首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of ion-stimulated erosion of atmosphereless solar system bodies is suggested and investigated. A theoretical model for the brittle surface erosion resulting under the effect of multicharge ion cosmic rays is analyzed. It is shown that the thermoelastic waves originated in the energetic track of a very heavy ion can result in the near-surface stresses exceeding the dynamic tensile strength of the surface material for any atmosphereless solar system body. The thermoelastic wave surface arrival yields brittle erosion of the material and ejection of this latter fragments (the track-breaking process). Thus ejected dust grains have plano-oblong shape, average mass on the order of 10–17 g and velocity up to 400 m/sec providing the surface erosion rate of 10–1 ÷ 3 · 102 »/year (near the Earth orbit) which depends upon the surface material (rock or ice). Possible track-breaking consequences, in particular, presence of the dust fraction of ultramicron grains and their aggregates on the lunar surface are discussed. Near the bodies with the radii from 10 to 300 km predicted is the existence of extended dust cocoons consisting of ultramicron and submicron grains. Smaller objects (asteroids, comets, smallest satellites of planets, meteoroids, etc.) can serve sources of permanent dust wind of ultramicron and submicron sized grains escaping from their surfaces. The interplanetary dust yield owing to the ion-stimulated erosion of these bodies is not less than 1012 g/year. Possible interpreting in the frames of track-breaking process some observational data and effects, including existence of dust grains with the mass of 10–18 ÷ 10–17 g near the Halley's comet and the nature of 2060 Chiron dust coma is discussed. To prove the theory, observational identification and investigation of dust phenomena complex related to the ion-stimulated erosion of atmosphereless bodies, suggested is employing extreme ultraviolet and far infrared/submillimeter wavelengths, as well as polarimetric methods.  相似文献   

2.
We present a theoretical investigation of non-equilibrium condensation of refractory metalsinthe primordial solar nebula, in relation to the origin of “Fremdlinges” included inCAIs. Todescribe the nucleation process of grains from vapor, weadopted asemi-phenomenological modelmodified fromthe classical nucleation theoryby the introductionof the second virial coefficient of vapor. This modelachieves excellent agreement with nucleation rate experiment. However,the second virial coefficients are unknown for a vapor of refractory metals. To overcome this, weexpress the nucleation rate by theuse of the chemical potential of dimersinsteadof the second virial coefficient.On the basis of this new nucleation theory,we have performed numerical simulations ofnon-equilibrium condensation of refractory metals andfind thattheircondensation temperatures, Tc, decrease considerably in comparison withequilibrium condensation. Even if the characteristiccooling time scale is aslarge as 1×105 years, the decrease in Tc isfrom 200 to 400 Kfor rare elements such as W, Re,and Os. This remarkablenon-equilibrium behaviormainly stemsfromthelow totalpressure in the primordial solar nebula. From our new modelwealso obtainthe typical size ofgrainsformed in condensation. We findthatthe cooling time should be ?1×105 years for sub-micron-sized or largerrefractory metal nuggetsto form.  相似文献   

3.
The observations of the reddening of the distant galaxies and the weak diffuse radiation in the clusters of galaxies can be interpreted as a consequence of the presence of dust grains in the intergalactic medium. When allowance is made for the destruction of the grains in collision with particles of the hot gas, its lifetime is about 107–108 yr at a gas concentrationn g 10–3 cm–3. The detection of the infrared (IR) emission from the galaxy clusters might be the test for the proof of the presence of dust grains in the intergalactic medium. In this paper the estimates of the expected intensities and fluxes of IR emission for the spectral region 50–300 are presented for two galaxy clusters in Coma and Perseus. The parameters of the hot gas spatial distribution are chosen from X-ray observations. Having assumed that intergalactic dust can be ejected only from the galaxies, we used such a model for intergalactic dust grains which explains very well the interstellar dust effects. It is shown that the dust temperature, which is determined from the general energetic balance of the dust grains, can achieve some scores of degrees of Kelvin. Two models of the dust spatial distribution are considered. It is found that the maximum of IR flux for the Coma cluster lies near =100 and the same for the Perseus cluster near 50–70. The total fluxes of IR emission from these clusters are about 105–106 Jy and can be detected by modern observational methods.  相似文献   

