首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Water samples from the Fraser, Skeena and Nass River basins of the Canadian Cordillera were analyzed for dissolved major element concentrations (HCO3, SO42−, Cl, Ca2+, Mg2+, K+, Na+), δ13C of dissolved inorganic carbon (δ13CDIC), and δ34S of dissolved sulfate (δ34SSO4) to quantify chemical weathering rates and exchanges of CO2 between the atmosphere, hydrosphere, and lithosphere. Weathering rates of silicates and carbonates were determined from major element mass balance. Combining the major element mass balance with δ34SSO4 (−8.9 to 14.1‰CDT) indicates sulfide oxidation (sulfuric acid production) and subsequent weathering of carbonate and to a lesser degree silicate minerals are important processes in the study area. We determine that on average, 81% of the riverine sulfate can be attributed to sulfide oxidation in the Cordilleran rivers, and that 25% of the total weathering cation flux can be attributed to carbonate and silicate dissolution by sulfuric acid. This result is validated by δ13CDIC values (−9.8 to −3.7‰ VPDB) which represents a mixture of DIC produced by the following weathering pathways: (i) carbonate dissolution by carbonic acid (−8.25‰) > (ii) silicate dissolution by carbonic acid (−17‰) ≈ (iii) carbonate dissolution by sulfuric acid derived from the oxidation of sulfides (coupled sulfide-carbonate weathering) (+0.5‰).δ34SSO4 is negatively correlated with δ13CDIC in the Cordilleran rivers, which further supports the hypothesis that sulfuric acid produced by sulfide oxidation is primarily neutralized by carbonates, and that sulfide-carbonate weathering impacts the δ13CDIC of rivers. The negative correlation between δ34SSO4 and δ13CDIC is not observed in the Ottawa and St. Lawrence River basins. This suggests other factors such as landscape age (governed by tectonic uplift) and bedrock geology are important controls on regional sulfide oxidation rates, and therefore also on the magnitude of sulfide-carbonate weathering—i.e., it is more significant in tectonically active areas.Calculated DIC fluxes due to Ca and Mg silicate weathering by carbonic acid (38.3 × 103 mol C · km−2 · yr−1) are similar in magnitude to DIC fluxes due to sulfide-carbonate weathering (18.5 × 103 mol C · km−2 · yr−1). While Ca and Mg silicate weathering facilitates a transfer of atmospheric CO2 to carbonate rocks, sulfide-carbonate weathering can liberate CO2 from carbonate rocks to the atmosphere when sulfide oxidation exceeds sulfide deposition. This implies that in the Canadian Cordillera, sulfide-carbonate weathering can offset up to 48% of the current CO2 drawdown by silicate weathering in the region.  相似文献   

2.
New major, trace and isotopic geochemical results from a regional study of springs discharging from the major carbonate rock aquifer in the Interlake Region of Manitoba, Canada, are used to understand water–rock reactions, timing of recharge/discharge, tufa formation processes, and as baseline data. Spring waters are fresh with total dissolved solids (TDS) concentrations ranging from 150 to 880 mg/L. Waters discharging in the northern part of the study area have lower TDS, are dominantly Ca–Mg–HCO3 waters with low SO4 concentrations (<< 50 mg/L), and appear to have interacted primarily with Silurian carbonate lithologies. In contrast, waters in the southeastern part of the study area have higher TDS and have elevated SO4 concentrations (up to 210 mg/L). Spring waters have elevated Mg/Camolar (1.23 ± 0.23), typically greater than congruent dissolution of dolomite. Ca and Mg concentrations and Mg/Camolar indicate that groundwater residence times were sufficient to allow equilibration with bedrock dolomite lithologies; elevated tritium in northern waters indicates a significant recharge component in the 1960's and 1970's. Tufa precipitates that have formed from many of the spring waters are low-Mg calcite (MgO = 1.70 to 5.80 wt.%). Sr concentrations are variable (57 to 657 ppm) and tufa Sr/Camolar ratios appear to be entirely controlled by spring water Sr/Camolar. Empirically determined Sr distribution coefficients (DSr = 0.389 ± 0.083) indicate rapid crystallization following CO2 degassing, consistent with heavier δ13CVPDB compared to spring waters. Sulfate concentrations are generally too low for calcitization (dedolomitization) reactions driven by anhydrite dissolution to be the dominant control on the elevated groundwater Mg/Camolar, implying either extensive sulfate reduction along the flow paths (however, δ13CDIC suggests the elevated SO4 is more consistent with Fe-sulfide oxidation), or that other processes are involved. Major ion ratios suggest that the waters in the southern part of the study area are more consistent with interaction with siliciclastic rocks than with anhydrite dissolution. We suggest that calcitization (dedolomitization) reactions driven by anhydrite dissolution may not dominate all carbonate aquifers and that mixing of waters in karst conduits combined with ion exchange reactions are important controls on water chemistry in these systems.  相似文献   

