had a sizable downward trend, whereas the nation’s storm losses had a major upward trend for the 55-year period. This increase over time in losses, given the decrease in storm incidences, was a result of significant temporal increases in storm sizes and storm intensities. Increases in storm intensities were small in the northern sections of the nation, but doubled across the southern two-thirds of the nation, reflecting a climatic shift in conditions producing intense winter storms.  相似文献   

6.
The Alxa Plateau has one of the highest frequencies of dust events in China and one of the greatest contributions to East Asian dust. We compiled climate and dust storm data for the Alxa Plateau based on observational data from ten meteorological stations from 1960 to 2005. Our analysis showed that Guaizihu and Minqin dust centers had >26 days per year with dust storms versus 7–13 days for other desert and Gobi regions on the plateau. Variations in dust storm frequency during the study period showed that dust storms increased during the 1960s (until 1972), decreased until the late 1990s, and then increased slightly until 2002. About 75.6% of dust storms occurred in March, April, May, June, and July. Between 78.2 and 88.1% of the dust storms occurred during the daytime and 28.9% of the dust storms occurred between 13:00 and 16:00. The mean durations of dust storms in the Alxa Plateau ranged from 715 to 3,462 min. The annual number of minutes of dust storms averaged >1,800 min in the western Alxa Plateau. Dust storm frequency was inversely related to duration: the longer the average duration, the lower the frequency of such storms.  相似文献   

7.
Monitoring of interplanetary scintillations in 2017 is used as a basis for analyzing the dynamics of scintillation levels in periods preceding the arrival at the Earth of eight large-scale disturbances in the solar wind giving rise to strong geomagnetic storms. In six of the eight events, the dynamics of the scintillation level were mainly determined by the motion of corotating disturbances. In two events, coronal-mass ejections excited in the corona near the western limb of the Sun were observed against the background of corotating disturbances. In one of these cases, a magnetic storm was associated with a corotating flux, and in the other with a powerful propagating disturbance. Comparison with similar data obtained in 2016, also during the descending phase in solar activity, testifies to the existence of corotating disturbances with lifetimes of at least 20 solar rotations. These new results support the earlier conclusion that a weakening of scintillations is observed in the evening sector three to four days before the arrival of the compressed part of a disturbance to the Earth, which could be due to an appreciable lowering of the level of small-scale turbulence in the plasma in an extended region ahead of the frontal part of the disturbance. The interplanetary-scintillation monitoring data for 2017 show that, simultaneously with the associated magnetic storm, there is an enhancement of second-time-scale scintillations, which are most clearly manifest when the storm occurs during the evening or night-time hours. For the events considered, the increase in scintillations accompanying the magnetic storm is associated with an enhancement in the level of small-scale fluctuations in regions of the solar wind adjacent to the Earth when the storm is excited by a corotating disturbance, and with the perturbed ionosphere when the storm is excited by a flare-related disturbance.  相似文献   

8.
地球等离子体片中持续时间很短的快速流动事件最近受到很多关注,这些事件被Angelopoulos等称为爆震流,简要回顾了爆震流的理论研究。当前理论认为,爆震流是磁泡(含较少等离子体的磁流通管)在交换不稳定性的作用下在等离子体片中的流动,磁泡图像很自然地解释了等离子体片中观测到的爆震流。理论预期的快速流在横穿磁尾方向的尺度,它的速度伴随着磁场松驰,压力和密度的降低以及电离层和地面特征都已被观测证实。  相似文献   

9.
We analyze the dynamical features and responsible factors of the low-frequency intraseasonal time scales which influenced the nature of onset, intensity and duration of active/break phases and withdrawal of the monsoon during the anomalous Indian summer monsoon of 2002 — the most severe drought recorded in recent times. During that season, persistent warm sea surface temperature anomalies over the equatorial Indian Ocean played a significant role in modulating the strength of the monsoon Hadley circulation. This in turn affected the onset and intense break spells especially the long break during the peak monsoon month of July. Strong low-frequency intraseasonal modulations with significant impact on the onset and active/break phases occurred in 2002 which were manifested as a good association between low-frequency intraseasonal oscillations and the onset and active/break spells. Further, SST anomalies over the equatorial Indo-Pacific region on low-frequency intraseasonal time scales were found to affect the equatorial eastward and thereby off-equatorial northward propagations of enhanced convection over the Indian region. These propagations in turn modulated the active/break cycle deciding the consequent severity of the 2002 drought.  相似文献   

