首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 774 毫秒
1.
A 2D horizontal reactive transport model of a chromate-contaminated site near Rivera, Switzerland, was developed using the computer code CrunchFlow to evaluate site remediation strategies. Transport processes were defined according to the results of an existing hydrological model, and the definition of geochemical (reactive) processes is based on the results of a detailed mineralogical and geochemical site characterization leading to a comprehensive conceptual site model. Kinetics of naturally occurring Cr(VI) reduction by Fe(II) and natural solid organic matter is quantified by fitting measured Cr isotope ratios to a modeled 1D section along the best constrained flow line. The simulation of Cr isotope fractionation was also incorporated into the 2D model. Simulation of the measured present day Cr(VI) plume and δ53Cr value distribution was used for the 2D model calibration and corresponds to a situation where only monitored natural attenuation (MNA) is occurring. Other 2D model runs simulate alternate excavation scenarios. The simulations show that with an excavation of the top 2–4 m the groundwater Cr(VI) plume can be minimized, and that a deeper excavation depth only diminishes the plume if all the contaminants can be removed. A combination of an excavation of the top 2–4 m and monitoring of the ongoing natural Cr(VI) reduction is suggested as the most ecological and economical remediation strategy, even though a remaining time period with ongoing subsoil Cr(VI) contamination in the order of 1 ka is predicted.  相似文献   

2.
We have reinvestigated the Mn-Cr systematics in a number of primitive meteorites, differentiated planetesimals and terrestrial planets in order to address the chronology of the early stages of protoplanetary disk evolution and planetary formation. Our analytical procedure is based on the assumption of terrestrial abundances for 50Cr and 52Cr only; recognizing that a data reduction scheme based on Earth-like 54Cr/52Cr abundances in all meteorites is not tenable. Here we show that initial ε53Cr compositions of 54Cr-rich and 54Cr-poor acid leach fractions in the primitive carbonaceous chondrite Orgueil differ by 0.9ε, reflecting primordial mineral-scale heterogeneity. However, asteroidal processing effectively homogenized any ε53Cr variations on the planetesimal scale, providing a uniform present-day solar ε53Cr=0.20±0.10. Thus, our 53Mn-53Cr data argue against the previously suggested 53Mn heliocentric gradient. Instead, we suggest that inner Solar System objects possessed an initially homogeneous 53Mn/55Mn composition, which determined by two independent means is estimated at (6.28 ± 0.66) × 10−6. Our revised Mn-Cr age for Ste. Marguerite (SM) metamorphism of 4562.9 ± 1.0 Ma is identical to the Pb-Pb age of SM phosphates. Using this age, we confirm that mantle differentiation of the eucrite parent body occurred 4564.9 ± 1.1 Ma ago, and revise the time interval between this event and CAI formation to 2.2 ± 1.1 Ma. We also constrain metamorphism in carbonaceous chondrites of type 2 and 3 to have occurred between 1 and 6 Ma after CAI formation. The 53Mn-53Cr correlation among chondrites, planetesimals and terrestrial planets (the eucrite parent body, Mars and Earth) provides evidence for Mn/Cr fractionation within the protoplanetary disk recorded by all precursor materials of the terrestrial planets and primitive asteroids. This fractionation appears to have occurred within 2 Ma of CAI formation.  相似文献   

3.
Microbial mass-dependent fractionation of chromium isotopes   总被引:1,自引:0,他引:1  
Mass-dependent fractionation of Cr isotopes occurs during dissimilatory Cr(VI) reduction by Shewanella oneidensis strain MR-1. Cells suspended in a simple buffer solution, with various concentrations of lactate or formate added as electron donor, reduced 5 or 10 μM Cr(VI) to Cr(III) over days to weeks. In all nine batch experiments, 53Cr/52Cr ratios of the unreacted Cr(VI) increased as reduction proceeded. In eight experiments covering a range of added donor concentrations up to 100 μM, isotopic fractionation factors were nearly invariant, ranging from 1.0040 to 1.0045, with a mean value somewhat larger than that previously reported for abiotic Cr(VI) reduction (1.0034). One experiment containing much greater donor concentration (10 mM lactate) reduced Cr(VI) much faster and exhibited a lesser fractionation factor (1.0018). These results indicate that 53Cr/52Cr measurements should be effective as indicators of Cr(VI) reduction, either bacterial or abiotic. However, variability in the fractionation factor is poorly constrained and should be studied for a variety of microbial and abiotic reduction pathways.  相似文献   