4.
We present the results of the photometric observations, in theUBVRJHKLMNQ system, of CH Cyg, made in the period 1978–1987. They have shown that from 1985 to 1987 dust condensed in its circumstellar envelope have taken place the condensation of the dust matter. In 1987 its mass and temperature were about 3×10–8 M and 800 K, respectively.  相似文献   

5.
Abstract— Infrared observations reveal that classical novae often form dust in their expanding shells ejected into the interstellar medium as a consequence of violent outbursts. Recent experimental efforts have led to the identification of presolar nova candidate grains from the Acfer 094 and Murchison meteorites. Recently, however, concerns have been raised about the stellar paternity of these grains by new measurements on another sample of SiC grains: these grains are characterized by 12C/13C and 14N/15N ratios similar to the ones reported for the nova grains, but a number of different imprints suggest that a possible supernova origin cannot be excluded. Here we review the predicted nucleosynthetic imprints accompanying nova explosions and discuss the chances to synthesize heavier species, such as titanium, in nova‐like events.  相似文献   

6.
Maser emission from the circumstellar envelopes of four late-type red supergiants has been mapped with milli-arcsecond resolution using MERLIN1. The wind is driven by radiation pressure on dust and the structure and kinematics of the masing regions reflect the dust properties. The unbeamed radius of water maser blobs, ∼ 1012 m, has been measured for the first time. The velocity gradient is used to derive the dust absorption coefficient which increases with radius from ≤ 0.1 to ≤ 1.0 m2 kg−1. Comparison with laboratory studies suggests that small crystalline grains are formed near the star and are annealed into astronomical silicates at larger distances. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

7.
Scanning spectrometer measurements in the range 1310–270 Å, observed from the satellite OSO 3, are reported for the solar flare of 2114 UT March 27, 1967. This flare was a long lasting sequence of bursts with EUV spectra consisting of enhanced lines and recombination continua normally emitted from the chromosphere and chromosphere-corona transition region, with unusually small increases in lines normally emited from the corona. An EUV flare spectrum is presented and suggested as one example for interpreting broadband observations of EUV bursts. Any broadband continuum other than known recombination continua contributed less than 6 % of the meassured line and hydrogen recombination continua in the range 270–1310 Å. The ratio of photon flux of Ciii 1176 Å to that of Ciii 977 Å was 0.86, which suggests an ambient density in the region of emission greater than 1012 cm-3 at temperatures near 60000 K.  相似文献   

8.
This work is divided into 13 sections and 2 appendices, and aims to elucidate the accretion mechanism, which operates via image-theory forces, whenever two interstellar dust grains come close together. Section 1 is an introduction. Section 2 proposes that the distribution of interstellar grains be taken asn(r) r –4 to avoid distortion of the 3K microwave background by radiation from spinning grains. Section 3 examines each of three types of image force accretion processes, finding them to be dominant compared to radiation or gravitational forces by at least a factor of 1019. Section 4 states that only grains made of conducting material (e.g., graphite, ice, iron) are involved in image theory. Section 5 presents reasons for believing that two grains should coalesce on impact. Section 6 examines the motion of charged interstellar grains in Hi and Hii regions. Section 7 demonstrates, by way of four examples involving dust grains ofr=10–7 cm up tor=10–4 cm, that the image effects on conducting grains are not trivial, and that the dynamics involved is not to be compared at all with elementary Coulomb interaction of two changes. Section 8 concludes that accretion with not take place in Hi clouds if thermal (equipartition) velocities prevail among the dust particles. section 9 examines grain interactions in Hii regions: here, following an argument due to Spitzer, consideration is given to the case of a population of dust grains all streaming in the direction of the local magnetic field B at velocities of order 0.1 km s–1. It is shown that accretion takes place effectively, leading to the formation of interstellar grit, meaning grains of mass 10–8 to 10–7 gm, radius 0.1 mm; and leaving also a population ofr10–6 cm grains, which are observed in polarization and extinction measurements. The existence of the latter is now a deduction and not an ad hoc postulate, as previously, and implies a distribution of the general formn(r) r mean –3 , in approximate agreement with that of Section 2. Section 10 considers the accretion mechanism as a cascade process. Section 11 shows that the existence of grains in space ofr 10–6 cm rules out an origin in supernova or galactic explosions, and supports a passive origin, perhaps in red giants or Mira variables. Section 12 discusses the implications of the results found for polarization observations and cosmogony, the latter being given a new foundation in which planets of different composition form automatically from a solar nebula. Section 13 is a conclusion.  相似文献   

