首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current sheets have been suggested as the site for flare energy release because they can convert magnetic energy very rapidly into both heat and directed plasma energy. Also they contain electric fields with the potential of accelerating particles to high energies.The basic properties of current sheets are first reviewed. For instance, magnetic flux may be carried into a current sheet and annihilated. An exact solution for such a process in an infinitely long sheet has been found; it describes the annihilation of fields which are inclined at any angle, not just 180°. Moreover, field lines which are expelled from the ends of a current sheet can be described as having been reconnected. The only workable model for fast reconnection in the solar atmosphere, namely Petschek's mechanism, has recently been put on a firm foundation; it gives a reconnection rate which depends on the electrical conductivity but is typically a tenth or a hundredth of the Alfvén speed. A current sheet may be formed when the sources of an initially potential field start to move; a simple analytic technique for finding the position and shape of such a sheet in two dimensions now exists. Finally, a sheet with no transverse magnetic field component is subject to the tearing-mode instability, which rapidly produces a series of loops in the field.The main ways in which current sheets have been used for solar flare models is described. Syrovatskii's mechanism relies on the increase of the electric current density during the formation of a sheet, to a value in excess of the critical value j * for the onset of microinstabilities. But Anzer has recently demonstrated that the critical value is most unlikely to be reached during the initial formation process. Sturrock, on the other hand, has advocated the occurrence of the tearing-mode instability in an open streamer-like configuration (which may result from the eruption of a force-free field). But recent observations do not point to that as the relevant configuration. Rather, they suggest that flares are triggered by the emergence of new magnetic flux from below the solar photosphere. This has led Heyvaerts, Priest, and Rust (1976) to propose a new emerging flux model, according to which, as more and more flux emerges, so reconnection occurs, producing some preflare heating. When the current sheet reaches such a height (around the transition region) that its current density exceeds j *, then the impulsive phase of the flare is triggered. The main phase is caused by an enhanced level of magnetic energy conversion in a turbulent current sheet. The type of flare depends on the magnetic environment in which the emerging flux finds itself. A surge flare results if the flux appears near a strong unipolar region such as a simple sunspot, whereas a two ribbon flare may be produced by flux emergence near an active region filament, in which case the main phase energy is released from the field that surrounds the filament.  相似文献   

2.
Current sheet (CS) creation in a region with anX-type zero magnetic field line in plasma was simulated by numerically solving the 3D MHD equations for conditions which were close to the solar corona: the disturbance propagated from the photosphere boundary under which the magnetic field sources were situated. Some of values (B,,V) were set on the photosphere boundary, while others were determined from the conditions inside the region. Several Alfvén times after its creation, the CS motion practically ceased, and the plasma velocity changed its direction above the sheet, so that the plasma flow was directed into the CS from both sides.  相似文献   

3.
L. C. Lee  Y. Lin  G. S. Choe 《Solar physics》1996,163(2):335-359
Magnetic reconnection can take place between two plasma regions with antiparallel magnetic field components. In a time-dependent reconnection event, the plasma outflow region consists of a leading bulge region and a trailing reconnection layer. Magnetohydrodynamic (MHD) discontinuities, including rotational discontinuities, can be formed in both the bulge region and the trailing layer. In this paper, we suggest that the rotational discontinuities observed in the solar wind may be generated by magnetic reconnection associated with microflares in coronal holes. The structure of the reconnection layer is studied by solving the one-dimensional Riemann problem for the evolution of an initial current sheet after the onset of magnetic reconnection as well as carrying out two-dimensional MHD simulations. As the emerging magnetic flux reconnects with ambient open magnetic fields in the coronal hole, rotational discontinuities are generated in the region with open field lines. It is also found that in the solar corona with a low plasma beta ( 0.01), the magnetic energy is converted through magnetic reconnection mostly into the plasma bulk-flow energy. Since more microflares will generate more rotational discontinuities and also supply more energy to the solar wind, it is expected that the number of rotational discontinuities observed in the solar wind would be an increasing function of solar wind speed. The observation rate of rotational discontinuities generated by microflares is estimated to be dN RD/dt - f/63 000 s (f > 1) at 1 AU. The present mechanism favors the generation of rotational discontinuities with a large shock normal angle.  相似文献   