4.
Chromium(VI) concentrations in excess of the California Maximum Contaminant Level (MCL) of 50 μg/L occur naturally in alkaline, oxic ground-water in alluvial aquifers in the western Mojave Desert, southern California. The highest concentrations were measured in aquifers eroded from mafic rock, but Cr(VI) as high as 27 μg/L was measured in aquifers eroded from granitic rock. Chromium(VI) concentrations did not exceed 5 μg/L at pH < 7.5 regardless of geology. δ53Cr values in native ground-water ranged from 0.7 to 5.1‰ and values were fractionated relative to the average δ53Cr composition of 0‰ in the earth’s crust. Positive δ53Cr values of 1.2 and 2.3‰ were measured in ground-water recharge areas having low Cr concentrations, consistent with the addition of Cr(VI) that was fractionated on mineral surfaces prior to entering solution. δ53Cr values, although variable, did not consistently increase or decrease with increasing Cr concentrations as ground-water flowed down gradient through more oxic portions of the aquifer. However, increasing δ53Cr values were observed as dissolved O2 concentrations decreased, and Cr(VI) was reduced to Cr(III), and subsequently removed from solution. As a result, the highest δ53Cr values were measured in water from deep wells, and wells in discharge areas near dry lakes at the downgradient end of long flow paths through alluvial aquifers. δ53Cr values at an industrial site overlying mafic alluvium having high natural background Cr(VI) concentrations ranged from −0.1 to 3.2‰. Near zero δ53Cr values at the site were the result of anthropogenic Cr. However, mixing with native ground-water and fractionation of Cr within the plume increased δ53Cr values at the site. Although δ53Cr was not necessarily diagnostic of anthropogenic Cr, it was possible to identify the extent of anthropogenic Cr at the site on the basis of the δ53Cr values in conjunction with major-ion data, and the δ18O and δD composition of water from wells.  相似文献   

5.
The risk of groundwater contamination by chromate at a former chromite ore processing industrial site in Rivera (Switzerland) was assessed by determining subsoil Cr(VI) concentrations and tracking naturally occurring Cr(VI) reduction with Cr isotopes. Using a hot alkaline extraction procedure, a total Cr(VI) contamination of several 1000 kg was estimated. Jarosite, KFe3((SO4)x(CrO4)1−x)2(OH)6, and chromatite (CaCrO4) were identified as Cr(VI) bearing mineral phases using XRD, both limiting groundwater Cr(VI) concentrations. To track assumed Cr(VI) reduction at field scale δ53Cr values of contaminated subsoil samples in addition to groundwater δ53Cr data are used for the first time. The measurements showed a fractionation of groundwater δ53Cr values towards positive values and subsoil δ53Cr towards negative values confirming reduction of soluble Cr(VI) to insoluble Cr(III). Using a Rayleigh fractionation model, a current Cr(VI) reduction efficiency of approximately 31% along a 120 m long flow path was estimated at an average linear groundwater velocity of 3.3 m/d. Groundwater and subsoil δ53Cr values were compared with a site specific Rayleigh fractionation model proposing that subsoil δ53Cr values can possibly be used to track previous higher Cr(VI) reduction efficiency during the period of industrial activity. The findings strongly favor monitored natural attenuation to be part of the required site remediation measures.  相似文献   

6.
The redox-sensitive stable isotope geochemistry of chromium bears the potential to monitor the attenuation of chromate pollution and to investigate changes in environmental conditions in the present and the past. The use of stable Cr isotope data as a geo-environmental tracer, however, necessitates an understanding of the reaction kinetics and Cr fractionation behaviour during redox transition and isotope exchange. Here, we report stable chromium isotope fractionation data for Cr(VI) reduction, Cr(III) oxidation and isotopic exchange between soluble Cr(III) and Cr(VI) in aqueous media. The reduction of Cr(VI) to Cr(III) with H2O2 under strongly acidic conditions shows a near-equilibrium isotope fractionation of Δ53/52Cr(Cr(III)-Cr(VI)) of −3.54 ± 0.35‰. At pH neutrality, however, the reduction experiments show a kinetic isotope fractionation Δ53/52Cr(Cr(III)-Cr(VI)) of −5‰ for the extent of reduction of up to 85% of the chromium. The oxidation of Cr(III) to Cr(VI) in alkaline media, using H2O2 as the oxidant, cannot be explained by a single, unidirectional reaction. Our experiments indicate that the involvement of the unstable intermediates Cr(IV) and Cr(V) and their disproportionation during redox reactions between Cr(III) and Cr(VI) influence the overall fractionation factor, depending on the prevailing pH conditions and the reaction rates. No detectable isotope exchange between soluble Cr(VI) and Cr(III) species at pH values of 5.5 and 7 was revealed over a timescale of days to weeks. This means that, at least within such a time frame, the isotopic composition of Cr(VI) in a natural system will not be influenced by equilibration with any Cr(III) and thus reveal the true extent of reduction, given that the Cr isotope composition of the source Cr(VI) and the fractionation factor for the prevailing conditions are known.  相似文献   