10.
Using the data of amplitude scintillations recorded at 244 MHz from the geostationary satellite, FLEETSAT (73‡E) at a low latitude station, Waltair (17.7‡N, 83.3‡E, 20‡N dip), during the increasing sunspot activity period of 1997–2000, the effect of the geomagnetic storms on the occurrence of ionospheric scintillations has been studied. A total of 60 SC storms studied during this period, following the Aarons’ criterion, reveals that the local time of onset of the recovery phase of the geomagnetic storms play an important role in the generation or inhibition of the ionospheric irregularities. Out of the 60 storms studied, nearly 60 to 70% satisfied the categories I, II and III of Aarons’ criteria. However, in the remaining 30 to 40% of the cases, no consistent results were observed. Thus, there is a necessity for further investigation of the effect of geomagnetic storms on ionospheric irregularities, particularly with reference to the altitude variations of the F-layer (h’F) relating to the changes in the local electric fields.  相似文献   

11.
High winds are one of the nation’s leading damage-producing storm conditions. They do not include winds from tornadoes, winter storms, nor hurricanes, but are strong winds generated by deep low pressure centers, by thunderstorms, or by air flow over mountain ranges. The annual average property and crop losses in the United States from windstorms are $379 million and windstorms during 1959–1997 caused an average of 11 deaths each year. Windstorms range in size from a few hundred to hundreds of thousands square kilometers, being largest in the western United States where 40% of all storms exceed 135,000 km2. In the eastern United States, windstorms occur at a given location, on average, 1.4 times a year, whereas in the western US point averages are 1.9. Midwestern states average between 15 and 20 wind storms annually; states in the east average between 10 and 25 storms per year; and West Coast states average 27–30 storms annually. Storms causing insured property losses >$379 million and windstorms during 1959–1997 caused an average of 11 deaths each year. Windstorms range in size from a few hundred to hundreds of thousands square kilometers, being largest in the western United States where 40% of all storms exceed 135,000 km2. In the eastern United States, windstorms occur at a given location, on average, 1.4 times a year, whereas in the western US point averages are 1.9. Midwestern states average between 15 and 20 wind storms annually; states in the east average between 10 and 25 storms per year; and West Coast states average 27–30 storms annually. Storms causing insured property losses >1 million, labeled catastrophes, during 1952–2006 totaled 176, an annual average of 3.2. Catastrophic windstorm losses were highest in the West and Northwest climate regions, the only form of severe weather in the United States with maximum losses on the West Coast. Most western storms occurred in the winter, a result of Pacific lows, and California has had 31 windstorm catastrophes, more than any other state. The national temporal distribution of catastrophic windstorms during 1952–2006 has a flat trend, but their losses display a distinct upward trend with time, peaking during 1996–2006.  相似文献   

12.
The tropical storm database used in this study was obtained from the National Oceanic and Atmospheric Administration’s (NOAA) Coastal Service Center, using the Historical Hurricane Tracks tool. Queries were used to determine the number of storms of tropical origin that have impacted the State and each of its counties. A total of 76 storms of tropical origin passed over New York State between 1851 and 2005. Of these storms, 14 were classified as hurricanes. The remaining hurricanes passed over New York State as weaker or modified systems—27 tropical storms, 7 tropical depressions, and 28 extratropical storms (ET). Long Island experiences a disproportionate number of hurricanes and tropical storms. The average frequency of hurricanes and storms of tropical origin (all types) is one in every 11 years and one in every 2 years, respectively. September is the month of greatest frequency for storms of tropical origin, although the storms of greatest intensity tend to arrive later in the hurricane season and follow different poleward tracks. While El Nino Southern Oscillation (ENSO) cycles appear to show some influence, the frequency and intensity of storms of tropical origin appear to follow a multidecadal cycle. Storm activity was greatest in both the late 19th and 20th centuries. During periods of increased storm frequency and intensity storms reached New York State at progressively later dates. While the number and timing of storms of tropical origin is likely to increase, this increase appears to be attributed to a multidecadal cycle, as opposed to a trend in global warming.  相似文献   

13.
Episodic and localized illite mineralization is documented in the hydrothermally altered Soultz-sous-Forêts granite (Upper Rhine Graben, France). Separated grain-size fractions of altered granite and argillite vein samples contain mixtures of 2M1 and 1M trans-vacant illite varieties. The platy pseudohexagonal 2M1 illite phases dominate the vein fillings, whereas the 1M illite occurs largely as a fibrous pore-filling variety, which is particularly abundant in the granite matrix. Multiple phases of fluid injections into the granite body have resulted in different illite assemblages, each sample containing a mixture of polytype generations formed during different crystal growth events. On the basis of mineralogical and K–Ar isotopic constraints, the ages of these vein-mineralizing events are determined by plotting the K–Ar values of the various grain-size fractions against polytype abundance and the fitted volume-weighted crystallite thickness distributions. The results suggest a Permian age for the formation of the studied argillite veins, characterized by successive injections of hydrothermal fluids. Secondary episodes of illite crystallization occurred during Jurassic and Cretaceous (or even younger times) in both the veins and the granite matrix. There are indications that the polytype structure and composition of illite were strongly influenced by variations in fluid chemistry and the degree of fluid–rock interaction as the granite was progressively sealed during post-Variscan, episodic hydrothermal activity.  相似文献   