3.
Thirty-nine samples of both cold and thermal karst groundwater from Taiyuan, northern China were collected and analyzed with the aim of developing a better understanding of the geochemical processes that control the groundwater quality evolution in the region’s carbonate aquifers. The region’s karst groundwater system was divided into three geologically distinct sub-systems, namely, the Xishan Mountain karst groundwater subsystem (XMK), the Dongshan Mountain karst groundwater subsystem (DMK) and the Beishan Mountain karst groundwater subsystem (BMK). Hydrochemical properties of the karst groundwaters evolve from the recharge zones towards the cold water discharge zones and further towards the thermal water discharge zones. In the XMK and the DMK, the hydrochemical type of the groundwater evolves from HCO3-Ca·Mg in the recharge - flow-through zone, to HCO3·SO4-Ca·Mg/SO4·HCO3-Ca·Mg in the cold water discharge zone, and further to SO4-Ca·Mg in the thermal water discharge zone. By contrast, the water type changes from HCO3-Ca·Mg to HCO3·SO4-Ca·Mg in the BMK, with almost invariable TDS and temperatures all along from the recharge to the discharge zone. The concentrations of Sr, Si, Fe, F and of some trace elements (Al, B, Li, Mn, Mo, Co, Ni) increase as groundwater temperature increases. Different hydrogeochemical processes occur in the three karst groundwater sub-systems. In the XMK and the DMK, the geochemical evolution of the groundwater is jointly controlled by carbonate dissolution/precipitation, gypsum dissolution and dedolomitization, while only calcite and dolomite dissolution/precipitation occurs in the BMK without dedolomitization. The hydrogeochemical data of the karst groundwaters were used to construct individual geochemical reaction models for each of the three different karst groundwater sub-systems. The modeling results confirm that dedolomization is the major process controlling hydrochemical changes in the XMK and the DMK. In the thermal groundwaters, the dissolution rates of fluorite, siderite and strontianite were found to exceed those of the cold karst groundwater systems, which can explain the higher concentrations of F, Fe and Sr2+ that are found in these waters.  相似文献   

4.
The major ionic and dissolved inorganic carbon (DIC) concentrations and the stable carbon isotope composition of DIC (δ13CDIC) were measured in a freshwater aquifer contaminated by produced water brine with petroleum hydrocarbons. Our aim was to determine the effects of produced water brine contamination on the carbonate evolution of groundwater. The groundwater was characterized by three distinct anion facies: HCO3-rich, SO42−-rich and Cl-rich. The HCO3-rich groundwater is undergoing closed system carbonate evolution from soil CO2(g) and weathering of aquifer carbonates. The SO42−-rich groundwater evolves from gypsum induced dedolomitization and pyrite oxidation. The Cl-rich groundwater is contaminated by produced water brine and undergoes common ion induced carbonate precipitation. The δ13CDIC of the HCO3-rich groundwater was controlled by nearly equal contribution of carbon from soil CO2(g) and the aquifer carbonates, such that the δ13C of carbon added to the groundwater was −11.6‰. In the SO42−-rich groundwater, gypsum induced dedolomitization increased the 13C such that the δ13C of carbon added to the groundwater was −9.4‰. In the produced water brine contaminated Cl-rich groundwater, common ion induced precipitation of calcite depleted the 13C such that the δ13C of carbon added to the groundwater was −12.7‰. The results of this study demonstrate that produced water brine contamination of fresh groundwater in carbonate aquifers alters the carbonate and carbon isotopic evolution.  相似文献   