7.
Contributors to chromium isotope variation of meteorites   总被引:3,自引:0,他引:3  
We report the results of a comprehensive, high precision survey of the Cr isotopic compositions of primitive chondrites, along with some differentiated meteorites. To ensure complete dissolution of our samples, they were first fused with lithium borate-tetraborate at 1050-1000 °C. Relative to the NIST Cr standard SRM 3112a, carbonaceous chondrites exhibit excesses in 54Cr/52Cr from 0.4 to 1.6ε (1ε = 1 part in 10,000), and ordinary chondrites display a common 54Cr/52Cr deficit of ∼0.4ε. Analyses of acid-digestion residues of chondrites show that carbonaceous and ordinary chondrites share a common 54Cr-enriched carrier, which is characterized by a large excess in 54Cr/52Cr (up to 200ε) associated with a very small deficit in 53Cr/52Cr (<2ε). We did not find 54Cr anomalies in either bulk enstatite chondrites or in leachates of their acid-digestion residues. This either requires that the enstatite chondrite parent bodies did not incorporate the 54Cr anomaly carrier phase during their accretion, or the phase was destroyed by parent body metamorphism. Chromium in the terrestrial rocks and lunar samples analyzed here show no deviation from the NIST SRM 3112a Cr standard. The eucrite and Martian meteorites studied exhibit small deficits in 54Cr/52Cr. The 54Cr/52Cr variations among different meteorite classes suggest that there was a spatial and/or temporal heterogeneity in the distribution of a 54Cr-rich component in the inner Solar System.We confirm the correlated excesses in 54Cr/52Cr and 53Cr/52Cr for bulk carbonaceous chondrites, but the new data yield a steeper slope (∼6.6) than that reported in Shukolyukov and Lugmair (2006). The correlated excesses may affect the use of the Mn-Cr chronometer in carbonaceous chondrites. We could not confirm the bulk carbonaceous chondrite Mn-Cr isochron reported by Shukolyukov and Lugmair (2006) and Moynier et al. (2007), mostly because we find much smaller total variations in ε53Cr (∼0.2). All bulk chondrites have small ε53Cr excesses (up to 0.3) relative to the Earth, most likely reflecting the sub-chondritic Mn/Cr ratio of the Earth. The ε53Cr variations in chondrites do seem to grossly correlate with Mn/Cr and yield an initial Solar System 53Mn/55Mn value of 5.4(±2.4) × 10−6, corresponding to an absolute age of 4566.4 (±2.2) Ma.Nuclear interactions with cosmic rays result in coupled excesses in ε54Cr and ε53Cr with a ∼4:1 ratio in phases with high Fe/Cr. These are most dramatically demonstrated in the iron meteorite Carbo, showing excesses in ε54Cr of up to 140ε. These new results show that the Mn-Cr chronometer should be used with caution in samples/minerals with high Fe/Cr and long cosmic ray exposure ages.  相似文献   

8.
The δ18O of ground water (−13.54 ± 0.05 ‰) and inorganically precipitated Holocene vein calcite (+14.56 ± 0.03 ‰) from Devils Hole cave #2 in southcentral Nevada yield an oxygen isotopic fractionation factor between calcite and water at 33.7 °C of 1.02849 ± 0.00013 (1000 ln αcalcite-water = 28.09 ± 0.13). Using the commonly accepted value of ∂(αcalcite-water)/∂T of −0.00020 K−1, this corresponds to a 1000 ln αcalcite-water value at 25 °C of 29.80, which differs substantially from the current accepted value of 28.3. Use of previously published oxygen isotopic fractionation factors would yield a calcite precipitation temperature in Devils Hole that is 8 °C lower than the measured ground water temperature. Alternatively, previously published fractionation factors would yield a δ18O of water, from which the calcite precipitated, that is too negative by 1.5 ‰ using a temperature of 33.7 °C. Several lines of evidence indicate that the geochemical environment of Devils Hole has been remarkably constant for at least 10 ka. Accordingly, a re-evaluation of calcite-water oxygen isotopic fractionation factor may be in order.Assuming the Devils Hole oxygen isotopic value of αcalcite-water represents thermodynamic equilibrium, many marine carbonates are precipitated with a δ18O value that is too low, apparently due to a kinetic isotopic fractionation that preferentially enriches 16O in the solid carbonate over 18O, feigning oxygen isotopic equilibrium.  相似文献   

9.
Silicon isotopes in dissolved silicic acid were measured in the upper four kilometers between 4°N and 3°S latitude at 110°W longitude in the eastern Equatorial Pacific. Silicon isotopes became progressively heavier with silicic acid depletion of surface water as expected from biological fractionation. The value of ε estimated by applying a steady-state isotope fractionation model to data from all stations between 4°N and 3°S was −0.77 ± 0.12‰ (std. err.). When the analysis was restricted to those stations whose temperature and salinity profiles indicated that they were directly influenced by upwelling of the Equatorial Undercurrent (EUC), the resulting value of ε was −1.08 ± 0.27‰ (std. err.) similar to the value established in culture studies (−1.1‰). When the non steady state Rayleigh model was applied to the same restricted data set the resulting value of ε was significantly more positive, −0.61 ± 0.16‰ (std. err.). To the extent that the equatorial system approximates a steady state these results support a value of −1.1‰ for the fractionation factor for isotopes of Si in the sea. Without the assumption of steady state the value of ε can only be constrained to be between −0.6 and −1.1‰. Silicic acid in Equatorial Pacific Deep Water below 2000 m had a near constant δ30Si of +1.32 ± 0.05‰. That value is significantly more positive than obtained for North Pacific Deep Water at similar depths at stations to the northwest of our study area (0.9-1.0‰) and it is slightly less positive than new measures of the δ30Si of silicic acid from the silicic acid plume centered over the Cascadia basin in the Northeast Pacific (Si(OH)4 > 180  μM, δ30Si = +1.46 ± 0.12‰ (SD, n = 4). We show that the data from the equator and Cascadia basin fit a general trend of increasing δ30Si(OH)4 with increasing silicic acid concentration in the deep sea, but that the isotope values from the Northeast Pacific are anomalously light. The observed level of variation in the silicon isotope composition of deep waters from this single ocean basin is considerably larger than that predicted by current models based on fractionation during opal formation with no isotope effect during dissolution. Confirmation of such high variability in deep water δ30Si(OH)4 within individual ocean basins will require reassessment of the mechanisms controlling the distribution of isotopes of silicon in the sea.  相似文献   

