首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to their potential retention capacity, clay minerals have been proposed for use in the engineered barriers for the storage of high-level radioactive actinides in deep geological waste repositories. However, there is still a lack of data on the sorption of actinides in clays in conditions simulating those of the repositories. The present article examines the sorption of two lanthanides (actinide analogues) in a set of smectitic clays (FEBEX bentonite, MX80 bentonite, hectorite, saponite, Otay montmorillonite, and Texas montmorillonite). Distribution coefficients (Kd) were determined in two media: water and 0.02 mol L−1 Ca, the latter representing the cement leachates that may modify the chemical composition of the water in contact with the clay. The Kd values of the lanthanides used in the experiments (La and Lu) varied greatly (25-50 000 L kg−1) depending on the ionic medium (higher values in water than in the Ca medium), the initial lanthanide concentration (up to three orders of magnitude decrease inversely with lanthanide concentration), and the examined clay (up to one order of magnitude for the same lanthanide and sorption medium). Freundlich and Langmuir isotherms were used to fit sorption data to allow comparison of the sorption parameters among smectites. The model based on the two-site Langmuir isotherms provided the best fit of the sorption data, confirming the existence of sorption sites with different binding energies. The sites with higher sorption affinity were about 6% of the total sorption capacity in the water medium, and up to 17% in the Ca medium, although in this latter site sorption selectivity was lower. The wide range of Kd values obtained regarding the factors examined indicated that the retention properties of the clays should also be considered when selecting a suitable clay for engineered barriers.  相似文献   

2.
Strontium-90 is a beta emitting radionuclide produced during nuclear fission, and is a problem contaminant at many nuclear facilities. Transport of 90Sr in groundwaters is primarily controlled by sorption reactions with aquifer sediments. The extent of sorption is controlled by the geochemistry of the groundwater and sediment mineralogy. Here, batch sorption experiments were used to examine the sorption behaviour of 90Sr in sediment–water systems representative of the UK Sellafield nuclear site based on groundwater and contaminant fluid compositions. In experiments with low ionic strength groundwaters (<0.01 mol L−1), pH variation is the main control on sorption. The sorption edge for 90Sr was observed between pH 4 and 6 with maximum sorption occurring (Kd ∼ 103 L kg−1) at pH 6–8. At ionic strengths above 10 mmol L−1, and at pH values between 6 and 8, cation exchange processes reduced 90Sr uptake to the sediment. This exchange process explains the lower 90Sr sorption (Kd ∼ 40 L kg−1) in the presence of artificial Magnox tank liquor (IS = 29 mmol L−1). Strontium K-edge EXAFS spectra collected from sediments incubated with Sr2+ in either HCO3-buffered groundwater or artificial Magnox tank liquor, revealed a coordination environment of ∼9 O atoms at 2.58–2.61 Å after 10 days. This is equivalent to the Sr2+ hydration sphere for the aqueous ion and indicates that Sr occurs primarily in outer sphere sorption complexes. No change was observed in the Sr sorption environment with EXAFS analysis after 365 days incubation. Sequential extractions performed on sediments after 365 days also found that ∼80% of solid associated 90Sr was exchangeable with 1 M MgCl2 in all experiments. These results suggest that over long periods, 90Sr in contaminated sediments will remain primarily in weakly bound surface complexes. Therefore, if groundwater ionic strength increases (e.g. by saline intrusion related to sea level rise or by design during site remediation) then substantial remobilisation of 90Sr is to be expected.  相似文献   

3.
The results from batch sorption experiments on montmorillonite systems have demonstrated that bivalent transition metals compete with one another for sorption sites. For safety analysis studies of high level radioactive waste repositories with compacted bentonite near fields, the importance of competitive sorption on the migration of radionuclides needs to be evaluated. Under reducing conditions, the bentonite porewater chosen has a Fe(II) concentration of ∼5.3 × 10−5 M through saturation with siderite. The purpose of this paper is to assess the influence of such high Fe(II) concentrations on the transport of Ni(II) through compacted bentonite, Ni(II) was chosen as an example of a bivalent transition metal. The one-dimensional calculations were carried out at different Ni(II) equilibrium concentrations at the boundary (Ni(II)EQBM) with the reactive transport code MCOTAC incorporating the two site protolysis non electrostatic surface complexation/cation exchange sorption model, MCOTAC-sorb. At a Ni(II)EQBM level of 10−7 M without Fe(II) competition, the reactive transport calculations using a constant Kd approach and the MCOTAC-sorb calculation yielded the same breakthrough curves. At higher Ni(II)EQBM (10−5 M), the model calculations with MCOTAC-sorb indicated a breakthrough which was shifted to later times by a factor of ∼5 compared with the use of the constant Kd approach.When sorption competition was included in the calculations, the magnitude of the influence depended on the sorption characteristics of the two competing sorbates and their respective concentrations. At background Fe(II) concentrations of 5.3 × 10−5 M, and a Ni(II)EQBM level of 10−7 M, the Ni(II) breakthrough time was ∼15 times earlier than in the absence of competition. At such Fe(II) concentrations the Ni(II) breakthrough curves at all source concentrations less than 3.5 × 10−5 M (fixed by the NiCO3,S solubility limit) are the same i.e. Ni(II) exhibits linear (low) sorption.Competitive sorption effects can have significant influences on the transport of radionuclides through compacted bentonite i.e. reduce the migration rates. Since, for the case considered here, the Fe(II) concentration in the near field of a high-level radioactive waste repository may change in time and space, the transport of bivalent transition metal radionuclides can only be properly modelled using a multi-species reactive transport code which includes a sorption model.  相似文献   

