首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sediment flux from a mountainous catchment can be expressed as a function of a landslide rate constant κ which accounts for the vigour of hillslope erosion. Since the incising drainage network flushes all or a portion of the products of hillslope erosion to a range front where fan deposition takes place, a conservation of solid sediment volume allows the fan area and progradation distance to be calculated. These parameters are related primarily to the discharge of sediment from the catchment and to local tectonic subsidence.
A survey of modern alluvial fans in a wide range of climatic and tectonic settings shows that the effects of climate and bedrock lithology cannot be discriminated in the scatter of data of catchment area vs. fan area. However, by focusing on over 100 fans in the arid and semiarid zone of SW USA, the impact of tectonic subsidence rate is unambiguous. Although further quantitative data on local tectonic subsidence rates are urgently required, our preliminary analysis suggests considerable potential for reconstructing palaeocatchments where basin tectonic subsidence rates can be estimated. The progradation distances of fans from the northern and southern margins of the Middle Devonian Hornelen Basin of Norway, and the western and north-eastern margins of the Mio-Pliocene Ridge Basin, California, allow catchment sizes and denudation rates to be approximated. Although unique solution sets are not possible, an iteration of parameter values allows plausible parameter combinations to be calculated which shed light on the tectonic and sedimentary history of the proximal basin and upland source regions. Model results suggest significant asymmetry in basin subsidence rates, catchment slopes and transport mechanics between the two margins.  相似文献   

2.
Grain size trends in basin stratigraphy are thought to preserve a rich record of the climatic and tectonic controls on landscape evolution. Stratigraphic models assume that over geological timescales, the downstream profile of sediment deposition is in dynamic equilibrium with the spatial distribution of tectonic subsidence in the basin, sea level and the flux and calibre of sediment supplied from mountain catchments. Here, we demonstrate that this approach in modelling stratigraphic responses to environmental change is missing a key ingredient: the dynamic geomorphology of the sediment routing system. For three large alluvial fans in the Iglesia basin, Argentine Andes we measured the grain size of modern river sediment from fan apex to toe and characterise the spatial distribution of differential subsidence for each fan by constructing a 3D model of basin stratigraphy from seismic data. We find, using a self‐similar grain size fining model, that the profile of grain size fining on all three fans cannot be reproduced given the subsidence profile measured and for any sediment supply scenario. However, by adapting the self‐similar model, we demonstrate that the grain size trends on each fan can be effectively reproduced when sediment is not only sourced from a single catchment at the apex of the system, but also laterally, from tributary catchments and through fan surface recycling. Without constraint on the dynamic geomorphology of these large alluvial systems, signals of tectonic and climate forcing in grain size data are masked and would be indecipherable in the geological record. This has significant implications for our ability to make sensitive, quantitative reconstructions of external boundary conditions from the sedimentary record.  相似文献   

3.
This article deals with the stratigraphic record of a climatic or tectonic perturbation of an experimental coupled catchment‐fan system. Following Bonnet & Crave's results (2003), which suggest that it is possible to differentiate between climatic or tectonic causes of surface uplift of an erosional topography from the record of sediment flux output, we design a new experimental device to test this proposition in the sedimentary signal. This device allows the study of a coupled erosion–sedimentation system at the laboratory scale for given and changing uplift and rainfall rates. On the basis of experimental results, we propose a methodology to study alluvial fan architecture from large‐scale geometries to stacking pattern and sequence analysis. In these experiments, the erosional perturbation resulting from climate or tectonic forcing induces a typical dynamic in terms of both sediment supply and the ratio between the sediment and water supply, which controls the transport capacity. The four possible forcings (rainfall rate and uplift rate increase or decrease, respectively) then result in unique dynamics of the combined parameters such as the fan slope, apex aggradation, mean sedimentation rate, grain size distribution, bed thickness and frequency and facies stacking. We first analyse large‐scale geometries (onlap, toplap, downlap or truncation) and then fine‐scale sedimentological features (fining, thinning, coarsening, thickening) in order to discriminate the nature of the forcing. This conceptual model could be adapted to real world alluvial fans in order to recognize and separate the driving mechanisms from each other.  相似文献   