5.
6.
《Applied Geochemistry》2006,21(4):614-631
In the Szigetvár area, SW Hungary, shallow groundwaters draining upper Pleistocene loess and Holocene sediments are considerably contaminated by domestic effluents and leachates of farmland fertilizers. The loess contains calcite and dolomite, but gypsum was not recognized in these sediments. The anthropogenic inputs contain significant amounts of Ca and SO4. The Ca from these anthropogenic inputs is promoting calcite growth, with concomitant consumption of carbonate alkalinity, undersaturation of the system with respect to dolomite, and dolomite dissolution; in brief, is driving “dedolomitization reactions”. Geochemical arguments supporting the occurrence of “dedolomitization reactions” in the area are provided by the results of mass balance and thermodynamic analyses. The mass balances predicted the weather sequence dolomite > calcite > plagioclase > K-feldspar, at odds with widely accepted sequences of weatherability where calcite is the first mineral in the weathering sequence. The exchange between calcite and dolomite can be a side effect of “dedolomitization reactions” because they cause precipitation of calcite. The thermodynamic prerequisites for “dedolomitization reactions” are satisfied by most local groundwaters (70%) since they are supersaturated (or in equilibrium) with respect to calcite, undersaturated (or in equilibrium) with respect to dolomite, and undersaturated with respect to gypsum. The Ca vs. SO4 and Mg vs. SO4 trends are also compatible with homologous trends resulting from “dedolomitization reactions”.  相似文献   

7.
Conventional hydrochemical techniques and statistical analyses were applied to better understand the solute geochemistry and the hydrochemical process of shallow groundwater in the Qinghai Lake catchment. Shallow groundwater in the Qinghai Lake catchment is slightly alkaline, and is characterized by a high ion concentrations and low water temperature. The total dissolved solids (TDS) in most of the samples are <1,000?mg/L, i.e. fresh water and depend mainly on the concentration of SO4 2?, Cl? and Na+. Groundwater table is influenced directly by the residents?? groundwater consumption. Most of the groundwaters in the Qinghai Lake catchment belong to the Ca2+(Na+) ?CHCO3 ? type, while the Qinghai Lake, part of the Buha (BHR) and the Lake Side (LS) samples belong to the Na+?CCl? type. The groundwater is oversaturated with respect to aragonite, calcite and dolomite, but not to magnesite and gypsum. Solutes are mainly derived from strong evaporite dissolution in Daotang, BHR and LS samples and from strong carbonate weathering in Hargai and Shaliu samples. Carbonate weathering is stronger than evaporite dissolution with weak silicate weathering in the Qinghai Lake catchment. Carbonate weathering, ion exchange reaction and precipitation are the major hydrogeochemical processes responsible for the solutes in the groundwater in the Qinghai Lake catchment. Most of the shallow groundwaters are suitable for drinking. More attention should be paid to the potential pollution of nitrate, chloride and sulfide in shallow groundwater in the future.  相似文献   

8.
Sulfur isotopic compositions were determined by ion microprobe for 36 spots on anhydrite crystals in trachyandesitic pumices erupted from El Chichón Volcano in 1982. Individual anhydrite crystals are homogeneous in δ34S, within the ±1‰ (2σ) uncertainty of the method, but crystal-to-crystal variations are large (+2.5 to +10.9‰). The mean δ34S for anhydrite (+6.4 ± 2.1‰, 1σ) is significantly lower than earlier results for bulk anhydrite separates (+9.0 to +9.2‰). The difference between the mean δ34S values in these two populations may reflect a grain-size effect, with heavier sulfur concentrated in smaller anhydrite crystals, few of which were analyzed by ion microprobe. Variations in δ34S show no correlation with complex textures in anhydrite revealed by cathodoluminescence color. Ion-microprobe analyses of δ34S were also obtained on six ovoid-shaped inclusions of pyrrhotite, chalcopyrite, and/or intermediate sulfide solid solution hosted by silicate or oxide crystals, interpreted to be magmatic (δ34S = −0.1 to +2.7‰; mean +0.7‰), and on four irregularly shaped multiphase sulfide fragments in the matrix, interpreted as xenocrystic, which range widely in δ34S (−3.7 to +5.5‰). We evaluate four different mixing scenarios involving (1) magmatic anhydrite and sedimentary sulfate, (2) magmatic anhydrite and hydrothermal anhydrite, and anhydrite and coexisting sulfide crystals precipitated in different domains of a common magma reservoir that were affected by (3) different degrees of degassing or (4) different degrees of crustal sulfur contamination. The model involving physical contamination of sedimentary sulfate is considered untenable. The other three models are considered to be viable, but none of them can explain all observations. The results of this study and other recent investigations prompt a re-evaluation of the sulfur budget for the 1982 El Chichón eruption. We estimate that 2.2 × 1013 g of S was emitted, and that 58 wt.% of the sulfur was present as anhydrite prior to eruption, with the remainder in a vapor phase, with H2S/SO2 ≈ 9. The bulk magmatic δ34S value for the 1982 El Chichón trachyandesite is estimated as +4.1 to +5.8‰, typical of the relatively heavy sulfur isotopic compositions that characterize subduction-related magmas.  相似文献   