4.
Sorption of Ni(II) onto chlorite surfaces was studied as a function of pH (5–10), ionic strength (0.01–0.5 M) and Ni concentration (10−8–10−6 M) in an Ar atmosphere using batch sorption with radioactive 63Ni as tracer. Such studies are important since Ni(II) is one of the major activation products in spent nuclear fuel and sorption data on minerals such as chlorite are lacking. The sorption of Ni(II) onto chlorite was dependent on pH but not ionic strength, which indicates that the process primarily comprises sorption by surface complexation. The maximum sorption was at pH ∼ 8 (Kd = ∼10−3 cm3/g). Desorption studies over a period of 1–2 weeks involving replacement of the aqueous solution indicated a low degree of desorption. The acid–base properties of the chlorite mineral were determined by titration and described using a non-electrostatic surface complexation model in FITEQL. A 2-pK NEM model and three surface complexes, Chl_OHNi2+, Chl_OHNi(OH)+ and Chl_OHNi(OH)2, gave the best fit to the sorption results using FITEQL. The high Kd values and low degree of desorption observed indicate that under expected groundwater conditions, a large fraction of Ni(II) that is potentially leachable from spent nuclear fuel may be prevented from migrating by sorption onto chlorite surfaces.  相似文献   

5.
Batch uptake experiments and X-ray element mapping and spectroscopic techniques were used to investigate As(V) (arsenate) uptake mechanisms by calcite, including adsorption and coprecipitation. Batch sorption experiments in calcite-equilibrated suspensions (pH 8.3; PCO2 = 10−3.5 atm) reveal rapid initial sorption to calcite, with sorption rate gradually decreasing with time as available sorption sites decrease. An As(V)-calcite sorption isotherm determined after 24 h equilibration exhibits Langmuir-like behavior up to As concentrations of 300 μM. Maximum distribution coefficient values (Kd), derived from a best fit to a Langmuir model, are ∼190 L kg−1.Calcite single crystals grown in the presence of As(V) show well-developed rhombohedral morphology with characteristic growth hillocks on surfaces at low As(V) concentrations (?5 μM), but habit modification is evident at As(V) concentrations ?30 μM in the form of macrostep development preferentially on the − vicinal surfaces of growth hillocks. Micro-X-ray fluorescence element mapping of surfaces shows preferential incorporation of As in the − vicinal faces relative to + vicinals. EXAFS fit results for both adsorption and coprecipitation samples confirm that As occurs in the 5+ oxidation state in tetrahedral coordination with oxygen, i.e., as arsenate. For adsorption samples, As(V) forms inner-sphere surface complexes via corner-sharing with Ca octahedra. As(V) coprecipitated with calcite substitutes in carbonate sites but with As off-centered, as indicated by two Ca shells, and with likely disruption of local structure. The results indicate that As(V) interacts strongly with the calcite surface, similar to often-cited analog phosphate, and uptake can occur via both adsorption and coprecipitation reactions. Therefore, calcite may be effective for partial removal of dissolved arsenate from aquatic and soil systems.  相似文献   

6.
We studied selenite () retention by magnetite () using both surface complexation modeling and X-ray absorption spectroscopy (XAS) to characterize the processes of adsorption, reduction, and dissolution/co-precipitation. The experimental sorption results for magnetite were compared to those of goethite (FeIIIOOH) under similar conditions. Selenite sorption was investigated under both oxic and anoxic conditions and as a function of pH, ionic strength, solid-to-liquid ratio and Se concentration. Sorption onto both oxides was independent of ionic strength and decreased as pH increased, as expected for anion sorption; however, the shape of the sorption edges was different. The goethite sorption data could be modeled assuming the formation of an inner-sphere complex with iron oxide surface sites (SOH). In contrast, the magnetite sorption data at low pH could be modeled only when the dissolution of magnetite, the formation of aqueous iron-selenite species, and the subsequent surface complexation of these species were implemented. The precipitation of ferric selenite was the predominant retention process at higher selenite concentrations (>1 × 10−4 M) and pH < 5, which was in agreement with the XAS results. Sorption behavior onto magnetite was similar under oxic and anoxic conditions. Under anoxic conditions, we did not observe the reduction of selenite. Possible reasons for the absence of reduction are discussed. In conclusion, we show that under acidic reaction conditions, selenite retention by magnetite is largely influenced by dissolution and co-precipitation processes.  相似文献   