4.
Sediment flux from an uplifting fault block   总被引:5,自引:1,他引:4  
The stratigraphy of rift basins is a direct result of sediment liberation and transport through catchment–fan systems whose dynamics are controlled by both external and internal factors. We investigate the response of catchment–fan systems established across an active normal fault to variations in both tectonic and climatic boundary conditions. Numerical experiments show that the ratio of fan area to catchment area provides a sensitive indicator of tectonic activity. A step decrease in fault slip rate results in a delayed response by the catchment–fan systems; the response time is ∼50 kyr for a variety of parameter values. Decreased slip rate also gives rise to an abrupt but transient pulse in sediment discharge from the fans due to a drop in the hangingwall subsidence rate. In contrast, variations in climatic activity, using precipitation rate as a proxy, produce extremely rapid responses throughout the catchment–fan system. Thus, high-frequency climatic changes will overprint lower frequency tectonic variations in the stratigraphic record of fan deposits. Finally, we map out possible combinations of fault geometry, fault slip rate and precipitation rate that allow fan progradation and high rates of sediment discharge from the system.  相似文献   

5.
Sediment supply and climate change: implications for basin stratigraphy   总被引:8,自引:3,他引:5  
The rate of sediment supply from erosional catchment to depositional basin depends primarily upon climate, relief, catchment slope and lithology. It varies in both time and space. Spatial changes in erosion rates due to variations in lithology are illustrated by contrasting rates of drainage divide migration away from faults of known ages. Time variations in relative sediment supply are extremely complex and vary widely according to the direction and magnitude of climate change. In many parts of the Great Basin and south-western USA, glacial maximum climates were characterized by higher effective moisture and the altitudinal downward spread of woods and forests. Sparse data from alluvial fans indicate reduced sediment supply, despite the increased runoff evident from higher lake levels. The situation in Mediterranean areas is less clear, with rival climatic scenarios for vegetation ecotypes predicting contrasting runoff. In order to test these latter we run Cumulative Seasonal Erosion Potential [CSEP] experiments for present-day and a variety of full-glacial Mediterranean candidate climates. The results indicate the likelihood of enhanced sediment supply and runoff compared to the present day during full-glacial times for a cool wet winter climate and a reduction in sediment supply and runoff for a full-glacial cool dry winter climate. We then explore the consequences of such phase differences in sediment supply, and sea and lake levels for the stratigraphy of sedimentary basins. Highstands and lowstands of sea or lake may be accompanied by greater or lesser sediment and water supply, as determined by the regional climate and the direction of climatic change. Thus marine lowstands are not necessarily periods of great transfer of coarse clastic sediments to shelves and deep water basinal environments. Unsteady sediment supply has greatest implications for alluvial systems, in particular the effect that changing relative supplies of water and sediment have upon river and fan channel incision.  相似文献   

6.
Accurate magnetostratigraphic dating of Plio-Pleistocene alluvium in the Palomas half-graben permits correlation of transverse and axial deposits, thus enabling analysis of the movement of alluvial facies belts in time and space for the first time. Northern areas show evidence for basinward progradation of footwall-sourced Matuyama-age alluvial fan deposits over axial channel belt deposits of the ancestral Rio Grande, despite both deposits having similar deposition rates. This gradual ‘forced’ westward migration of the axial belt was in opposition to ongoing eastward growth of hangingwall-sourced fans and tectonic tilt imposed by the bounding Caballo normal fault. Fan growth was coincident with a recently proposed gradual climatic shift that may have increased sediment flux out of transverse catchments. It is also possible that continuing tectonic footwall uplift and divided retreat caused catchment areas to increase, contributing to these trends. Southern areas of the Palomas half-graben feature late Gilbert/early Gauss deposits indicative of rapid westwards progradation of large low-gradient, footwall-sourced fans over axial deposits. This ‘forced’ migration of the ancestral Rio Grande may have occurred due to footwall catchment and fan growth consequent upon initiation and growth of the Red Hills Fault. Subsequent eastward movement of the axial channel belt in late Gauss and Matuyama times overwhelmed these large fans. We attribute this to continued tilting on the Red Hills Fault and to development of the Jornada Fault to the south-east, the axial river belt avulsing north and eastwards through a developing Red Hills/Jornada crossover transfer zone. We conclude generally that facies architecture of axial and transverse elements in half-graben must reflect both climatic influences and the effects of fault development. Careful field mapping, accurate dating and palaeoclimatic studies are all necessary to determine the relative importance of these controls. Although adequate as broad guides, previous purely ‘fixist’ tectonosedimentary models allow for no fault growth, decay or climatic modulation of facies trends and are thus generally inadequate to explain important aspects rift basin stratigraphy.  相似文献   