4.
Solar flares are frequently observed to occur where new magnetic flux is emerging and pressing up against strong active region magnetic fields. Since the solar plasma is highly conducting, current sheets develop at the boundary between the emergent and ambient flux, provided the two magnetic fields are inclined at a non-zero angle to one another.The present paper gives a simple two-dimensional model for the development of such sheets under the assumptions that no reconnection occurs and that the surrounding field remains a potential one. By using complex variable techniques, the position, orientation and shape of a current sheet may be determined, as well as the excess magnetic energy associated with it. Two examples are considered. The first, in which the ambient field is bipolar, may model new flux emergence near the edge of an active region, while the second example assumes a constant ambient field and may approximate the so-called fibril crossings which occur prior to some flares. In each case, the current sheets are curved, and the magnetic energy which is stored in excess of potential is sufficient to supply a solar flare when the sheets are long enough.  相似文献   

5.
Y. Q. Hu  B. C. Low 《Solar physics》1982,81(1):107-119
This paper treats two problems on the formation of electric current sheets in the highly electrically conducting solar atmosphere. The first problem concerns a vertical current sheet formed by decreasing the distance between a pair of parallel magnetic line-dipoles lying on the photosphere. The solution to this problem was given previously by Priest and Raadu. With an interest in the flare phenomenon, they derived a formula for the energy stored through the presence of the current sheet. We show that this formula is incorrect. Firstly, there is an error of sign in the derivation of Priest and Raadu, so that, when corrected, the formula gives a negative value for the stored energy. Secondly, the formula is shown to refer to an energy quite different from the free energy associated with the current sheet. To calculate for the current free energy, it is important to account for the frozen-in condition in the highly conducting photosphere.The second problem of the paper concerns the current sheet formed by increasing the distance between the pair of line-dipoles. A different field configuration results, with a curved current sheet lying transverse to the vertical. An analysis of the energy properties is given, to compare with the properties of the Priest-Raadu model.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

6.
Khabarova  O.  Zastenker  G. 《Solar physics》2011,270(1):311-329
Analysis of the Interball-1 spacecraft data (1995 – 2000) has shown that the solar wind ion flux sometimes increases or decreases abruptly by more than 20% over a time period of several seconds or minutes. Typically, the amplitude of such sharp changes in the solar wind ion flux (SCIFs) is larger than 0.5×108 cm−2 s−1. These sudden changes of the ion flux were also observed by the Solar Wind Experiment (SWE), on board the Wind spacecraft, as the solar wind density increases and decreases with negligible changes in the solar wind velocity. SCIFs occur irregularly at 1 AU, when plasma flows with specific properties come to the Earth’s orbit. SCIFs are usually observed in slow, turbulent solar wind with increased density and interplanetary magnetic field strength. The number of times SCIFs occur during a day is simulated using the solar wind density, magnetic field, and their standard deviations as input parameters for a period of five years. A correlation coefficient of ∼0.7 is obtained between the modelled and the experimental data. It is found that SCIFs are not associated with coronal mass ejections (CMEs), corotating interaction regions (CIRs), or interplanetary shocks; however, 85% of the sector boundaries are surrounded by SCIFs. The properties of the solar wind plasma for days with five or more SCIF observations are the same as those of the solar wind plasma at the sector boundaries. One possible explanation for the occurrence of SCIFs (near sector boundaries) is magnetic reconnection at the heliospheric current sheet or local current sheets. Other probable causes of SCIFs (inside sectors) are turbulent processes in the slow solar wind and at the crossings of flux tubes.  相似文献   

7.
Simple self-consistent models for non-neutral current sheets are considered. Characteristics of high-temperature turbulent current sheets (HTCS) with a small transverse component of magnetic field are determined for conditions in the solar corona. The energy output of such an HTCS is much larger than that of a neutral sheet. This makes it possible to consider the HTCS as an energy source not only in long-lived X-ray loops but also in flaring loops during the not or main phase of a flare. In this case, the magnetic reconnection velocity agrees with the observed velocity of the loop rise. Thus, these phenomena can be interpreted as a result of magnetic reconnection, for example, between new flux emerging from under the photosphere and an old magnetic field.The role of a longitudinal magnetic field in a current sheet is less important for HTCS. As a result of the compression of a longitudinal field, there appears an electric current circulating around the sheet. This current may induce strong Joule heating, if the compression is large. This additional heating is realized because of the annihilation of the main component, not the longitudinal component of magnetic field. The effect is small for HTCS, but may be significant for preflare current sheets.  相似文献   