7.
The importance of accessing safe aquifers in areas with high As is being increasingly recognized. The present study aims to investigate the sorption and mobility of As at the sediment-groundwater interface to identify a likely safe aquifer in the Holocene deposit in southwestern Bangladesh. The upper, shallow aquifer at around 18 m depth, which is composed mainly of very fine, grey, reduced sand and contains 24.3 μg/g As, was found to produce highly enriched groundwater (190 μg/L As). In contrast, deeper sediments are composed of partly oxidized, brownish, medium sand with natural adsorbents like Fe- and Al-oxides; they contain 0.76 μg/g As and impart low As concentrations to the water (4 μg/L). These observations were supported by spectroscopic studies with SEM, TEM, XRD and XRF, and by adsorption, leaching, column tests and sequential extraction. A relatively high in-situ dissolution rate (Rr) of 1.42 × 10−16 mol/m2/s was derived for the shallower aquifer from the inverse mass-balance model. The high Rr may enhance As release processes in the upper sediment. The field-based reaction rate (Kr) was extrapolated to be roughly 1.23 × 10−13 s−1 and 6.24 × 10−14 s−1 for the shallower and deeper aquifer, respectively, from the laboratory-obtained adsorption/desorption data. This implies that As is more reactive in the shallower aquifer. The partition coefficient for the distribution of As at the sediment-water interface (Kd-As) was found to range from 5 to 235 L/kg based on in-situ, batch adsorption, and flow-through column techniques. Additionally, a parametric equation for Kd-As (R2 = 0.67) was obtained from the groundwater pH and the logarithm of the leachable Fe and Al concentrations in sediment. A one-dimensional finite-difference numerical model incorporating Kd and Kr showed that the shallow, leached As can be immobilized and prevented from reaching the deeper aquifer (∼150 m) after 100 year by a natural filter of oxidizing sand and adsorbent minerals like Fe and Al oxides; in this scenario, 99% of the As in groundwater is reduced. The deeper aquifer appears to be an adequate source of sustainable, safe water.  相似文献   

8.
With a half-life of 15.7 Ma, a high mobility and the potential to accumulate in the biosphere, 129I is considered, in safety assessment calculations for radioactive waste repositories, to be one of the main contributors to the radiological dose. Several authors have reported that, at low concentration, I is weakly retained on argillaceous rocks. This process is not yet well-understood and different hypotheses have been put forward as to whether reactive phases or experimental artifacts (e.g. pyrite oxidation) could be the reason for the retention of I observed at low concentration. The aim of this study was to investigate the effect on I mobility of (i) the redox conditions and (ii) the amount of pyrite and natural organic matter (NOM) contents of the rock. These questions were addressed by performing batch sorption, through-diffusion and out-diffusion experiments on rock samples of Toarcian argillaceous rock from Tournemire (Aveyron, France). One of the challenges faced during this study was to distinguish actual transport properties from experimental artifacts. A especially elaborate experimental set-up allowed limiting the (i) oxidation of both argillaceous rock and I, and (ii) carbonate precipitation. A comparison of the batch sorption results obtained for two Toarcian clay specimens, that differed in their amount of pyrite and NOM, allowed relating I sorption to pyrite oxidation. However, no evidence was found to associate the I behavior to the NOM amounts. While the through-diffusion experiments showed a very slight sorption (distribution ratio (Rd) = 0.016 mL g−1) for the lowest I concentration under oxic conditions, the out-diffusion tests performed after the through-diffusion experiments on the same cells showed significant sorption under both oxic and anoxic conditions, resulting in Rd ranging from 0.02 mL g−1 to 1.25 mL g−1. The range of Rd values was higher for the upstream reservoir under oxic conditions. The discrepancies observed between the through-diffusion and the out-diffusion experiments suggest a kinetic control of the I uptake by argillaceous rocks under oxic and anoxic conditions.  相似文献   