10.
Several I- and A-type granite, syenite plutons and spatially associated, giant Fe-Ti-V deposit-bearing mafic-ultramafic layered intrusions occur in the Pan-Xi (Panzhihua-Xichang) area within the inner zone of the Emeishan large igneous province (ELIP). These complexes are interpreted to be related to the Emeishan mantle plume. We present LA-ICP-MS and SIMS zircon U-Pb ages and Hf-Nd isotopic compositions for the gabbros, syenites and granites from these complexes. The dating shows that the age of the felsic intrusive magmatism (256.2 ± 3.0-259.8 ± 1.6 Ma) is indistinguishable from that of the mafic intrusive magmatism (255.4 ± 3.1-259.5 ± 2.7 Ma) and represents the final phase of a continuous magmatic episode that lasted no more than 10 Myr. The upper gabbros in the mafic-ultramafic intrusions are generally more isotopically enriched (lower εNd and εHf) than the middle and lower gabbros, suggesting that the upper gabbros have experienced a higher level of crustal contamination than the lower gabbros. The significantly positive εHf(t) values of the A-type granites and syenites (+4.9 to +10.8) are higher than those of the upper gabbros of the associated mafic intrusion, which shows that they cannot be derived by fractional crystallization of these bodies. They are however identical to those of the mafic enclaves (+7.0 to +11.4) and middle and lower gabbros, implying that they are cogenetic. We suggest that they were generated by fractionation of large-volume, plume-related basaltic magmas that ponded deep in the crust. The deep-seated magma chamber erupted in two stages: the first near a density minimum in the basaltic fractionation trend and the second during the final stage of fractionation when the magma was a low density Fe-poor, Si-rich felsic magma. The basaltic magmas emplaced in the shallow-level magma chambers differentiated to form mafic-ultramafic layered intrusions accompanied by a small amount of crustal assimilation through roof melting. Evolved A-type granites (synenites and syenodiorites) were produced dominantly by crystallization in the deep crustal magma chamber. In contrast, the I-type granites have negative εNd(t) [−6.3 to −7.5] and εHf(t) [−1.3 to −6.7] values, with the Nd model ages () of 1.63−1.67 Ga and Hf model ages () of 1.56−1.58 Ga, suggesting that they were mainly derived from partial melting of Mesoproterozoic crust. In combination with previous studies, this study also shows that plume activity not only gave rise to reworking of ancient crust, but also significant growth of juvenile crust in the center of the ELIP.  相似文献   

11.
We measured Ca stable isotope ratios (δ44/40Ca) in an ancient (2 My), hyperarid soil where the primary source of mobile Ca is atmospheric deposition. Most of the Ca in the upper meter of this soil (3.5 kmol m−2) is present as sulfates (2.5 kmol m−2), and to a lesser extent carbonates (0.4 kmol m−2). In aqueous extracts of variably hydrated calcium sulfate minerals, δ44/40CaE values (vs. bulk Earth) increase with depth (1.4 m) from a minimum of −1.91‰ to a maximum of +0.59‰. The trend in carbonate-δ44/40Ca in the top six horizons resembles that of sulfate-δ44/40Ca, but with values 0.1-0.6‰ higher. The range of observed Ca isotope values in this soil is about half that of δ44/40Ca values observed on Earth. Linear correlation among δ44/40Ca, δ34S and δ18O values indicates either (a) a simultaneous change in atmospheric input values for all three elements over time, or (b) isotopic fractionation of all three elements during downward transport. We present evidence that the latter is the primary cause of the isotopic variation that we observe. Sulfate-δ34S values are positively correlated with sulfate-δ18O values (R2 = 0.78) and negatively correlated with sulfate δ44/40CaE values (R2 = 0.70). If constant fractionation and conservation of mass with downward transport are assumed, these relationships indicate a δ44/40Ca fractionation factor of −0.4‰ in CaSO4. The overall depth trend in Ca isotopes is reproduced by a model of isotopic fractionation during downward Ca transport that considers small and infrequent but regularly recurring rainfall events. Near surface low Ca isotope values are reproduced by a Rayleigh model derived from measured Ca concentrations and the Ca fractionation factor predicted by the relationship with S isotopes. This indicates that the primary mechanism of stable isotope fractionation in CaSO4 is incremental and effectively irreversible removal of an isotopically enriched dissolved phase by downward transport during small rainfall events.  相似文献   