8.
We study motions of charged particles in reconnecting current sheets (CS) which have both transverse (perpendicular to the current sheet plane) and longitudinal (parallel to the electric current inside the sheet) components of the magnetic field. Such CS, called non-neutral, are formed in regions of magnetic field line reconnection in the solar atmosphere. We develop an analytical technique which allows us to reproduce previous results concerning the influence of transverse fields on particle motion and acceleration. This technique also allows us to evaluate the effect of the longitudinal field. The latter increases considerably the efficiency of particle acceleration in CS. The energizing of electrons during the main phase of solar flares can be interpreted as their acceleration in non-neutral CS.  相似文献   

9.
An extended current sheet characterized by two peculiarities was formed in a configuration with opposite magnetic fields in a laboratory plasma on a -pinch device. First, development of the small scale turbulence leads to abnormal low sheet conductivity, through-sheet plasma diffusion and establishes the sheet thickness an order greater than the skin thicknessc/ pe ( pe is electron plasma frequency). Second, there develops and quickly stabilizes in a sheet the magnetic force line reconnection. As a result, a stable neutral sheet has the complicated structure of a magnetic field, including closed magnetic loops elongated along the axis of the system. The neutral sheet plasma becomes intensively heated, probably due to ion-sound turbulence, while a group of accelerated electrons, which on the energy spectrum lead to a plateau formation, are observed. The absence of any predominant direction is a typical feature for the motion of accelerated particles. The experimental data, obtained over a broad range of plasma densities and magnetic field values typical for the solar atmosphere, show that the antiparallel magnetic field turbulent dissipation could play an important role in the mechanism of solar energy release. The parameters of accelerated particles (energy 4–12 keV, the energy content being 10–1–102 of all the energy dissipated in a sheet) agree nicely with the data of astrophysical observations.  相似文献   

10.
In this paper we provide two new alternative derivations of the equation of transport for cosmic-ray particles in the interplanetary region. Both derivations are carried out by using particle positionr and timet in a frame of reference fixed in the solar system, and the particle momentump is specified relative to a local frame of reference moving with the solar wind. The first derivation is carried out by writing down a continuity equation for the cosmic rays, taking into account particle streaming and energy changes, and subsequently deriving the streaming and energy change terms in this equation. The momentum change term in the continuity equation, previously considered to be due to the adiabatic deceleration of particles in the expanding magnetic fields carried by the solar wind, appears in the present analysis as a dynamic effect in which the Lorentz force on the particle does not appear explicitly. An alternative derivation based on the ensemble averaged Liouville equation for charged particles in the stochastic interplanetary magnetic field using (r, p,t) as independent coordinates is also given. The latter derivation confirms the momentum change interpretation of the first derivation. We also provide a new derivation of the adiabatic rate as a combination of inverse-Fermi and betatron deceleration processes.  相似文献   

11.
Quasi-steady high-temperature current sheets are an energy source during the main or hot phase of solar flares. Such sheets are shown to be stabilized with respect to the tearing instability by a small transverse component of magnetic field existing in the sheets.  相似文献   

12.
We compare recent observations of a solar eruptive prominence as seen in extreme-UV light on 30 March 2010 by the Solar Dynamics Observatory (SDO) with the multi-tube model for interplanetary magnetic clouds (Osherovich, Fainberg, Stone, Geophys. Res. Lett. 26, 2597, 1999). Our model is based on an exact analytical solution of the plasma equilibrium with magnetic force balanced by a gradient of scalar gas pressure. Topologically, this solution describes two magnetic helices with opposite magnetic polarity embedded in a cylindrical magnetic flux tube that creates magnetic flux inequality between the two helices by enhancing one helix and suppressing the other. The magnetic field in this model is continuous everywhere and has a finite magnetic energy per unit length of the tube. These configurations have been introduced as MHD bounded states (Osherovich, Soln. Dannye 5, 70, 1975). Apparently, the SDO observations depict two non-equal magnetically interacting helices described by this analytical model. We consider magnetic and thermodynamic signatures of multiple magnetic flux ropes inside the same magnetic cloud, using in situ observations. The ratio of magnetic energy density to bulk speed solar wind energy density has been defined as a solar wind quasi-invariant (QI). We analyze the structure of the QI profile to probe the topology of the internal structure of magnetic clouds. From the superposition of 12 magnetically isolated clouds observed by Ulysses, we have found that the corresponding QI is consistent with our double helix model.  相似文献   