7.
Three alluvial fans in the Ribera de Biescas, upper Gállego Valley, and central Spanish Pyrenees, have been studied in order to explain the most recent changes and to identify the spatial organization of the sediment. In the alluvial fans surveyed, the proximal area is dominated by debris flows, which pass downslope into transitional and fluvial deposits. The relative importance of each type of sediment is closely related to the size and gradient of the alluvial fan, as well as to the gradient in the final stretch of the stream. In general, the size of the sediment decreases from the proximal to the distal area, while the roundness increases. Nevertheless, there are noticeable irregularities in the trend both in longitudinal and transverse transects, due mainly to the sedimentary dynamics of the debris flows, as they advance towards the inner part of each alluvial fan during the most intense peak flows. A sudden shrinkage of the most active area and incision along the fan channels has been assessed and related to land-use changes in the catchments.  相似文献   

8.
ABSTRACT The Dehradun Valley, a synclinal intermontane valley piggyback basin within the Siwalik Group rocks in the NW Himalaya, is separated from the Lesser Himalayan formations in the north by a major intraplate thrust, the Main Boundary Thrust (MBT) and from the Indogangetic Plains in the south by the Himalayan Frontal Fault (HFF). Major parts of the Dehradun Valley are covered by three fans, from west to east the Donga, Dehradun and Bhogpur fans, deposited by streams following the topography produced by activity of the MBT and probable footwall imbricate thrusts, starting at about 50 ka. The Donga and Dehradun fans were fed by small streams and characterized mainly by sediment gravity‐flow deposits (debris flow and mudflow deposits) in the proximal zone, and mostly mudflow deposits and minor braided stream deposits in the middle zone during the period 50–10 ka. Palaeosols were weakly developed in the proximal zone and moderately to strongly developed in the middle zone. The degree of development of palaeosol was mainly a function of rate of sedimentation and to some extent entrenchment of streams into the fan surface. Since 10 ka, deposition has been typically by braided streams. The Bhogpur fan has been marked by deposition from relatively larger braided streams since 50 ka. The fan sequences in the Dehradun Valley are synorogenic and their deposition started due to activity of the southern footwall imbricate of the MBT, i.e. Bhauwala Thrust on the Donga and Dehradun fans. In these fans, major fan sequences show retrogradation (50–10 ka) related to a decrease in the activity of the MBT and related imbricates and activity of more hinterlandward imbricates with time. After 10 ka a thin prograding sequence was deposited due to uplift of the fans, which resulted from the activity on a thrust in the distal parts of the fans. It suggests an out‐of‐sequence activity of faults in the MBT imbricate system. Cross‐faults divide the Siwalik formations in the footwall of the MBT into three blocks, which were marked by decreasing subsidence or possibly uplift from east to west. Thrusting on the HFF was not piggyback type but synchronous with activity of the MBT and its imbricates. The development of the Mohand fault‐bend anticline above the HFF changed the nature of the basin from foreland to piggyback type, shed minor colluvial deposits prior to 10 ka, and folded the southernmost fan deposits in the western, narrow parts of the valley. A major change in climate from a cold, dry climate with strong seasonal variations prevailing since 50 ka to warm and humid climate at about 10 ka resulted in a change in depositional processes from sediment gravity‐flows to braided streams.  相似文献   