9.
This study was conducted to evaluate factors regulating groundwater quality in an area with agriculture as main use. Thirty groundwater samples have been collected from Razan area (Hamadan, Iran) for hydrochemical investigations to understand the sources of dissolved ions and assess the chemical quality of the groundwater. The chemical compositions of the groundwater are dominated by Na+, Ca2+, HCO3 , Cl and SO4 2−, which have been derived largely from natural chemical weathering of carbonate, gypsum and anthropogenic activities of fertilizer’s source. The production of SO4 2− has multiple origins, mainly from dissolution of sulphate minerals, oxidation of sulphide minerals and anthropogenic sources. The major anthropogenic components in the groundwater include Na+, Cl, SO4 2− and NO3 , with Cl and NO3 being the main contributors to groundwater pollution in Razan area.  相似文献   

10.
A system of connected lignite mining pits (part of the former Goitsche mining complex, Germany) was flooded with river water between 1999 and 2002. A considerable accumulation of acid associated with oxidized sulfides in sediments was seen as a critical point for the development of the lake water. To characterize the components contributing to the supply of dissolved lake water SO4 hydro-chemical and isotope investigations with respect to groundwater, pore water in the sulfide bearing sediments, river water and lake water were performed. δ34S of pore water SO4 that was dominated by oxidized pyrites ranges around −25‰ VCDT and differs strongly from river water SO4 with about +4.4‰. Thus, interactions between lake water and sediments were particularly pronounced during the first phase of flooding. For this period, a more quantitative estimation of the SO4 components in the lake water was difficult because of the heterogeneous SO4 distributions between the different sub-basins of the lake and according to the flooding process itself. Later, a component separation was attempted following mixing of the whole lake, which first occurred in spring 2002. A very heterogeneous groundwater environment with respect to highly variable SO4 concentrations and δ34S values and changing interaction with the forming lakes proved to be one of the most important limitations in the calculations of the mixing.  相似文献   

11.
The alluvial aquifer of the Guadalquivir River comprises shallow Quaternary deposits located in the central-eastern part of the Province of Jaén in southern Spain, where groundwater resources are used mainly for crop irrigation in an important agricultural area. In order to establish the baseline hydrochemical conditions and processes determining the groundwater quality, groundwater and river water samples were collected as part of an integrated investigation that coupled multivariate statistical analysis with hydrochemical methods to identify and interpret the groundwater chemistry of the aquifer system. Three main hydrochemical types (Mg–Ca–HCO3, Ca–Mg–SO4–HCO3–Cl and Na–Ca–Mg–Cl–SO4) were identified. Further interpretation, using R-mode principal components analysis (PCA) conducted with 13 hydrochemical variables, identified two principal components which explain ⅔ of the variance in the original data. In combination with the hydrochemical interpretation, mineralogical analyses of the aquifer sediment together with inverse geochemical modelling using NETPATH showed that dedolomitization (calcite precipitation and dolomite dissolution driven by gypsum dissolution) is the principal hydrochemical process controlling the regional groundwater chemistry. Other processes such as silicate weathering, ion exchange, mixing between river water and groundwater, and agricultural practices also affect the groundwater chemistry.  相似文献   

12.
An approach is presented to investigate the regional evolution of groundwater in the basin of the Amacuzac River in Central Mexico. The approach is based on groundwater flow cross-sectional modeling in combination with major ion chemistry and geochemical modeling, complemented with principal component and cluster analyses. The hydrogeologic units composing the basin, which combine aquifers and aquitards both in granular, fractured and karstic rocks, were represented in sections parallel to the regional groundwater flow. Steady-state cross-section numerical simulations aided in the conceptualization of the groundwater flow system through the basin and permitted estimation of bulk hydraulic conductivity values, recharge rates and residence times. Forty-five water locations (springs, groundwater wells and rivers) were sampled throughout the basin for chemical analysis of major ions. The modeled gravity-driven groundwater flow system satisfactorily reproduced field observations, whereas the main geochemical processes of groundwater in the basin are associated to the order and reactions in which the igneous and sedimentary rocks are encountered along the groundwater flow. Recharge water in the volcanic and volcano-sedimentary aquifers increases the concentration of HCO3 , Mg2+ and Ca2+ from dissolution of plagioclase and olivine. Deeper groundwater flow encounters carbonate rocks, under closed CO2 conditions, and dissolves calcite and dolomite. When groundwater encounters gypsum lenses in the shallow Balsas Group or the deeper Huitzuco anhydrite, gypsum dissolution produces proportional increased concentration of Ca2+ and SO4 2–; two samples reflected the influence of hydrothermal fluids and probably halite dissolution. These geochemical trends are consistent with the principal component and cluster analyses.  相似文献   