9.
Sorption of the 14 rare earth elements (REE) by basaltic rock is investigated as a function of pH, ionic strength and aqueous REE concentrations. The rock sample, originating from a terrestrial basalt flow (Rio Grande do Sul State, Brazil), is composed of plagioclase, pyroxene and cryptocrystalline phases. Small amounts of clay minerals are present, due to rock weathering. Batch sorption experiments are carried out under controlled temperature conditions of 20 °C with the <125 μm fraction of the ground rock in solutions of 0.025 M and 0.5 M NaCl and at pH ranging from 2.7 to 8. All 14 REEs are investigated simultaneously with initial concentrations varying from 10−7 to 10−4 mol/L. Some experiments are repeated with only europium present to evaluate possible competitive effects between REE. Experimental results show the preferential retention of the heavy REEs at high ionic strength and circumneutral pH conditions. Moreover, results show that REE sorption increases strongly with decreasing ionic strength, indicating two types of sorption sites: exchange and specific sites. Sorption data are described by a Generalised Composite (GC) non-electrostatic model: two kinds of surface reactions are treated, i.e. cation exchange at >XNa sites, and surface complexation at >SOH sites. Total site density (>XNa + >SOH) is determined by measuring the cation exchange capacity (CEC = 52 μmol/m2). Specific concentrations of exchange sites and complexation sites are determined by fitting the Langmuir equation to sorption isotherms of REE and phosphate ions. Site densities of 22 ± 5 and 30 ± 5 μmol/m2 are obtained for [>XNa] and [>SOH], respectively. The entire set of REE experimental data is modeled using a single exchange constant (log Kex = 9.7) and a surface complexation constant that progressively increases from log K = −1.15 for La(III) to −0.4 for Lu(III).The model proves to be fairly robust in describing other aluminosilicate systems. Maintaining the same set of sorption constants and only adjusting the site densities, we obtain good agreement with the literature data on REE/kaolinite and REE/smectite sorption. The Generalised Composite non-electrostatic model appears as an easy and efficient tool for describing sorption by complex aluminosilicate mineral assemblages.  相似文献   

10.
The mobility and availability of the toxic metalloid selenium in the environment are largely controlled by sorption and redox reactions, which may proceed at temporal scales similar to that of subsurface water movement under saturated or unsaturated conditions. Since such waters are often anaerobic and rich in Fe2+, we investigated the long-term (?1 month) kinetics of selenite sorption to montmorillonite in the presence of Fe2+ under anoxic conditions. A synthetic montmorillonite was used to eliminate the influence of structural Fe. In the absence of aqueous Fe2+, selenite was sorbed as outer-sphere sorption complex, covering only part of the positive edge sites, as verified by a structure-based MUSIC model and Se K-edge XAS (X-ray absorption spectroscopy). When selenite was added to montmorillonite previously equilibrated with Fe2+ solution however, slow reduction of Se and formation of a solid phase was observed with Se K-edge XANES (X-ray absorption near-edge spectroscopy) and EXAFS (extended X-ray absorption fine-structure) spectroscopy. Iterative transformation factor analysis of XANES and EXAFS spectra suggested that only one Se reaction product formed, which was identified as nano-particulate Se(0). Even after one month, only 75% of the initially sorbed Se(IV) was reduced to this solid species. Mössbauer spectrometry revealed that before and after addition and reduction of Se, 5% of total sorbed Fe occurred as Fe(III) species on edge sites of montmorillonite (≈2 mmol kg−1). The only change observed after addition of Se was the formation of a new Fe(II) species (15%) attributed to the formation of an outer-sphere Fe(II)-Se sorption complex. The combined Mössbauer and XAS results hence clearly suggest that the Se and Fe redox reactions are not directly coupled. Based on the results of a companion paper, we hypothesize that the electrons produced in the absence of Se by oxidation of sorbed Fe(II) are stored, for example by formation of surface H2 species, and are then available for the later Se(IV) reduction. The slow reaction rate indicates a diffusion controlled process. Homogeneous precipitation of an iron selenite was thermodynamically predicted and experimentally observed only in the absence of clay. Interestingly, half of Fe was oxidized in this precipitate (Mössbauer). Since DFT calculations predicted the oxidation of Fe at the water-FeSe solid interface only and not in the bulk phase, we derived an average particle size of this precipitate which does not exceed 2 nm. A comparison with the Mössbauer and XAS spectra of the clay samples demonstrates that such homogenous precipitation can be excluded as a mechanism for the observed slow Se reduction, emphasizing the role of abiotic, heterogeneous precipitation and reduction for the removal of Se from subsurface waters.  相似文献   