9.
《Basin Research》2018,30(3):522-543
We present a source‐to‐sink analysis to explain sediment supply variations and depositional patterns over the Holocene within an active rift setting. We integrate a range of modelling approaches and data types with field observations from the Sperchios rift basin, Central Greece that allow us to analyse and quantify (1) the size and characteristics of sediment source areas, (2) the dynamics of the sediment routing system from upstream fluvial processes to downstream deposition at the coastline, and (3) the depositional architecture and volumes of the Holocene basin fill. We demonstrate that the Sperchios rift comprises a ‘closed’ system over the Holocene and that erosional and depositional volumes are thus balanced. Furthermore, we evaluate key controls in the development of this source‐to‐sink system, including the role of pre‐existing topography, bedrock erodibility and lateral variations in the rate of tectonic uplift/subsidence. We show that tectonic subsidence alone can explain the observed grain size fining along the rift axis resulting in the downstream transition from a braided channel to an extensive meander belt (>15 km long) that feeds the fine‐grained Sperchios delta. Additionally, we quantify the ratios of sediment storage to bypass for the two main footwall‐sourced alluvial fan systems and relate the fan characteristics to the pattern and rates of fault slip. Finally, we show that ≥40% of the sediment that builds the Sperchios delta is supplied by ≤22% of the entire source area and that this can be primarily attributed to a longer‐term (~106 years) transient landscape response to fault segment linkage. Our multidisciplinary approach allows us to quantify the relative importance of multiple factors that control a complex source‐to‐sink system and thus improve our understanding of landscape evolution and stratigraphic development in active extensional tectonic settings.  相似文献   

10.
The composition, volume and stratigraphic organisation of submarine fan systems deposited along continental margins are expected to reflect the landscape from which the sediment was derived. During the Late Cretaceous, the Møre‐Trøndelag margin, Norwegian North Sea was dominated by the deposition of deep‐marine fines; the emplacement of 11 sand‐rich submarine fan systems occurred only during a c. 3 Myr period in the Turonian‐Coniacian. The systems were fed by sediment that was routed through submarine canyons incised into the basin margin; the canyons are underlain by angular unconformities and are interpreted to have resulted from tectonically induced changes in slope physiography and erosion by gravity flows. The areal extent of the onshore drainage catchments that supplied sediment to the fans has been estimated based on scaling relationships derived from modern source‐to‐sink systems. The results of our study suggest that the Turonian fans were sourced by drainage catchments that were up to ca.3600 km2, extending more than ca.100 km inland from the palaeo‐shoreline. The estimated inboard catchment extent correlates with the innermost structures of a large, long‐lived, basement‐involved, normal fault complex. On the basis of our analysis, we conclude that increased sediment supply to the Turonian fan systems reflects tectonic rejuvenation of the landscape, rather than eustatic sea‐level or climate fluctuations. The duration of fan deposition is thus interpreted to reflect the ‘relaxation time’ of the landscape following tectonic perturbation, and fan system retrogradation and abandonment is interpreted to reflect the eventual depletion of the onshore sediment source. We demonstrate that a better understanding of the stratigraphic variability in deepwater depositional systems can be gained by taking a complete source‐to‐sink view of ancient sediment dispersal systems.  相似文献   