12.
Bacterial sulfate reduction is one of the most important respiration processes in anoxic habitats and is often assessed by analyzing the results of stable isotope fractionation. However, stable isotope fractionation is supposed to be influenced by the reduction rate and other parameters, such as temperature. We studied here the mechanistic basics of observed differences in stable isotope fractionation during bacterial sulfate reduction. Batch experiments with four sulfate-reducing strains (Desulfovibrio desulfuricans, Desulfobacca acetoxidans, Desulfonatronovibrio hydrogenovorans, and strain TRM1) were performed. These microorganisms metabolize different carbon sources (lactate, acetate, formate, and toluene) and showed broad variations in their sulfur isotope enrichment factors. We performed a series of experiments on isotope exchange of 18O between residual sulfate and ambient water. Batch experiments were conducted with 18O-enriched (δ18Owater = +700‰) and depleted water (δ18Owater = −40‰), respectively, and the stable 18O isotope shift in the residual sulfate was followed. For Desulfovibrio desulfuricans and Desulfonatronovibrio hydrogenovorans, which are both characterized by low sulfur isotope fractionation (εS > −13.2‰), δ18O values in the remaining sulfate increased by only 50‰ during growth when 18O-enriched water was used for the growth medium. In contrast, with Desulfobacca acetoxidans and strain TRM1 (εS < −22.7‰) the residual sulfate showed an increase of the sulfate δ18O close to the values of the enriched water of +700‰. In the experiments with δ18O-depleted water, the oxygen isotope values in the residual sulfate stayed fairly constant for strains Desulfovibrio desulfuricans, Desulfobacca acetoxidans and Desulfonatronovibrio hydrogenovorans. However, strain TRM1, which exhibits the lowest sulfur isotope fractionation factor (εS < −38.7‰) showed slightly decreasing δ18O values.Our results give strong evidence that the oxygen atoms of sulfate exchange with water during sulfate reduction. However, this neither takes place in the sulfate itself nor during formation of APS (adenosine-5′-phosphosulfate), but rather in intermediates of the sulfate reduction pathway. These may in turn be partially reoxidized to form sulfate. This reoxidation leads to an incorporation of oxygen from water into the “recycled” sulfate changing the overall 18O isotopic composition of the remaining sulfate fraction. Our study shows that such incorporation of 18O is correlated with the stable isotope enrichment factor for sulfur measured during sulfate reduction. The reoxidation of intermediates of the sulfate reduction pathway does also strongly influence the sulfur stable isotope enrichment factor. This aforesaid reoxidation is probably dependent on the metabolic conversion of the substrate and therefore also influences the stable isotope fractionation factor indirectly in a rate dependent manner. However, this effect is only indirect. The sulfur isotope enrichment factors for the kinetic reactions themselves are probably not rate dependent.  相似文献   

13.
An excellent 53Mn-53Cr isochron for bulk CI, CM, CO, CV, CB, and ungrouped C3 chondrites seems to suggest that each carbonaceous chondrite group acquired its Mn/Cr ratio 4568 ± 1 Myr ago. This age is indistinguishable from the age of Ca-Al-rich inclusions (CAIs), which is considered to be the start of the solar system (t0). However, carbonaceous chondrites were not assembled until at least 1.5-5 Myr after t0, to judge by the 207Pb-206Pb and 26Al-26Mg ages of the chondrules within them, and by the fact that they were not melted by heat from the decay of 26Al. Presumably, therefore, these meteorites inherited their bulk Mn-Cr isochron from precursor materials which experienced Mn-Cr fractionation at t0. As a possible physical mechanism for how the isochron was established initially, and later inherited by the carbonaceous chondrites, we propose the rapid formation at t0 of planetesimals that were variably depleted in moderately volatile elements, and hence had variably low Mn/Cr. The planetesimals and the undepleted (high Mn/Cr) primitive dust from which they were made shared the same initial ε53Cr, and therefore evolved on an isochron. We suggest that later impact-disruption of the planetesimals produced dusty debris, which became mixed, in various proportions, with unprocessed (high Mn/Cr) dust before accreting to the carbonaceous chondrite parent bodies. With mixing in a closed system, the isochron was unchanged. We infer that some debris-rich material was converted to chondrules prior to accretion. The chondrules could have been formed by flash melting of the mixed dust, or could instead have been made directly by the impact splashing of molten planetesimals, or by condensation from impact-generated vapor plumes.  相似文献   

14.
We have carried out a comparative Rb-Sr, Sm-Nd and Lu-Hf isotopic study of a progressively deformed hercynian leucogranite from the French Massif Central, belonging to the La Marche ductile shear zone, in order to investigate the respective perturbation of these geochronometers with fluid induced deformation. The one-meter wide outcrop presents a strongly deformed and mylonitized zone at the center, and an asymmetric deformation pattern with a higher deformation gradient on the northern side of the zone. Ten samples have been carefully collected every 10 cm North and South away from the strongest deformed mylonitic zone. They have been analyzed for a complete major, trace element data set, oxygen isotopes, Rb-Sr, Sm-Nd and Lu-Hf isotopic systematics.We show that most of major and trace elements except SiO2, alkaline elements (K2O, Rb), and some metal transition elements (Cu), are progressively depleted with increasing deformation. This depletion includes REE + Y, but also HFS elements (Ti, Hf, Zr, Nb) which are commonly considered as immobile elements during upper level processes. Variations in elemental ratios with deformation, e.g. decrease in LREE/MREE- HREE, Nd/Hf, Th/Sr, increase in Rb/Sr, U/Th and constant Sr/Nd, lead to propose the following order of element mobility: U ? Th > Sr = Nd ? Hf + HREE. We conclude in agreement with previous tectonic and metallogenic studies that trace element patterns across the shear zone result from circulation of oxidizing F-rich hydrothermal fluids associated with deformation. A temperature of the fluid of 470-480 °C can be deduced from the δ18O equilibrium between quartz-muscovite pairs.Elemental fractionation induces perturbation of the Rb-Sr geochronometer. The well-defined 87Rb/86Sr-87Sr/86Sr correlation gives an apparent age of 294 ± 19 Ma, slightly younger than the 323 ± 4 Ma age of leucogranites in this area. This apparent age is interpreted as dating event of intense deformation and fluid circulation associated with mass transfer, and exhumation of the ductile crust shortly after the leucogranite emplacement. Sm-Nd and Lu-Hf isochron-type diagrams do not define any correlation, because of the low fractionated Sm/Nd and Lu/Hf ratios. Isotopic data demonstrate that only the Lu-Hf geochronometer system is not affected by fluid circulation and gives reliable TDM age (1.29 ± 0.03 Ga) and εHf signatures. By contrast, the Sm-Nd geochronometer system gives erroneous old TDM ages of 2.84-4 Ga. There is no positive εNd-εHf correlation, because of decreasing εNd values with deformation at constant εHf values. However, εNd-εHf values remain in the broad εNd-εHf terrestrial array, which strongly indicates that fluid-induced fractionation can contribute to the width of the terrestrial array. The strong εHf negative values of the leucogranite are similar to metasedimentary granulitic xenoliths from the French Massif Central and confirm the generation of the leucogranite by several episodes of reworking of the lower crust.  相似文献   