13.
In order to reconstruct paleo-environmental conditions for the saline playa lakes of the Rio Grande Rift, we investigated sediment sulfate sources using sulfur isotope compositions of dissolved ions in modern surface water, groundwater, and precipitated in the form of gypsum sediments deposited during the Pleistocene and Holocene in the Tularosa and Estancia Basins. The major sulfate sources are Lower and Middle Permian marine evaporites (δ34S of 10.9-14.4‰), but the diverse physiography of the Tularosa Basin led to a complex drainage system which contributed sulfates from various sources depending on the climate at the time of sedimentation. As inferred from sulfur isotope mass balance constraints, weathering of sulfides of magmatic/hydrothermal and sedimentary origin associated with climate oscillations during Last Glacial Maximum contributed about 35-50% of the sulfates and led to deposition of gypsum with δ34S values of −1.2‰ to 2.2‰ which are substantially lower than Permian evaporates. In the Estancia Basin, microbial sulfate reduction appears to overprint sulfur isotopic signatures that might elucidate past groundwater flows. A Rayleigh distillation model indicates that about 3-18% of sulfates from an inorganic groundwater pool (δ34S of 12.6-13.8‰) have been metabolized by bacteria and preserved as partially to fully reduced sulfur-bearing minerals species (elemental sulfur, monosulfides, disulfides) with distinctly negative δ34S values (−42.3‰ to −20.3‰) compared to co-existing gypsum (−3.8‰ to 22.4‰). For the Tularosa Basin microbial sulfate reduction had negligible effect on δ34S value of the gypsiferous sediments most likely because of higher annual temperatures (15-33 °C) and lower organic carbon content (median 0.09%) in those sediments leading to more efficient oxidation of H2S and/or smaller rates of sulfate reduction compared to the saline playas of the Estancia Basin (5-28 °C; median 0.46% of organic carbon).The White Sands region of the Tularosa Basin is frequently posited as a hydrothermal analogue for Mars. High temperatures of groundwater (33.3 °C) and high δ18O(H2O) values (1.1‰) in White Sands, however, are controlled predominantly by seasonal evaporation rather than the modern influx of hydrothermal fluids. Nevertheless, it is possible that some of the geochemical processes in White Sands, such as sulfide weathering during climate oscillations and upwelling of highly mineralized waters, might be considered as valid terrestrial analogues for the sulfate cycle in places such as Meridiani Planum on Mars.  相似文献   

14.
The coexistence of magmatic anhydrite and sulfide minerals in non-arc-related mafic magmas has only rarely been documented. Likewise the S isotope fractionation between sulfate and sulfide in mafic rocks has infrequently been measured. In the Kharaelakh intrusion associated with the world-famous Noril’sk ore district in Siberia coexisting magmatic anhydrite and sulfide minerals have been identified. Sulfur isotope compositions of the anhydrite-sulfide assemblages have been measured via both ion microprobe and conventional analyses to help elucidate the origin of the anhydrite-sulfide pairs. Magmatic anhydrite and chalcopyrite are characterized by δ34S values between 18.8‰ and 22.8‰, and 9.3‰ and 13.2‰, respectfully. Coexisting anhydrite and chalcopyrite show Δ values that fall between 8.5‰ and 11.9‰. Anhydrite in the Kharaelakh intrusion is most readily explained by the assimilation of sulfate from country rocks; partial reduction to sulfide led to mixing between sulfate-derived sulfide and sulfide of mantle origin. The variable anhydrite and sulfide δ34S values are a function of differing degrees of sulfate reduction, variable mixing of sulfate-derived and mantle sulfide, incomplete isotopic homogenization of the magma, and a lack of uniform attainment of isotopic equilibrium during subsolidus cooling. The δ34S values of sulfide minerals have changed much less with cooling than have anhydrite values due in large part to the high sulfide/sulfate ratio. Variations in both sulfide and anhydrite δ34S values indicate that isotopically distinct domains existed on a centimeter scale. Late stage hydrothermal anhydrite and pyrite also occur associated with Ca-rich hydrous alteration assemblages (e.g., thomsonite, prehnite, pectolite, epidote, xonotlite). δ34S values of secondary hydrothermal anhydrite and pyrite determined by conventional analyses are in the same range as those of the magmatic minerals. Anhydrite-pyrite Δ values are in the 9.1-10.1‰ range, and are smaller than anticipated for the low temperatures indicated by the silicate alteration assemblages. The small Δ values are suggestive of either sulfate-sulfide isotopic disequilibrium or closure of the system to further exchange between ∼550 and 600 °C. Our results confirm the importance of the assimilation of externally derived sulfur in the generation of the elevated δ34S values in the Kharaelakh intrusion, but highlight the sulfur isotopic variability that may occur in magmatic systems. In addition, our results confirm the need for more precise experimental determination of sulfate-sulfide sulfur isotope fractionation factors in high-T systems.  相似文献   