11.
Diel (24-h) changes in Se and As concentrations in a freshwater wetland pond bordering the Great Salt Lake (GSL) were examined. Selenium concentrations (filtered and unfiltered) changed on a diel basis, i.e., were depleted during early morning and enriched during daytime over August 17-18. During the May 24-25, 2006 and September 29-30 diel studies, no significant 24-h trends were observed in Se concentrations compared to August, which showed daily maximums up to 59% greater than the daily minimum. Both filtered and unfiltered As concentrations also varied on a diel cycle, with increased concentrations during early morning and decreased concentrations during daytime. Filtered As concentrations increased 110% during the May 24-25, 2006 diel study. Selenium varied in phase with pH, dissolved O2 (DO), and water temperature (Tw) whereas As varied opposite to Se, pH, DO and Tw. Changes in pH, DO and Tw showed a direct linear correlation (r = 0.74, 0.75, and 0.55, respectively) to filtered Se. Also pH, DO and Tw were inversely correlated to filtered As concentration (r = −0.88, −0.87, and −0.84, respectively). Equilibrium geochemical speciation and sorption models were used to examine the potential oxidation state changes in Se and As, and sorption and desorption reactions corresponding to the observed 24-h variations in pe and pH. In this wetland it was postulated that diel Se variation was driven by sorption and desorption due to photosynthesis-induced changes in pH and redox conditions. Diel variations of As were hypothesized to be linked to pH-driven sorption and desorption as well as co-precipitation and co-dissolution with mineral phases of Mn.  相似文献   

12.
The sorption of Np(V) and Np(IV) onto kaolinite has been studied in the absence and presence of humic acid (HA) in a series of batch equilibrium experiments under different experimental conditions: [Np]0: 1.0 × 10-6 or 1.0 × 10-5 M, [HA]0: 0 or 50 mg/L, I: 0.01 or 0.1 M NaClO4, solid to liquid ratio: 4 g/L, pH: 6–11, anaerobic or aerobic conditions, without or with carbonate. The results showed that the Np(V) sorption onto kaolinite is affected by solution pH, ionic strength, Np concentration, presence of carbonate and HA. In the absence of carbonate, the Np(V) uptake increased with pH up to ∼96% at pH 11. HA further increased the Np(V) sorption between pH 6 and 9 but decreased the Np(V) sorption between pH 9 and 11. In the presence of carbonate, the Np(V) sorption increased with pH and reached a maximum of 54% between pH 8.5 and 9. At higher pH values, the Np(V) sorption decreased due to the presence of dissolved neptunyl carbonate species with a higher negative charge that were not sorbed onto the kaolinite surface which is negatively charged in this pH range. HA again decreased the Np(V) uptake in the near-neutral to alkaline pH range due to formation of aqueous neptunyl humate complexes. The decrease of the initial Np(V) concentration from 1.0 × 10−5 M to 1.0 × 10−6 M led to a shift of the Np(V) adsorption edge to lower pH values. A higher ionic strength increased the Np(V) uptake onto kaolinite in the presence of carbonate but had no effect on Np(V) uptake in the absence of carbonate.  相似文献   

13.
Biofilm-embedded Mn oxides exert important controls on trace metal cycling in aquatic and soil environments. The speciation and mobility of Zn in particular has been linked to Mn oxides found in streams, wetlands, soils, and aquifers. We investigated the mechanisms of Zn sorption to a biogenic Mn oxide within a biofilm produced by model soil and freshwater MnII-oxidizing bacteria Pseudomonas putida. The biogenic Mn oxide is a c-disordered birnessite with hexagonal layer symmetry. Zinc adsorption isotherm and Zn and Mn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy experiments were conducted at pH 6.9 to characterize Zn sorption to this biogenic Mn oxide, and to determine whether the bioorganic components of the biofilm affect metal sorption properties. The EXAFS data were analyzed by spectral fitting, principal component analysis, and linear least-squares fitting with reference spectra. Zinc speciation was found to change as Zn loading to the biosorbent [bacterial cells, extracellular polymeric substances (EPS), and biogenic Mn oxide] increased. At low Zn loading (0.13 ± 0.04 mol Zn kg−1 biosorbent), Zn was sorbed to crystallographically well-defined sites on the biogenic oxide layers in tetrahedral coordination to structural O atoms. The fit to the EXAFS spectrum was consistent with Zn sorption above and below the MnIV vacancy sites of the oxide layers. As Zn loading increased to 0.72 ± 0.04 mol Zn kg−1 biosorbent, Zn was also detected in octahedral coordination to these sites. Overall, our results indicate that the biofilm did not intervene in Zn sorption by the Mn-oxide because sorption to the organic material was observed only after all Mn vacancy sites were capped by Zn. The organic functional groups present in the biofilm contributed significantly to Zn removal from solution when Zn concentrations exceeded the sorption capacity of the biooxide. At the highest Zn loading studied, 1.50 ± 0.36 mol Zn kg−1 biosorbent, the proportion of total Zn sorption attributed to bioorganic material was 38 mol%. The maximum Zn loading to the biogenic oxide that we observed was 4.1 mol Zn kg−1 biogenic Mn oxide, corresponding to 0.37 ± 0.02 mol Zn mol−1 Mn. This loading is in excellent agreement with previous estimates of the content of cation vacancies in the biogenic oxide. The results of this study improve our knowledge of Zn speciation in natural systems and are consistent with those of Zn speciation in mineral soil fractions and ferromanganese nodules where the Mn oxides present are possibly biogenic.  相似文献   