15.
The sources and petrogenetic processes that generated some of the Earth’s oldest continental crust have been more tightly constrained via an integrated, in situ (U-Pb, O and Hf) isotopic approach. The minerals analysed were representative zircon from four Eoarchaean TTG tonalites and two felsic volcanic rocks, and olivine from one harzburgite/dunite of the Itsaq Gneiss Complex (IGC), southern West Greenland. The samples were carefully chosen from localities with least migmatisation, metasomatism and strain. Zircon was thoroughly characterized prior to analysis using cathodoluminescence, scanning electron, reflected and transmitted light imaging. The zircon from all but one sample showed only minor post-magmatic recrystallisation. 207Pb/206Pb dating of oscillatory-zoned zircon using SHRIMP RG (n = 142) indicates derivation of the felsic igneous rocks from different batches of magma at 3.88, 3.85, 3.81, 3.80 and 3.69 Ga.Analyses of 18O/16O compositions of olivine from a harzburgite/dunite (n = 8) using SHRIMP II in multi-collector mode, indicate that the oxygen isotopic composition of this sample of Eoarchaean mantle (δ18OOl = 6.0 ± 0.4‰) was slightly enriched in 18O, but not significantly different from that of the modern mantle. Zircon δ18O measurements from the six felsic rocks (n = 93) record mean or weighted mean compositions ranging from 4.9 ± 0.7‰ to 5.1 ± 0.4‰, with recrystallised domains showing no indication of oxygen isotopic exchange during younger tectonothermal events. δ18OZr compositions indicate that the primary magmas were largely in equilibrium with the mantle or mantle-derived melts generated at similar high temperatures, while calculated tonalite δ18OWR compositions (6.7-6.9‰) resemble those of modern adakites.LA-MC-ICPMS zircon 176Hf/177Hf analyses were obtained from six samples (n = 122). Five samples record weighted mean initial εHf compositions ranging from to 0.5 ± 0.6 to −0.1 ± 0.7 (calculated using λ176Lu = 1.867 × 10−11 yr−1), while one sample records a composition of 1.3 ± 0.7, indicating the magmas were generated from a reservoir with a time averaged, near chondritic Lu/Hf. The derivation of TTG magmas from a chondritic Lu/Hf source implies either that there was not voluminous continental crustal growth nor major mantle differentiation leading to Lu/Hf fractionation during the Hadean or Eoarchaean, or alternatively that rapid recycling of an early formed crust allowed the early mantle to maintain a chondritic Lu/Hf.Previous studies have demonstrated that ancient TTG rocks were mostly produced by dehydration melting of mafic rocks within the stability field of garnet, probably in flatly-subducted or buried oceanic crust. The oxygen isotopic signatures measured here at high spatial resolution allow the source materials to be better defined. Melting of a mixed mafic source consisting of ∼80% unaltered gabbro (δ18OWR = 5.5‰) with ∼20% hydrothermally altered gabbro/basalt (δ18OWR = 4.0‰) would produce tonalite magmas within the average compositional range observed. 18O-enriched components such as altered shallow basaltic oceanic crust and pelagic or continental sediments were not present in the sources of these TTG melts. The absence of high 18O signatures may indicate either the rarity of low temperature altered sediments, or their effective removal from the down-going slab.  相似文献   