15.
Overextraction of groundwater is widely occurring along the coast where good quality groundwater is at risk, due to urbanization, tourist development and intensive agriculture. The Sabratah area at the northern central part of Jifarah Plain, Northwest Libya, is a typical area where the contamination of the aquifer in the form of saltwater intrusion, gypsum/anhydrite dissolution and high nitrate concentrations is very developed. Fifty groundwater samples were collected from the study area and analysed for certain parameters that indicate salinization and pollution of the aquifer. The results demonstrate high values of the parameters electrical conductivity, sodium, potassium, magnesium, chloride and sulphate which can be attributed to seawater intrusion. The intensive extraction of groundwater from the aquifer reduces freshwater outflow to the sea, creates drawdown cones and lowering of the water table to as much as 30 m below mean sea level. Irrigation with nitrogen fertilizers and domestic sewage and movement of contaminants in areas of high hydraulic gradients within the drawdown cones probably are responsible for the high nitrate concentration towards the south of the region. Seawater intrusion and deep salt water upconing result in general high SO4 2? concentrations in groundwater near the shoreline, where localized SO4 2? anomalies are also due to the dissolution of sebkha deposits for few wells in the nearby sebkhas. Upstream, the increase in SO4 2? concentrations in the south is ascribed to the dissolution of gypsum at depth in the upper aquifer.  相似文献   

16.
Soils overlying two porphyry Cu deposits (Spence, Gaby Sur) and the Pampa del Tamarugal, Atacama Desert, Northern Chile were collected in order to investigate the extent to which saline groundwaters influence “soil” chemistry in regions with thick Miocene and younger sediment cover. Soil carbonate (calcite) was analyzed for C and O isotopes and pedogenic gypsum for S isotopes. Soil calcite is present in all soils at the Spence deposit, but increases volumetrically above two fracture zones that cut the Miocene gravels, including gravels that overlie the deposit. The C isotope composition of carbonate from the soils overlying fracture zones is indistinguishable from pedogenic carbonate elsewhere at the Spence deposit; all δ13CVPDB values fall within a narrow range (1.40–4.23‰), consistent with the carbonate having formed in equilibrium with atmospheric CO2. However, δ18OVPDB for carbonate over both fracture zones is statistically different from carbonate elsewhere (average δ18OVPDB = 0.82‰ vs. −2.23‰, respectively), suggesting involvement of groundwater in their formation. The composition of soils at the Tamarugal anomaly has been most strongly affected by earthquake-related surface flooding and evaporation of groundwater; δ13CVPDB values (−4.28‰ to −2.04‰) are interpreted to be a mixture of dissolved inorganic C (DIC) from groundwater and atmospheric CO2. At the Spence deposit, soils only rarely contain sufficient SO4 for S isotope analysis; the SO4-bearing soils occur only above the fracture zones in the gravel. Results are uniform (3.7–4.9‰ δ34SCDT), which is near the middle of the range for SO4 in groundwater (0.9–7.3‰). Sulfur in soils at the Gaby Sur deposit (3.8–6.1‰ δ34SCDT) is dominated by gypsum, which primarily occurs on the flanks and tops of hills, suggesting deposition from SO4-rich fogs. Sulfate in Gaby Sur deposit gypsum is possibly derived by condensation of airborne SO4 from volcanic SO2 from the nearby Andes. At the Gaby Sur deposit and Tamarugal anomaly, pedogenic stable isotopes cannot distinguish between S from porphyry or redeposited SO4 from interior salars.The three sites studied have had different histories of salt accumulation and display variable influence of groundwater, which is interpreted to have been forced to the surface during earthquakes. The clear accumulation of salts associated with fractures at the Spence deposit, and shifts in the isotopic composition of carbonate and sulfate in the fractures despite clear evidence of relatively recent removal of salts indicates that transfer from groundwater is an ongoing process. The interpretation that groundwaters can influence the isotopic composition of pedogenic calcrete and gypsum has important implications for previous studies that have not considered this mechanism.  相似文献   