13.
The influence of the solar wind on large-scale temperature and density distributions in the lower corona is studied. This influence is most profoundly felt through its effect upon the geometry of coronal magnetic fields since the presence of expansion divides the corona into magnetically open and closed regions. Each of these regions is governed by entirely different energy transport processes. This results in significant temperature differences since only the open field regions suffer outward conductive heat losses. Because the temperature influences the density in an exponential manner, large density inhomogeneities are to be expected.An approximate method for calculating the temperature and density distribution in a known magnetic field geometry is outlined and numerical estimates are carried out for representative coronal conditions. These estimates show that temperature differences of a factor of about two and density differences of ten can be expected in the lower corona even for uniform base conditions. As a result, we do not regard the so-called coronal holes necessairly as locations of reduced mechanical heating. Alternatively, we suggest that they are regions of open magnetic field lines being continuously drained of energy contert by the solar wind expansion and outward thermal conduction.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

14.
It is of great importance to track the solar wind back to its photospheric source region and identify the related current sheets; this will provide key information for investigating the origin and predictions of the solar wind. We report a statistical study relating the photospheric footpoint motion and in-situ observation of current sheets in the solar wind. We used the potential force-free source–surface (PFSS) model and the daily synoptic charts to trace the solar wind back from 1 AU, as observed by the Wind spacecraft, to the solar surface. As the footpoints move along the solar surface we obtain a time series of the jump times between different points. These jumps can be within a cell and between adjacent cells. We obtained the distribution of the jump times and the distribution for a subset of the jump times in which only jumps between adjacent cells were counted. For both cases, the distributions clearly show two populations. These distributions are compared with the distribution of in-situ current sheets reported in an earlier work of Miao, Peng, and Li (Ann. Geophys. 29, 237, 2011). Its implications on the origin of the current sheets are discussed.  相似文献   

15.
A two-fluid plasma is described as a single continuum characterised by the generalised tensor of mechanical pressure and generalised vector of flow of mechanical energy. Plasma energization due to the transfer of mechanical energy inside the plasma body is emphasised and the energization of plasma by conversion of the electromagnetic energy into the mechanical energy is discussed. Two kinds of conversion associated with the convection electric field –(1/c)V×B and with the deviationE * of the total electric field from –(1/c)V×B are distinguished. TheV×B-field is related to the work done upon the plasma, while theE *-field is related to the plasma heating.Plasma motions with scale length larger than the Debye distance, taking place in the central part of the Earth-plasma sheet, are considered. The change of energy of any element of plasma is due mainly to the transfer of mechanical energy across the element's boundary; the EM-field is not strong enough to make a significant contribution. The work done by the internal loads is the main source of mechanical energy in the configurations in which the physical quantities do not vary along the current lines. The rates of change of the kinetic and internal energies are comparable. The transfer of mechanical energy is the principal source of the kinetic energy also in the general case when the physical quantities vary along the current lines. Conversion of the EM energy into mechanical energy is the main source of the internal energy in this case. In the tail plasma located outside the central part of the plasma sheet, conversion of the EM-energy into mechanical energy, which is due to the work done by the EM-force, takes place. The tail plasma is likely to undergo a two-phase energization process: first, it is accelerated and later, when it approaches the neutral sheet, it is heated.  相似文献   

16.
We have computed the surface Green's function for linear force-free magnetic fields, where × B = B and is a constant, for application to low coronal levels of the solar atmosphere. Boundary conditions are imposed on the normal component of B on two parallel planes which delineate the force-free volume. This procedure ensures that the magnetic field energy remains bounded, and that the field lines have a smooth behavior. A simple bipolar source distribution is treated and representative field line tracings are shown.  相似文献   