14.
In order to examine high-frequency variations of East Asian winter monsoon in Quaternary climatic extremes, two typical loess–paleosol sequences in the Chinese Loess Plateau were investigated. Sandy layers in the loess deposits, the “Upper sand” and “Lower sand” (layers L9 and L15, respectively), which represent a high-resolution record of paleomonsoon changes, have been sampled at intervals of 5–6 cm from sections at Luochuan and Xifeng. The grain size and magnetic susceptibility was measured for all samples. The grain-size results (a proxy of winter monsoon strength) indicate that the winter monsoon strength fluctuated on a millennial timescale during cold climatic extremes, with climatic events of a few hundred to a few thousand years. However, the winter monsoon was relatively stable during warm periods. The magnetic susceptibility signal (a proxy of summer monsoon intensity) is practically constant over the same period. This is tentatively explained by the assumption that the summer monsoon intensity was too low to be recorded in the magnetic susceptibility signal. The intensified winter monsoon events show periodicities in a range of 1000 to 2770 yr, with a dominant cycle of approximately 1450 yr. The detection of this oscillation in older glacial stages strongly suggests that it may be a pervasive cycle of the cold climatic phases of the Quaternary. Millennial-scale variations of the winter monsoon may be caused by instability of the westerly jet, which is determined by temperature differences between the polar and the equatorial regions.  相似文献   

15.
Fractal dynamics of geomagnetic storms   总被引:1,自引:1,他引:0  
We explore fluctuations of the horizontal component of the Earth’s magnetic field to identify scaling behaviour of the temporal variability in geomagnetic data recorded by the Intermagnet observatories during the solar cycle 23 (years 1996 to 2005). In this work, we use the remarkable ability of scaling wavelet exponents to highlight the singularities associated with discontinuities present in the magnetograms obtained at two magnetic observatories for six intense magnetic storms, including the sudden storm commencements of 14 July 2000, 29–31 October and 20–21 November 2003. In the active intervals that occurred during geomagnetic storms, we observe a rapid and unidirectional change in the spectral scaling exponent at the time of storm onset. The corresponding fractal features suggest that the dynamics of the whole time series is similar to that of a fractional Brownian motion. Our findings point to an evident relatively sudden change related to the emergence of persistency of the fractal power exponent fluctuations precedes an intense magnetic storm. These first results could be useful in the framework of extreme events prediction studies.  相似文献   

16.
The speeds of historical cool-season extratropical cyclones along the U.S. east coast, hereafter East Coast Winter Storms (ECWS), occurring during the period from 1951 to 2006 were computed. Average storm speed was 13.8 ms−1 with stronger storms generally moving faster than weaker storms and faster storms forming during the midwinter months (December–March). There was no clear trend in ECWS speed during the time period, although considerable season-to-season variability was present. The monthly and seasonal variations in storm speed could not be attributed to the El Ni?o-Southern Oscillation or North Atlantic Oscillation (NAO) alone. However, the speed of ECWS was considerably slower when both El Ni?o and the negative phase of NAO occurred simultaneously. Characteristic patterns in the upper levels of the atmosphere, specifically 300 hPa zonal winds and 500 hPa geopotential heights, were present during periods when ECWS speeds were among the slowest (and separately fastest). For slow storm speed, these patterns also prevailed during months in which El Ni?o and negative NAO phase occurred. These patterns were also present during months with extended runs of high oceanic storm surge. This provides a qualitative link between the atmospheric conditions associated with slow storms and potentially high coastal storm surge impacts. Among the prime consequences of ECWS speed are extended periods of high storm surge, mainly due to slow-moving storms. The sustained high tidal levels often lead to substantial damage caused by coastal flooding, overwash, and beach erosion.  相似文献   