16.
We present analyses of stable isotopic ratios 17O/16O, 18O/16O, 34S/32S, and 33S/32S, 36S/32S in sulfate leached from volcanic ash of a series of well known, large and small volcanic eruptions. We consider eruptions of Mt. St. Helens (Washington, 1980, ∼1 km3), Mt. Spurr (Alaska, 1953, <1 km3), Gjalp (Iceland, 1996, 1998, <1 km3), Pinatubo (Phillipines, 1991, 10 km3), Bishop tuff (Long Valley, California, 0.76 Ma, 750 km3), Lower Bandelier tuff (Toledo Caldera, New Mexico, 1.61 Ma, 600 km3), and Lava Creek and Huckleberry Ridge tuffs (Yellowstone, Wyoming, 0.64 Ma, 1000 km3 and 2.04 Ma 2500 km3, respectively). This list covers much of the diversity of sizes and the character of silicic volcanic eruptions. Particular emphasis is paid to the Lava Creek tuff for which we present wide geographic sample coverage.This global dataset spans a significant range in δ34S, δ18O, and Δ17O of sulfate (29‰, 30‰, and 3.3‰, respectively) with oxygen isotopes recording mass-independent (Δ17O > 0.2‰) and sulfur isotopes exhibiting mass-dependent behavior. Products of large eruptions account for most of‘ these isotopic ranges. Sulfate with Δ17O > 0.2‰ is present as 1-10 μm gypsum crystals on distal ash particles and records the isotopic signature of stratospheric photochemical reactions. Sediments that embed ash layers do not contain sulfate or contain little sulfate with Δ17O near 0‰, suggesting that the observed sulfate in ash is of volcanic origin.Mass-dependent fractionation of sulfur isotopic ratios suggests that sulfate-forming reactions did not involve photolysis of SO2, like that inferred for pre-2.3 Ga sulfates from Archean sediments or Antarctic ice-core sulfate associated with few dated eruptions. Even though the sulfate sulfur isotopic compositions reflect mass-dependent processes, the products of caldera-forming eruptions display a large δ34S range and exhibit fractionation relationships that do not follow the expected equilibrium slopes of 0.515 and 1.90 for 33S/32S vs. 34S/32S and 36S/32S vs. 34S/32S, respectively. The data presented here are consistent with modification of a chemical mass-dependent fractionation of sulfur isotopes in the volcanic plume by either a kinetic gas phase reaction of volcanic SO2 with OH and/or a Rayleigh processes involving a residual Rayleigh reactant—volcanic SO2 gas, rather than a Rayleigh product. These results may also imply at least two removal pathways for SO2 in volcanic plumes.Above-zero Δ17O values and their positive correlation with δ18O in sulfate can be explained by oxidation by high-δ18O and high-Δ17O compounds such as ozone and radicals such as OH that result from ozone break down. Large caldera-forming eruptions have the highest Δ17O values, and the largest range of δ18O, which can be explained by stratospheric reaction with ozone-derived OH radicals. These results suggest that massive eruptions are capable of causing a temporary depletion of the ozone layer. Such depletion may be many times that of the measured 3-8% depletion following 1991 Pinatubo eruption, if the amount of sulfur dioxide released scales with the amount of ozone depletion.  相似文献   

17.
Copper isotope fractionation in acid mine drainage   总被引:4,自引:0,他引:4  
We measured the Cu isotopic composition of primary minerals and stream water affected by acid mine drainage in a mineralized watershed (Colorado, USA). The δ65Cu values (based on 65Cu/63Cu) of enargite (δ65Cu = −0.01 ± 0.10‰; 2σ) and chalcopyrite (δ65Cu = 0.16 ± 0.10‰) are within the range of reported values for terrestrial primary Cu sulfides (−1‰ < δ65Cu < 1‰). These mineral samples show lower δ65Cu values than stream waters (1.38‰ ? δ65Cu ? 1.69‰). The average isotopic fractionation (Δaq-min = δ65Cuaq − δ65Cumin, where the latter is measured on mineral samples from the field system), equals 1.43 ± 0.14‰ and 1.60 ± 0.14‰ for chalcopyrite and enargite, respectively. To interpret this field survey, we leached chalcopyrite and enargite in batch experiments and found that, as in the field, the leachate is enriched in 65Cu relative to chalcopyrite (1.37 ± 0.14‰) and enargite (0.98 ± 0.14‰) when microorganisms are absent. Leaching of minerals in the presence of Acidithiobacillus ferrooxidans results in smaller average fractionation in the opposite direction for chalcopyrite (Δaq-mino=-0.57±0.14, where mino refers to the starting mineral) and no apparent fractionation for enargite (Δaq-mino=0.14±0.14). Abiotic fractionation is attributed to preferential oxidation of 65Cu+ at the interface of the isotopically homogeneous mineral and the surface oxidized layer, followed by solubilization. When microorganisms are present, the abiotic fractionation is most likely not seen due to preferential association of 65Cuaq with A. ferrooxidans cells and related precipitates. In the biotic experiments, Cu was observed under TEM to occur in precipitates around bacteria and in intracellular polyphosphate granules. Thus, the values of δ65Cu in the field and laboratory systems are presumably determined by the balance of Cu released abiotically and Cu that interacts with cells and related precipitates. Such isotopic signatures resulting from Cu sulfide dissolution should be useful for acid mine drainage remediation and ore prospecting purposes.  相似文献   