11.
Distinguishing tectonic from climatic controls on range-front sedimentation   总被引:3,自引:0,他引:3  
Geologic and chronometric studies of alluvial fan sequences in south-central Australia provide insights into the roles of tectonics and climate in continental landscape evolution. The most voluminous alluvial fans in the Flinders Ranges region have developed adjacent to catchments uplifted by Plio-Quaternary reverse faults, implying that young tectonic activity has exerted a first-order control on long-term sediment accumulation rates along the range front. However, optically stimulated luminescence (OSL) dating of alluvial fan sequences indicates that late Quaternary facies changes and intervals of sediment aggradation and dissection are not directly correlated with individual faulting events. Fan sequences record a transition from debris flow deposition and soil formation to clast-supported conglomeritic sedimentation by ∼30 ka. This transition is interpreted to reflect a landscape response to increasing climatic aridity, coupled with large flood events that episodically stripped previously weathered regolith from the landscape. Late Pleistocene to Holocene cycles of fan incision and aggradation post-date the youngest-dated surface ruptures and are interpreted to reflect changes in the frequency and magnitude of large floods. These datasets indicate that tectonic activity controlled long-term sediment supply but climate governed the spatial and temporal patterns of range-front sedimentation. Mild intraplate tectonism appears to have influenced Plio-Quaternary sedimentation patterns across much of the southern Australian continent, including the geometry and extent of alluvial fans and sea-level incursions.  相似文献   

12.
ABSTRACT The Alkyonides half‐graben is separated from the Gerania Range to the south by active faults whose offshore traces are mapped in detail. The East Alkyonides and Psatha Faults have well‐defined, Holocene‐active tip zones and cannot be extrapolated from the onshore Skinos Fault into a single continuous surface trace. During the late Quaternary, catchments draining the step‐faulted range front have supplied sediment to alluvial fans along a subsiding marine ramp margin in the hangingwall of the Skinos Fault, to shelf ledge fans on the uplifting footwall to the East Alkyonides Fault and to the Alepochori submarine fan in the hangingwall of the latter. During late Pleistocene lowstand times (c. 70–12 ka), sediment was deposited in Lake Corinth as fan deltas on the subsiding Skinos shelf ramp which acted as a sediment trap for the adjacent 360 m deep submarine basin plain. At the same time, the uplifting eastern shelf ledge was exposed, eroded and bypassed in favour of deposition on the Alepochori submarine fan. During Holocene times, the Skinos bajada was first the site of stability and soil formation, and then of substantial deposition before modern marine erosion cut a prominent cliffline. The uplifting eastern shelf ledge has developed substantial Holocene fan lobe depositional sequences as sediment‐laden underflows have traversed it via outlet channels. We estimate mean Holocene displacement rates towards the tip of the Psatha Fault in the range 0.7–0.8 mm year?1. Raised Holocene coastal notches indicate that this may be further partitioned into about 0.2 mm year?1 of footwall uplift and hence 0.5–0.6 mm year?1 of hangingwall subsidence. Holocene displacement rates towards the tip of the active East Alkyonides Fault are in the range 0.2–0.3 mm year?1. Any uplift of the West Alkyonides Fault footwall is not keeping pace with subsidence of the Skinos Fault hangingwall, as revealed by lowstand shelf fan deltas which show internal clinoforms indicative of aggradational deposition in response to relative base‐level rise due to active hangingwall subsidence along the Skinos Fault. Total subsidence here during the last 58 kyr lowstand interval of Lake Corinth was some 20 m, indicating a reduced net displacement rate compared to estimates of late Holocene (< 2000 bp ) activity from onshore palaeoseismology. This discrepancy may be due to the competition between uplift on the West Alkyonides Fault and subsidence on the onshore Skinos Fault, or may reflect unsteady rates of Skinos Fault displacement over tens of thousands of years.  相似文献   

13.
The significance of variations in the sediment flux from western Scandinavia during the Cenozoic has been a matter of debate for decades. Here we compile the sediment flux using seismic data, boreholes and results from other publications and discuss the relative importance of causal agents such as tectonism, climate and climate change. Western Scandinavia, the northern British Isles and the Faeroe‐Shetland Platform were significant sediment sources during the Paleocene, which is well founded in tectonic causes related to the opening of the North Atlantic. From the Eocene and onward, variations in the sediment flux from western Scandinavia correlate better with climate and climate change. During the Eocene, sediment production was low. From the late Eocene onward, increased seasonality may have contributed to stimulating the sediment flux. Significant climatic cooling episodes correlate with Oligocene deposits in the North Sea, the post‐mid‐Miocene Molo and Kai Formations of the Norwegian Shelf, the southern North Sea delta system and large volumes of the Late Pliocene‐Holocene Naust Formation. The sediment flux from Scandinavia during the Cenozoic is in general agreement with the detrital flux to the world's oceans. Furthermore, the large variations in the size of sediment catchment areas as well as the possibility of submarine and glacial erosion must be incorporated to understand regional variations in climate driven sediment flux.  相似文献   