17.
Changes in the climatic conditions during the Late Quaternary and Holocene greatly impacted the hydrology and geochemical evolution of groundwaters in the Great Lakes region. Increased hydraulic gradients from melting of kilometer-thick Pleistocene ice sheets reorganized regional-scale groundwater flow in Paleozoic aquifers in underlying intracratonic basins. Here, we present new elemental and isotopic analyses of 134 groundwaters from Silurian-Devonian carbonate and overlying glacial drift aquifers, along the margins of the Illinois and Michigan basins, to evaluate the paleohydrology, age distribution, and geochemical evolution of confined aquifer systems. This study significantly extends the spatial coverage of previously published groundwaters in carbonate and drift aquifers across the Midcontinent region, and extends into deeper portions of the Illinois and Michigan basins, focused on the freshwater-saline water mixing zones. In addition, the hydrogeochemical data from Silurian-Devonian aquifers were integrated with deeper basinal fluids, and brines in Upper Devonian black shales and underlying Cambrian-Ordovician aquifers to reveal a regionally extensive recharge system of Pleistocene-age waters in glaciated sedimentary basins. Elemental and isotope geochemistry of confined groundwaters in Silurian-Devonian carbonate and glacial drift aquifers show that they have been extensively altered by incongruent dissolution of carbonate minerals, dissolution of halite and anhydrite, cation exchange, microbial processes, and mixing with basinal brines. Carbon isotope values of dissolved inorganic carbon (DIC) range from −10 to −2‰, 87Sr/86Sr ratios range from 0.7080 to 0.7090, and δ34S-SO4 values range from +10 to 30‰. A few waters have elevated δ13CDIC values (>15‰) from microbial methanogenesis in adjacent organic-rich Upper Devonian shales. Radiocarbon ages and δ18O and δD values of confined groundwaters indicate they originated as subglacial recharge beneath the Laurentide Ice Sheet (14-50 ka BP, −15 to −13‰ δ18O). These paleowaters are isolated from shallow flow systems in overlying glacial drift aquifers by lake-bed clays and/or shales. The presence of isotopically depleted waters in Paleozoic aquifers at relatively shallow depths illustrates the importance of continental glaciation on regional-scale groundwater flow. Modern groundwater flow in the Great Lakes region is primarily restricted to shallow unconfined glacial drift aquifers. Recharge waters in Silurian-Devonian and unconfined drift aquifers have δ18O values within the range of Holocene precipitation: −11 to −8‰ and −7 to −4.5‰ for northern Michigan and northern Indiana/Ohio, respectively. Carbon and Sr isotope systematics indicate shallow groundwaters evolved through congruent dissolution of carbonate minerals under open and closed system conditions (δ13CDIC = −14.7 to−11.1‰ and 87Sr/86Sr = 0.7080-0.7103). The distinct elemental and isotope geochemistry of Pleistocene- versus Holocene-age waters further confirms that surficial flow systems are out of contact with the deeper basinal-scale flow systems. These results provide improved understanding of the effects of past climate change on groundwater flow and geochemical processes, which are important for determining the sustainability of present-day water resources and stability of saline fluids in sedimentary basins.  相似文献   

18.
The origin of pedogenic salts in the Atacama Desert has long been debated. Possible salt sources include in situ weathering at the soil site, local sources such as aerosols from the adjacent Pacific Ocean or salt-encrusted playas (salars), and extra-local atmospheric dust. To identify the origin of Ca and S in Atacama soil salts, we determined δ34S and 87Sr/86Sr values of soil gypsum/anhydrite and 87Sr/86Sr values of soil calcite along three east-west trending transects. Our results demonstrate the strong influence of marine aerosols on soil gypsum/anhydrite development in areas where marine fog penetrates inland. Results from an east-west transect located along a breach in the Coastal Cordillera show that most soils within 90 km of the coast, and below 1300 m in elevation, are influenced by marine aerosols and that soils within 50 km, and below 800 m in elevation, receive >50% of Ca and S from marine aerosols (δ34S values > 14‰ and 87Sr/86Sr values >0.7083). In areas where the Coastal Cordillera is >1200 m in elevation, however, coastal fog cannot penetrate inland and the contribution of marine aerosols to soils is greatly reduced. Most pedogenic salts from inland soils have δ34S values between +5.0 to +8.0‰ and 87Sr/86Sr ratios between 0.7070 and 0.7076. These values are similar to average δ 34S and 87Sr/86Sr values of salts from local streams, lakes, and salars (+5.4 ±2‰ δ34S and 0.70749 ± 0.00045 87Sr/86Sr) in the Andes and Atacama, suggesting extensive eolian reworking of salar salts onto the surrounding landscape. Ultimately, salar salts are precipitated from evaporated ground water, which has acquired its dissolved solutes from water-rock interactions (both high and low-temperature) along flowpaths from recharge areas in the Andes. Therefore, the main source for Ca and S in gypsum/anhydrite in non-coastal soils is indirect and involves bedrock alteration, not surficially on the hyperarid landscape, but in the subsurface by ground water, followed by eolian redistribution of ground-water derived salar salts to soils. The spatial distribution of high-grade nitrate deposits appears to correspond with areas that receive the lowest fluxes of local marine and salar salt, supporting arguments for tropospheric nitrogen as the main source for soil nitrate.  相似文献   