18.
We have investigated the transfer of oxygen isotope signals of diatomaceous silica (δ18Odiatom) from the epilimnion (0-7 m) through the hypolimnion to the lake bottom (∼20 m) in freshwater Lake Holzmaar, Germany. Sediment-traps were deployed in 2001 at depths of 7 and 16 m to harvest fresh diatoms every 28 days. The 7 m trap collected diatoms from the epilimnion being the main zone of primary production, while the 16 m trap collected material already settled through the hypolimnion. Also a bottom sediment sample was taken containing diatom frustules from approximately the last 25 years. The δ18Odiatom values of the 7 m trap varied from 29.4‰ in spring/autumn to 26.2‰ in summer according to the temperature dependence of oxygen isotope fractionation and represent the initial isotope signal in this study. Remarkably, despite the short settling distance δ18Odiatom values of the 7 and the 16 m trap were identical only during spring and autumn seasons while from April to September δ18Odiatom values of the 16 m trap were roughly ∼1.5‰ enriched in 18O compared to those of the 7 m trap. Isotopic exchange with the isotopically lighter water of the hypolimnion would shift the δ18Odiatom value to lower values during settling from 7 to 16 m excluding this process as a cause for the deviation. Dissolution of opal during settling with intact organic coatings of the diatom cells and near neutral pH of the water should only cause a minor enrichment of the 16 m values. Nevertheless, opal from the bottom sediment was found to be 2.5‰ enriched in 18O compared to the weighted average of the opal from the 7 m trap. Thus, resuspension of bottom material must have contributed to the intermediate δ18Odiatom signal of the 16 m trap during summer. Dissolution experiments allowed further investigation of the cause for the remarkably enriched δ18Odiatom value of the bottom sediment. Experiments with different fresh diatomaceous materials show an increase of opaline 18O at high pH values which is remarkably reduced when organic coatings of the cells still exist or at near neutral pH. In contrast, high pH conditions do not affect the δ18Odiatom values of sub-fossil and even fossil opal. IR analyses show that the 18O enrichment of the sedimentary silica is associated with a decrease in Si-OH groups and the formation of Si-O-Si linkages. This indicates a silica dehydroxylation process as cause for the isotopic enrichment of the bottom sediment. Silica dissolution and dehydroxylation clearly induce a maturation process of the diatom oxygen isotope signal presumably following an exponential behaviour with a rapid initial phase of signal alteration. The dynamics of this process is of particular importance for the quantitative interpretation of sedimentary δ18Odiatom values in terms of palaeothermometry.  相似文献   

19.
We measured δD values of long chain n-alkanes isolated from 30 surface soil samples along two elevation transects on the Tibetan Plateau differing in precipitation regime and water source. The East Asian Monsoon precipitation dominates the wetter regime on the eastern slope (from 1230 to 4300 m) of Gongga Shan on the eastern Tibetan Plateau. Precipitation from the Polar Westerlies dominates the drier region on the slope from 1900 to 5000 m in the West Kunlun Shan on the northwestern Tibetan Plateau. The decrease in δD value with elevation in the wetter region greatly exceeded that in drier region by, −1.9 ± 0.1‰/100 m and −1.4 ± 1.0‰/100 m respectively. The apparent fractionation between leaf wax and precipitation εwax-p values in the wetter region (ca. −164‰) were more negative than those in drier region (ca. −125‰ above 3200 m).We also measured δD values in leaves of six common living trees (values from −287‰ to −193‰) from Gongga Shan, ranging from about 2900-4200 m. The abundance-weighted average values of the n-alkanes (δDwax) show a strong reverse correlation with sample source elevation (R2 0.78 for soils from Gongga Shan; R2 0.85 for soils from West Kunlun Shan above 3200 m), suggesting that n-alkane δDwax faithfully records the precipitation δD and that the isotopic altitude effect of precipitation controls δDwax altitudinal gradients in the mountains. The data show a fairly strong monotonic dependency of n-alkane δD values on elevation for the eastern Plateau, but a complex relationship between n-alkane δD values and elevation for the northwestern Plateau. The δDwax values at sites below 3200 m from the Kunlun Shan area exhibit an unexpected positive correlation with elevation. The study confirms the potential for using sediment δDwax values to reconstruct paleo-elevation in wetter regions, but suggests caution in applying the approach to dry regions. Our results also show it is essential to consider the intricacy of the pattern of atmospheric circulation and water sources and their influence on the lapse rate of δD values with elevation.  相似文献   

20.
We determined the stable carbon and hydrogen isotope fractionation factors for methane oxidation under oxic conditions using strains with known degradation pathways. The aerobic oxidation of methane can be initiated by two different forms of enzymes known as methane monooxygenases (MMO). The expression of these enzymes is type-specific and dependent upon the adjusted copper concentration in the medium (or environment). In this study, the expression of either the soluble MMO or the particulate MMO was supported by adjusting the copper concentrations in the growth medium. Taxonomically different aerobic methanotrophic strains, mainly belonging to the alpha- and gamma- classes of Proteobacteria, produced methane isotope enrichment factors (εbulk) ranging from −14.8 to −27.9‰ for carbon, and from −110.0 to −231.5‰ for hydrogen. The ratio of hydrogen versus carbon discrimination (Λ = (αH−1 − 1)/(αC−1 − 1) ≈ Δ(δ2H)/Δ(δ13C)) were similar for all tested cultures, and are also identical to values calculated from previously published enrichment factors for aerobic and anaerobic methane degradation. In contrast, Λ-values for the abiotic oxidation of methane with OH radicals (this process is considered as the main removal process for methane from the atmosphere) were significantly higher than the values derived from biotic oxidation. Due to the low variability of microbial methane isotope fractionation patterns, we propose that combined carbon and hydrogen isotope fractionation analyses can be used to monitor and assess the occurrence of microbial methane oxidation in marine or terrestrial environments. However, it is not possible to distinguish distinct aerobic or anaerobic methane-oxidation pathways by this approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号