14.
A synergistic experimental-computational approach was used to study the molecular-scale mechanisms of Ni sorption at varying loadings and at pH 6-8 on the biogenic hexagonal birnessite produced by Pseudomonas putida GB-1. We found that Ni is scavenged effectively by bacterial biomass-birnessite assemblages. At surface excess values below 0.18 mol Ni kg−1 sorbent (0.13 mol Ni mol−1 Mn), the biomass component of the sorbent did not interfere with Ni sorption on mineral sites. Extended X-ray absorption fine structure (EXAFS) spectra showed two dominant coordination environments: Ni bound as a triple-corner-sharing (Ni-TCS) complex at vacancy sites and Ni incorporated (Ni-inc) into the MnO2 sheet, with the latter form of Ni favored at high sorptive concentrations and decreased proton activity. In parallel to our spectral analysis, first-principles geometry optimizations based on density functional theory (DFT) were performed to investigate the structure of Ni surface complexes at vacancy sites. Excellent agreement was achieved between EXAFS- and DFT-derived structural parameters for Ni-TCS and Ni-inc. Reaction-path calculations revealed a pH-dependent energy barrier associated with the transition from Ni-TCS to Ni-inc. Our results are consistent with the rate-limited incorporation of Ni at vacancy sites in our sorption samples, but near-equilibrium state of Ni in birnessite phases found in nodule samples. This study thus provides direct and quantitative evidence of the factors governing the occurrence of Ni adsorption versus Ni incorporation in biogenic hexagonal birnessite, a key mineral in the terrestrial manganese cycle.  相似文献   

15.
Computer modelling techniques were used to elucidate the hydration behaviour of three iron (hydr)oxide minerals at the atomic level: white rust, goethite and hematite. A potential model was first adapted and tested against the bulk structures and properties of eight different iron oxides, oxyhydroxides and hydroxides, followed by surface simulations of Fe(OH)2, α-FeO(OH) and α-Fe2O3. The major interaction between the adsorbing water molecules and the surface is through interaction of their oxygen ions with surface iron ions, followed by hydrogen-bonding to surface oxygen ions. The energies released upon the associative adsorption of water range from 1 to 17 kJ mol−1 for Fe(OH)2, 26 to 80 kJ mol−1 for goethite and 40 to 85 kJ mol−1 for hematite, reflecting the increasing oxidation of the iron mineral. Dissociative adsorption at goethite and hematite surfaces releases larger hydration energies, ranging from 120 to 208 kJ mol−1 for goethite and 76 to 190 kJ mol−1 for hematite.The thermodynamic morphologies of the minerals, based on the calculated surface energies, agree well with experimental morphologies, where these are available. When the partial pressures required for adsorption of water from the gas phase are plotted against temperature for the goethite and hematite surfaces, taking into account experimental entropies for water, it appears that these minerals may well be instrumental in the retention of water during the cyclic variations in the atmosphere of Mars.  相似文献   