14.
《自然地理学》2013,34(5):343-365
Soils buried by alluvial fan deposits in southwest Nebraska record several intervals of increased sediment yield from small watersheds during the Holocene. These intervals, which began at ca. 9000, 5800, 4000, 3000, and 1000 14C yrs. B.P., were probably caused by some sort of change in regional climatic conditions. Existing evidence of Holocene climate change suggests that increased sediment yields were caused by periodic shifts toward drier climatic conditions, except for the intervals that began at 5800 and 4000 14C yrs. B.P. The cause of increased sediment yields at those times is unclear, although an increased frequency of large intense storms may have been a contributing factor. The record of soil burial exhibits considerable spatial variability both within individual fans and between fans. This is partly due to practical limitations on the number of buried soils that could be sampled on each fan. But it is also due to the inherent spatial variability of depositional processes and to differences in the geomorphic development of the four fans. Thus, researchers who use data from fans to reconstruct sediment-yield histories need to investigate several sites on several fans in order to obtain as complete a record as possible of changing sediment yields.  相似文献   

15.
At the geological time scale, the way in which the erosion of drainage catchments responds to tectonic uplift and climate changes depends on boundary conditions. In particular, sediment accumulation and erosion occurring at the edge of mountain ranges should influence the base level of mountain catchments, as well as sediment and water discharges. In this paper, we use a landform evolution model (LEM) to investigate how the presence of alluvial sedimentation at range fronts affects catchment responses to climatic or tectonic changes. This approach is applied to a 25 km × 50 km domain, in which the central part is uplifted progressively to simulate the growth of a small mountain range. The LEM includes different slope and river processes that can compete with each other. This competition leads to ‘transport‐limited’, ‘detachment‐limited’ or ‘mixed’ transport conditions in mountains at dynamic equilibrium. In addition, two end‐member algorithms (the channellized‐flow and the sheet‐flow regimes) have been included for the alluvial fan‐flow regime. The three transport conditions and the two flow algorithms represent six different models for which the responses to increase of rock uplift rate and/or cyclic variation of the precipitation rate are investigated. Our results indicate that addition of an alluvial apron increases the long‐term mountain denudation. In response to uplift, mountain rivers adapt their profile in two successive stages; first by propagation of an erosion wave and then by slowly increasing their channel gradients. During the second stage, the erosion rate is almost uniform across the catchment area at any one time, which suggests that dynamic equilibrium has been reached, although the balance between erosion and rock uplift rates has not yet been achieved. This second stage is initiated by the uplift of the mountain river outlets because of sedimentation aggradation at the mountain front. The response time depends on the type of water flow imposed on the alluvial fans domains (× by 1.5 for channelized flow regime and by 10 for the sheet flow one). Cyclic variations of precipitation rate generate cyclic incisions in the alluvial apron. These incision pulses create knick‐points in the river profile in the case of ‘detachment‐limited’ and ‘mixed’ river conditions, which could be mistaken for tectonically induced knick‐points. ‘Transport‐limited’ conditions do not create such knick‐points, but nevertheless trigger erosion in catchments. The feedbacks linked to sedimentation and erosion at range front can therefore control catchment incision or aggradation. In addition, random river captures in the range front trigger auto‐cyclic erosion pulses in the catchment, capable of generating incision–aggradation cycles.  相似文献   