17.
Anomalous sea level, anomalous observed dynamic height (0/400 db) and anomalous model dynamic height are examined at the locations of 13 island sea level stations in the tropical Pacific for each bimonth of the four year period 1979 to 1982. Starting in 1981, the anomalous dynamic height data show off-equatorial Rossby waves propagated toward the W boundary of the Pacific basin. At the W boundary, the model Rossby wave activity was found to have excited coastally trapped Kelvin-Munk waves which transmitted the anomalous dynamic height equatorward. At the equator, coastally trapped wave activity excited eastward propagating equatorial Kelvin waves, yielding a pair of anomalous peaks in dynamic height variability in the E equatorial Pacific associated with the 1982–1983 ENSO event. The evolution of the peaks in dynamic height associated with the Rossby and Kelvin wave activity reflects the redistribution of observed upper-ocean heat content in the W tropical Pacific, providing a qualitative hindcast for the 1982–1983 ENSO event. In consequence of these results, and the results of a related study (Inoue et al. 1985), the redistribution of both observed and model heat content, as evidenced in dynamic height in the W Pacific during the 23-year period 1964–1985, is examined for its ability to hindcast and forecast ENSO events in this period. Complex EOF analysis is applied to the Onset Phase of ENSO events occurring in 1968–69, 1972–73, 1976–77, and 1982–83; it is used to determine the characteristic redistribution of heat content (dynamic height) prior to the Mature Phase of ENSO events. This analysis found both model and observed dynamic height in the N hemisphere to be characterized by wind-driven, westward propagating, baroclinic Rossby wave activity, having a remarkably stable period of 3 years over the 23-year period. The complex time series associated with these first spatial eigen-functions are used to construct observed and model hindcast indices that yield high values one year prior to the Mature Phase of ENSO events of the period. These indices achieve these values due to the incidence upon the Philippine coast in fall/winter of a positive anomaly in dynamic height propagating from the east at nondispersive Rossby long wave speeds.  相似文献   

18.
Using simultaneous long-term observations of ionospheric scintillation at equator and anomaly crest region in the same longitude (Indian) zone comparative features of scintillation occurrence are brought out. The salient features are: (a) predominantly pre-midnight occurrence of scintillation at equator during winter and equinox seasons, (b) increase of pre-midnight scintillation occurrence with solar activity (c) shifting of occurrence peak during summer from post-midnight in low to pre-midnight in high solar activity periods (d) similarity of scintillation behaviour at these locations during winter and equinoxes but dissimilarity during summer. The solar activity response and magnetic effects indicate that the scintillations at the anomaly crest region in winter and equinox, particularly during high solar activity periods, are of equatorial origin while the summer events may be of local or mid-latitude origin.  相似文献   

19.
The quality of the surface wind analysis at the National Centre for Medium Range Weather Forecasts (NCMRWF), New Delhi over the tropical Indian Ocean and its improvement in 2001 are examined by comparing it within situ buoy measurements and satellite derived surface winds from NASA QuikSCAT satellite (QSCT) during 1999, 2000 and 2001. The NCMRWF surface winds suffered from easterly bias of 1.0–1.5 ms-1 in the equatorial Indian Ocean (IO) and northerly bias of 2.0–3.0 ms-1 in the south equatorial IO during 1999 and 2000 compared to QSCT winds. The amplitude of daily variability was also underestimated compared to that in QSCT. In particular, the amplitude of daily variability of NCMRWF winds in the eastern equatorial IO was only about 60% of that of QSCT during 1999 and 2000. The NCMRWF surface winds during 2001 have significantly improved with the bias of the mean analyzed winds considerably reduced everywhere bringing it to within 0.5 ms-1 of QSCT winds in the equatorial IO. The amplitude and phase of daily and intraseasonal variability are very close to that in QSCT almost everywhere during 2001. It is shown that the weakness in the surface wind analysis during 1999 and 2000 and its improvement in 2001 are related to the weakness in simulation of precipitation by the forecast model in the equatorial IO and its improvement in 2001.  相似文献   

20.
Analysis of 20-year time series of water levels in the northeastern Gulf of Mexico has revealed that meteotsunamis are ubiquitous in this region. On average, 1–3 meteotsunamis with wave heights >0.5 m occur each year in this area. The probability of meteotsunami occurrence is highest during March–April and June–August. Meteotsunamis in the northeastern Gulf of Mexico can be triggered by winter and summer extra-tropical storms and by tropical cyclones. In northwestern Florida most of the events are triggered by winter storms, while in west and southwest Florida they appear both in winter and summer. Atmospheric pressure and wind anomalies (periods <6 h) associated with the passage of squalls originated the majority of the observed meteotsunami events. The most intense meteotsunamigenic periods took place during El Niño periods (1997–1998, 2009–2010 and 2015–2016). Meteotsunamis were also active in 2005, a year characterized by exceptionally intense tropical cyclone activity. Meteotsunami incidence varied yearly and at periods between 2 and 5 years. Results from cross-wavelet analysis suggested that El Niño and meteotsunami activity are correlated at annual and longer-period bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号