17.
It is evident from eclipse photographs that gas-magnetic field interactions are important in determining the structure and dynamical properties of the solar corona and interplanetary medium. Close to the Sun in regions of strong field, the coronal gas can be contained within closed loop structures. However, since the field in these regions decreases outward rapidly, the pressure and inertial forces of the solar wind eventually dominate and distend the field outward into interplanetary space. The complete geometrical and dynamical state is determined by a complex interplay of inertial, pressure, gravitational, and magnetic forces. The present paper is oriented toward the understanding of this interaction. The helmet streamer type configuration with its associated neutral point and sheet currents is of central importance in this problem and is, therefore, considered in some detail.Integration of the relevant partial differential equations is made tractable by an iterative technique consisting of three basic stages, which are described at length. A sample solution obtained by this method is presented and its physical properties discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

18.
J. J. Aly  N. Seehafer 《Solar physics》1993,144(2):243-254
Models of the magnetic field in the solar chromosphere and corona are still mainly based on theoretical extrapolations of photospheric measurements. For the practical calculation of the global field, the so-called source-surface model has been introduced, in which the influence of the solar wind is described by the requirement that the field be radial at some exterior (source) surface. Then the assumption that the field is current-free in the volume between the photosphere and this surface allows for its determination from the photospheric measurement. In the present paper a generalization of the source-surface model to force-free fields is proposed. In the generalized model the parameter( = ×B·B/B 2)must be non-constant (or vanish identically) and currents are restricted to regions with closed field lines. A mathematical algorithm for computing the field from boundary data is devised.  相似文献   

19.
The spatial structure of the transverse oscillations in the interplanetary magnetic field at 1 AU is studied by comparing the simultaneous observations by Explorer 33 and 35 satellites at the maximum separation of about 200R E. The anisotropy characteristics of these oscillations suggest that the oscillations sampled are Alfvén waves. It is found that the size of the region of the wave coherence is related to the solar wind velocity; the size is 80R E when the wind velocity is lower than 500 km s–1 but becomes less than this when the wind velocity is higher. An inference is made that the solar atmospheric turbulence contributing to the faster solar wind is finer in scale than that associated with the slower wind.A postgraduate student at the Tokai University  相似文献   

20.
Kan Liou  Chin-Chun Wu 《Solar physics》2016,291(12):3777-3792
Interplanetary magnetic field and solar wind plasma density observed at 1 AU during Solar Cycle 23?–?24 (SC-23/24) minimum were significantly smaller than those during its previous solar cycle (SC-22/23) minimum. Because the Earth’s orbit is embedded in the slow wind during solar minimum, changes in the geometry and/or content of the slow wind region (SWR) can have a direct influence on the solar wind parameters near the Earth. In this study, we analyze solar wind plasma and magnetic field data of hourly values acquired by Ulysses. It is found that the solar wind, when averaging over the first (1995.6?–?1995.8) and third (2006.9?–?2008.2) Ulysses’ perihelion (\({\sim}\,1.4~\mbox{AU}\)) crossings, was about the same speed, but significantly less dense (\({\sim}\,34~\%\)) and cooler (\({\sim}\,20~\%\)), and the total magnetic field was \({\sim}\,30~\%\) weaker during the third compared to the first crossing. It is also found that the SWR was \({\sim}\,50~\%\) wider in the third (\({\sim}\,68.5^{\circ}\) in heliographic latitude) than in the first (\({\sim}\,44.8^{\circ}\)) solar orbit. The observed latitudinal increase in the SWR is sufficient to explain the excessive decline in the near-Earth solar wind density during the recent solar minimum without speculating that the total solar output may have been decreasing. The observed SWR inflation is also consistent with a cooler solar wind in the SC-23/24 than in the SC-22/23 minimum. Furthermore, the ratio of the high-to-low latitude photospheric magnetic field (or equatorward magnetic pressure force), as observed by the Mountain Wilson Observatory, is smaller during the third than the first Ulysses’ perihelion orbit. These findings suggest that the smaller equatorward magnetic pressure at the Sun may have led to the latitudinally-wider SRW observed by Ulysses in SC-23/24 minimum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号