16.
Stratigraphic, geomorphic, and paleoecological data were collected from upland watersheds in the Great Basin of central Nevada to assess the relationships between late Holocene climate change, hillslope processes and landforms, and modern channel dynamics. These data indicate that a shift to drier, warmer climatic conditions from approximately 2500 to 1300 YPB led to a complex set of geomorphic responses. The initial response was massive hillslope erosion and the simultaneous aggradation of both side-valley alluvial fans and the axial valley system. The final response was fan stabilization and axial channel incision as fine-grained sediments were winnowed from the hillslope sediment reservoirs, and sediment yield and runoff processes were altered. The primary geomorphic response to disturbance for approximately the past 1900 years has been channel entrenchment, suggesting that the evolutionary history of hillslopes has produced watersheds that are prone to incision. The magnitude of the most recent phase of channel entrenchment varies along the valley floor as a function of geomorphic position relative to side-valley alluvial fans. Radial fan profiles suggest that during fan building, fan deposits temporarily blocked the flow of sediment down the main stem of the valley, commonly creating a stepped longitudinal valley profile. Stream reaches located immediately upvalley of these fans are characterized by low gradients and alternating episodes of erosion and deposition. In contrast, reaches coincident with or immediately downstream of the fans exhibit higher gradients and limited valley floor deposition. Thus, modern channel dynamics and associated riparian ecosystems are strongly influenced by landforms created by depositional events that occurred approximately 2000 years ago.  相似文献   

17.
The Tian Shan range formed in the late Cenozoic in response to the northward propagation of deformation related to the India–Eurasia continental collision. Precise timing of the Tian Shan uplift is required to understand possible mechanisms of continental lithosphere deformation and interactions between climate, tectonism and erosion. Here, we provide magnetostratigraphic age control on the northern Chinese Tian Shan foreland successions. A thorough rock magnetic analysis identifies haematite‐ and magnetite‐bearing alluvial fan deposits in the upper portion of the sampled strata as more reliable palaeomagnetic recorders than magnetite‐bearing fluvial and lacustrine deposits that are often maghaemitized in the lower part of the record. As a result, a robust correlation to the geomagnetic polarity time scale is obtained from 6 to 2 Ma while a tentative correlation is proposed from 6 to 16 Ma. Sediment accumulation rates increase from 155 to 260 m Myr?1 at 3.9±0.3 Ma. This change coincides with a gradual lithologic transition from fluvial (sandstone‐dominated) to alluvial fan (conglomerate‐dominated) deposits that likely records an approaching erosional source related to tectonically increased subsidence rather than differential compaction. Clear evidence for growth strata starting at an estimated age of ~2 Ma provides a minimum age for folding. These results are compared with previous magneotstratigraphic studies from the same and other sections of the northern Tian Shan foreland basin fill, thus enabling a critical assessment of the reliability of magnetostratigraphic dating and the significance of sediment accumulation rate variations with respect to facies variations and growth strata. Our results in the Taxi He section provide a sequence of events that is consistent with enhanced tectonic forcing starting at ~4 Ma, although a climatic contribution must be considered given the close relationship of these ages with the Pliocene climate deterioration.  相似文献   

18.
The volume and grain-size of sediment supplied from catchments fundamentally control basin stratigraphy. Despite their importance, few studies have constrained sediment budgets and grain-size exported into an active rift at the basin scale. Here, we used the Corinth Rift as a natural laboratory to quantify the controls on sediment export within an active rift. In the field, we measured the hydraulic geometries, surface grain-sizes of channel bars and full-weighted grain-size distributions of river sediment at the mouths of 47 catchments draining the rift (constituting 83% of the areal extent). Results show that the sediment grain-size increases westward along the southern coast of the Gulf of Corinth, with the coarse-fraction grain-sizes (84th percentile of weighted grain-size distribution) ranging from approximately 19 to 91 mm. We find that the median and coarse-fraction of the sieved grain-size distribution are primarily controlled by bedrock lithology, with late Quaternary uplift rates exerting a secondary control. Our results indicate that grain-size export is primarily controlled by the input grain-size within the catchment and subsequent abrasion during fluvial transport, both quantities that are sensitive to catchment lithology. We also demonstrate that the median and coarse-fraction of the grain-size distribution are predominantly transported in bedload; however, typical sand-grade particles are transported as suspended load at bankfull conditions, suggesting disparate source-to-sink transit timescales for sand and gravel. Finally, we derive both a full Holocene sediment budget and a grain-size-specific bedload discharged into the Gulf of Corinth using the grain-size measurements and previously published estimates of sediment fluxes and volumes. Results show that the bedload sediment budget is primarily comprised (~79%) of pebble to cobble grade (0.475–16 cm). Our results suggest that the grain-size of sediment export at the rift scale is particularly sensitive to catchment lithology and fluvial mophodynamics, which complicates our ability to make direct inferences of tectonic and palaeoenvironmental forcing from local stratigraphic characteristics.  相似文献   