19.
The S and O isotopic composition of dissolved SO4, used as a tracer for SO4 sources, was applied to the water of the Llobregat River system (NE Spain). The survey was carried out at 30 sites where surface water was sampled on a monthly basis over a period of 2a. The concentration of dissolved SO4 varied from 20 to 1575 mg L−1. Sulphur isotopic compositions clustered in two populations: one – 93% of the samples – had positive values with a mode of +9‰; the other had negative values and a mode of −5‰. Data for δ18OSO4 showed a mean value of +11‰, with no bi-modal distribution, though lower values of δ18O corresponded to samples with negative δ34S. These values can not be explained solely by the contribution of bedrock SO4 sources: that is, sulphide oxidation and the weathering of outcrops of sulphates, though numerous chemical sediments exist in the basin. Even in a river with a high concentration of natural sources of dissolved SO4, such as the Llobregat River, the δ34S values suggest that dissolved SO4 is controlled by a complex mix of both natural and anthropogenic sources. The main anthropogenic sources in this basin are fertilizers, sewage, potash mine effluent and power plant emissions. Detailed river water sampling, together with the chemical and isotopic characterisation of the main anthropogenic inputs, allowed determination of the influence of redox processes, as well as identification of the contribution of natural and anthropogenic SO4 sources and detection of spatial variations and seasonal changes among these sources. For instance, in the Llobregat River the input of fertilisers is well marked seasonally. Minimum values of δ34S are reported during fertilization periods – from January to March – indicating a higher contribution of this source. The dual isotope approach, δ34S and δ18O, is useful to better constrain the sources of SO4. Moreover, in small-scale studies, where the inputs are well known and limited, the mixing models can be enhanced and the contribution of the different sources can be quantified to some extent.  相似文献   

20.
Groundwater from karst subterranean streams is among the world’s most important sources of drinking water supplies, and the hydrochemical characteristics of karst water are impacted by both natural environment and people. Therefore, the study of hydrochemistry and its solutes’ sources is very important to ensure the normal function of life support systems. In this paper, thirty?five representative karst groundwater samples were collected from different aquifers (limestone and dolomite) and various land use types in Chongqing to trace the sources of solutes and relative hydrochemical processes. Hydrogeochemical types of karst groundwater in Chongqing were mainly of the Ca?HCO3 type or Ca (Mg)?HCO3 type. However, some hydrochemical types of karst groundwater were the K+Na+Ca?SO4 type (G25 site) or Ca?HCO3+SO4 type (G26 and G14 site), indicating that the hydrochemistry of these sites might be strongly influenced by anthropogenic activities or unique geological characteristics. The dissolved Sr concentrations of the studied groundwater ranged from 0.57 to 15.06 μmmol/L, and the 87Sr/86Sr varied from 0.70751 to 0.71627. The δ34S?SO42? fell into a range of ?6.8‰?21.5‰, with a mean value of 5.6‰. The variations of both 87Sr/86Sr and Sr values of the groundwater samples indicated that the Sr element was controlled by the weathering of limestone, dolomite and silicate rock. However, the figure of 87Sr/86Sr vs. Sr2+/[K++Na+] showed that the anthropogenic inputs also obviously contributed to the Sr contents. For tracing the detailed anthropogenic effects, we traced the sources of solutes collected karst groundwater samples in Chongqing according to the δ34S value of potential sulfate sources. The variations of both δ34S and 1/SO42? values of the groundwater samples indicated that the atmospheric acid deposition (AAD), dissolution of gypsum (GD), oxidation of sul?de mineral (OS) or anthropogenic inputs (SF: sewage or fertilizer) have contributed to solutes in karst groundwater. The influence of oxidation of sul?de mineral, atmospheric acid deposit and anthropogenic inputs to groundwater in Chongqing karst areas was much widespread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号