16.
The application of stable Fe isotopes as a tracer of the biogeochemical Fe cycle necessitates a mechanistic knowledge of natural fractionation processes. We studied the equilibrium Fe isotope fractionation upon sorption of Fe(II) to aluminum oxide (γ-Al2O3), goethite (α-FeOOH), quartz (α-SiO2), and goethite-loaded quartz in batch experiments, and performed continuous-flow column experiments to study the extent of equilibrium and kinetic Fe isotope fractionation during reactive transport of Fe(II) through pure and goethite-loaded quartz sand. In addition, batch and column experiments were used to quantify the coupled electron transfer-atom exchange between dissolved Fe(II) (Fe(II)aq) and structural Fe(III) of goethite. All experiments were conducted under strictly anoxic conditions at pH 7.2 in 20 mM MOPS (3-(N-morpholino)-propanesulfonic acid) buffer and 23 °C. Iron isotope ratios were measured by high-resolution MC-ICP-MS. Isotope data were analyzed with isotope fractionation models. In batch systems, we observed significant Fe isotope fractionation upon equilibrium sorption of Fe(II) to all sorbents tested, except for aluminum oxide. The equilibrium enrichment factor, , of the Fe(II)sorb-Fe(II)aq couple was 0.85 ± 0.10‰ (±2σ) for quartz and 0.85 ± 0.08‰ (±2σ) for goethite-loaded quartz. In the goethite system, the sorption-induced isotope fractionation was superimposed by atom exchange, leading to a δ56/54Fe shift in solution towards the isotopic composition of the goethite. Without consideration of atom exchange, the equilibrium enrichment factor was 2.01 ± 0.08‰ (±2σ), but decreased to 0.73 ± 0.24‰ (±2σ) when atom exchange was taken into account. The amount of structural Fe in goethite that equilibrated isotopically with Fe(II)aq via atom exchange was equivalent to one atomic Fe layer of the mineral surface (∼3% of goethite-Fe). Column experiments showed significant Fe isotope fractionation with δ56/54Fe(II)aq spanning a range of 1.00‰ and 1.65‰ for pure and goethite-loaded quartz, respectively. Reactive transport of Fe(II) under non-steady state conditions led to complex, non-monotonous Fe isotope trends that could be explained by a combination of kinetic and equilibrium isotope enrichment factors. Our results demonstrate that in abiotic anoxic systems with near-neutral pH, sorption of Fe(II) to mineral surfaces, even to supposedly non-reactive minerals such as quartz, induces significant Fe isotope fractionation. Therefore we expect Fe isotope signatures in natural systems with changing concentration gradients of Fe(II)aq to be affected by sorption.  相似文献   

17.
The presence of PAHs, n-alkanes, pristane, and phytanes in core sediment from the Vossoroca reservoir (Parana, southern Brazil) was investigated. The total concentration of the 16 PAHs varied from 15.5 to 1646 μg kg−1. Naphthalene was present in all layers (3.34–74.0 μg kg−1). The most abundant and dominant n-alkanes were n-C15 and n-C36, with average concentrations of 198.1 ± 46.8 and 522.9 ± 167.7 μg kg−1, respectively. Lighter n-alkanes were distributed more evenly through the layers and showed less variation, specially n-C9, n-C12, and n-C18, with average concentrations of 14.6 ± 3.0, 31.6 ± 1.9, and 95.0 ± 5.2 μg kg−1, respectively; heavier n-alkanes were more unevenly distributed.  相似文献   

18.
Cadmium (Cd) is a toxic trace element and due to human activities soils and waters are contaminated by Cd both on a local and global scale. It is widely accepted that chemical interactions with functional groups of natural organic matter (NOM) is vital for the bioavailability and mobility of trace elements. In this study the binding strength of cadmium (Cd) to soil organic matter (SOM) was determined in an organic (49% organic C) soil as a function of reaction time, pH and Cd concentration. In experiments conducted at native Cd concentrations in soil (0.23 μg g−1 dry soil), halides (Cl, Br) were used as competing ligands to functional groups in SOM. The concentration of Cd in the aqueous phase was determined by isotope-dilution (ID) inductively-coupled-plasma-mass-spectrometry (ICP-MS), and the activity of Cd2+ was calculated from the well-established Cd-halide constants. At higher Cd loading (500-54,000 μg g−1), the Cd2+ activity was directly determined by an ion-selective electrode (ISE). On the basis of results from extended X-ray absorption fine structure (EXAFS) spectroscopy, a model with one thiolate group (RS) was used to describe the complexation (Cd2+ + RS ? CdSR+; log KCdSR) at native Cd concentrations. The concentration of thiols (RSH; 0.047 mol kg−1 C) was independently determined by X-ray absorption near-edge structure (XANES) spectroscopy. Log KCdSR values of 11.2-11.6 (pKa for RSH = 9.96), determined in the pH range 3.1-4.6, compare favorably with stability constants for the association between Cd and well-defined thiolates like glutathione. In the concentration range 500-54,000 μg Cd g−1, a model consisting of one thiolate and one carboxylate (RCOO) gave the best fit to data, indicating an increasing role for RCOOH groups as RSH groups become saturated. The determined log KCdOOCR of 3.2 (Cd2+ +  RCOO ? CdOOCR+; log KCdOOCR; pKa for RCOOH = 4.5) is in accordance with stability constants determined for the association between Cd and well-defined carboxylates. Given a concentration of reduced sulfur groups of 0.2% or higher in NOM, we conclude that the complexation to organic RSH groups may control the speciation of Cd in soils, and most likely also in surface waters, with a total concentration less than 5 mg Cd g−1 organic C.  相似文献   