19.
A major issue in tectonics and sedimentation is the role of cross‐stream tectonic tilting in steering channels. The general idea is that channels will be attracted to lateral maxima in subsidence rate. A physical experiment performed in 1999 at the St. Anthony Falls Laboratory, however, was in conflict with the idea and showed that fluvial channels and resulting stratigraphy can be insensitive to even relatively strong lateral variation in subsidence. Here, we present results from an experiment which uses a simplified relay‐ramp geometry with laterally variable uplift and subsidence to test a hypothesis developed from the earlier experiment: Tectonic tilting steers channels only when the ratio of the time scales describing lateral channel mobility to tectonic deformation is sufficiently large. Occupation time by experimental channels and sand fraction in the deposit (a proxy for channel deposition) both increase with subsidence rate indicating strong steering of channels by tectonic forcing. We also found that, due to local incision, uplift lengthened the time scale for lateral channel migration relative to subsidence. Comparing channel mobility at the beginning of the experiment, with no tectonic forcing, to later tectonic stages of the experiment indicates that active tectonics increased the channel time scale. The interplay of channel steering with uplift and subsidence led to cyclic appearance and disappearance of an autogenic lake in the hanging‐wall basin. This lake was associated with alternation between channels going around vs. across the adjoining upstream uplifted footwall region. This creation and filling of the lake under constant tectonic forcing (constant fault slip rate) in the hanging wall created subaerial fan‐delta parasequences separated by fluvial deposits.  相似文献   

20.
We propose and test a conceptual framework for evaluating the relative timing of different types of sedimentary indicators of tectonism in alluvial foreland basin settings. We take the first occurrence of a detrital grain from a newly exposed source‐area lithology to provide the best indicator of the onset of tectonic uplift in the source area. Source‐area unroofing may lag behind initial uplift because of the type, thickness and structure of rocks in the uplifted mountain block, drainage patterns and climate. However, once exposed, advective transport disperses grains quickly throughout fluvial systems. Because of increased subsidence rate from thrust belt loading, an increase in sedimentation rate begins coincident with tectonic load emplacement within the flexural half‐width of the basin. However, farther out into the basin increased sedimentation rates lag behind the composition signal because of time lags associated with propagation of the thrust load and attendant sediment loads into the basin. The progradation of syntectonic gravel lags behind all of these signals as a direct function of the relative proportion of gravel fraction within transported sediment and rates and geometry of subsidence, which selectively traps the coarsest grain‐size fractions in the most proximal parts of the basin. We demonstrate this signal attenuation in the syntectonic Horta–Gandesa alluvial system (late Eocene–Oligocene), exposed along the southeast margin of the Ebro Basin, Spain. The results demonstrate that: (1) the time spans between the compositional signal and the progradation of the gravel front can be geologically significant, on the order of more than a million years within as little as 20 km of the thrust front; and (2) time lags between the signals increase with distance away from the deformation front. No lag time was observed between the first appearance of a new clast composition and the arrival of gravel front when the thrust front was within a few tens of metres from the depositional site. In contrast, the time lag was 0.5–1 Myr when the thrust front was about 5–6 km away and it increased to >1 Myr when the deformation front was about 8 km away. At the most extreme position, when the thrust front was 15–20 km away, the gravel front never reached the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号