19.
X-ray absorption fine structure (XAFS) spectroscopic analysis at the As, Se, and Mn K-edges was used to study arsenate [As(V)O43−] and selenite [Se(IV)O32−] sorption complexes on the synthetic hydrous manganese oxides (HMOs) vernadite (δ-MnO2) and K-birnessite (nominal composition: K4Mn14O27 · 9H2O). No significant changes were observed in sorption complex structure as a function of sorbent, pH (5 to 8), surface coverage (0.04 to 0.73 μmol/m2), or reaction time (5 to 22 h) in the arsenate or selenite systems. In the arsenate/HMO system, extended XAFS parameters indicate an average second-neighbor As(V) coordination of 2.0 ± 0.4 Mn at an average distance of 3.16 ± 0.01 Å, which is consistent with formation of As(V)O4 sorption complexes sharing corners with two adjacent Mn(IV)O6 surface species (i.e., bidentate, binuclear). In the selenite/HMO system, selenite surface complexes are surrounded by two shells of Mn atoms, which could represent two different adsorption complexes or a precipitate. The first shell consists of 1.6 ± 0.4 Mn at 3.07 ± 0.01 Å, which is consistent with the selenite anion forming bidentate (mononuclear) edge-sharing complexes with Mn(II)O6 or Mn(III)O6 octahedra. The second shell consists of 1.4 ± 0.4 Mn at 3.49 ± 0.03 Å, consistent with selenite forming monodentate, corner-sharing complexes with Mn(II)O6 or Mn(III)O6 octahedra. Pauling bond valence analysis that uses the extended XAFS-derived bond lengths for As(V)-O, Se(IV)-O, and Mn-O bonds indicates that the proposed surface complexes of selenite and arsenate on HMOs should be stable. Although a nearly identical Se(IV) coordination environment is found in a crystalline Mn(II)-Se(IV) precipitate (which has a structure similar to that of MnSeO3 · H2O), there are significant differences in the X-ray absorption near-edge structure and extended XAFS spectra of this precipitate and the selenite/HMO sorption samples. These differences coupled with transmission electron microscopy results suggest that if a precipitate is present it lacks long-range order characteristic of crystalline MnSeO3 · H2O.  相似文献   

20.
High-purity synthetic barite powder was added to pure water or aqueous solutions of soluble salts (BaCl2, Na2SO4, NaCl and NaHCO3) at 23 ± 2 °C and atmospheric pressure. After a short pre-equilibration time (4 h) the suspensions were spiked either with 133Ba or 226Ra and reacted under constant agitation during 120-406 days. The pH values ranged from 4 to 8 and solid to liquid (S/L) ratios varied from 0.01 to 5 g/l. The uptake of the radiotracers by barite was monitored through repeated sampling of the aqueous solutions and radiometric analysis. For both 133Ba and 226Ra, our data consistently showed a continuous, slow decrease of radioactivity in the aqueous phase.Mass balance calculations indicated that the removal of 133Ba activity from aqueous solution cannot be explained by surface adsorption only, as it largely exceeded the 100% monolayer coverage limit. This result was a strong argument in favor of recrystallization (driven by a dissolution-precipitation mechanism) as the main uptake mechanism. Because complete isotopic equilibration between aqueous solution and barite was approached or even reached in some experiments, we concluded that during the reaction all or substantial fractions of the initial solid had been replaced by newly formed barite.The 133Ba data could be successfully fitted assuming constant recrystallization rates and homogeneous distribution of the tracer into the newly formed barite. An alternative model based on partial equilibrium of 133Ba with the mineral surface (without internal isotopic equilibration of the solid) could not reproduce the measured activity data, unless multistage recrystallization kinetics was assumed. Calculated recrystallization rates in the salt solutions ranged from 2.8 × 10−11 to 1.9 × 10−10 mol m−2 s−1 (2.4-16 μmol m−2 d−1), with no specific trend related to solution composition. For the suspensions prepared in pure water, significantly higher rates (∼5.7 × 10−10 mol m−2 s−1 or ∼49 μmol m−2 d−1) were determined.Radium uptake by barite was determined by monitoring the decrease of 226Ra activity in the aqueous solution with alpha spectrometry, after filtration of the suspensions and sintering. The evaluation of the Ra uptake experiments, in conjunction with the recrystallization data, consistently indicated formation of non-ideal solid solutions, with moderately high Margules parameters (WAB = 3720-6200 J/mol, a0 = 1.5-2.5). These parameters are significantly larger than an estimated value from the literature (WAB = 1240 J/mol, a0 = 0.5).In conclusion, our results confirm that radium forms solid solutions with barite at fast kinetic rates and in complete thermodynamic equilibrium with the aqueous solutions. Moreover, this study provides quantitative thermodynamic data that can be used for the calculation of radium concentration limits in environmentally relevant systems, such as radioactive waste repositories and uranium mill tailings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号