9.
We investigate the method by which nearby supernovae – within a few tens of pc of the solar system – can penetrate the solar system and deposit live radioactivities on earth. The radioactive isotopic signatures that could potentially leave an observable geological imprint are in the form of refractory metals; consequently, it is likely they would arrive in the form of supernova-produced dust grains. Such grains can penetrate into the solar system more easily than the bulk supernova plasma, which gets stalled and deflected near the solar system due to the solar wind plasma pressure. We therefore examine the motion of charged grains as they decouple from the supernova plasma and are influenced by the solar magnetic, radiation, and gravitational fields. We characterize the dust trajectories with analytical approximations which display the roles of grain size, initial velocity, and surface voltage. These results are verified with full numerical simulations for wide ranges of dust properties. We find that supernova dust grains traverse the inner solar system nearly undeflected, if the incoming grain velocity – which we take to be that of the incident supernova remnant – is comparable to the solar wind speeds and much larger than the escape velocity at 1 AU. Consequently, the dust penetration to 1 AU has essentially 100% transmission probability and the dust capture onto the earth should have a geometric cross section. Our results cast in a new light the terrestrial deposition of radioisotopes from nearby supernovae in the geological past. For explosions beyond ~10 pc from earth, dust grains can still deliver supernova ejecta to earth, and thus the amount of supernova material deposited is set by the efficiency of dust condensation and survival in supernovae. Turning the problem around, we use observations of live 60Fe in both deep-ocean and lunar samples to infer a conservative lower bound iron condensation efficiency of Mdust,Fe/Mtot,Fe ? 4  × 10?4 for the supernova which apparently produced these species 2–3 Myr ago.  相似文献   

10.
The physical conditions under which suprathermal grains can be produced when they are accelerated by radiation pressure against the drag of ambient gas are investigated. It is found that dust grains may attain a terminal velocityU (=105 cm s–1) in most regions and move out of the midplane of the source region about a distance |z|100 pc. Once clear of the main gas/dust layer the dust grains (a3×10–6 cm) may then attain suprathermal energy (V g 3×108 cm s–1) by the Fermi process.  相似文献   

11.
An analysis is made of the implications of assuming that suprathermal dust grains (a3×108 cm) of intergalactic origin may acquire cosmic ray energies as high as 1020 eV. These dust grains may attain suprathermal energy (v g3×108 cm s–1) by the Fermi process. Initially the dust grains are accelerated by the radiation pressure against the drag of the ambient gas of the medium, but once these dust grains attain a terminal velocity (U105 cm s–1), then they may be expelled out of the galactic region into the intergalactic medium and finally acquire high energy  相似文献   

12.
It is pointed out that dust formation in the principal shell of a nova in the equatorial belt only and the orientation of this belt relative to the line of sight may lead to an overestimation of the interstellar extinction and, consequently, to an overestimation of the luminosity of the nova. The orientation of the dust belt must also be taken into account in evaluating its contribution to the bolometric luminosity of the nova.Translated fromAstrofizika, Vol. 39, No. 2, pp. 237–241, April–June, 1996.  相似文献   

13.
Condensates produced in a laboratory condensation experiment of a refractory Ca-SiO-H2-O2 vapor define four specific and predictable deep metastable eutectic calciosilica compositions. The condensed nanograins are amorphous solids, including those with the stoichiometric CaSiO3 pyroxene composition. In evolving dust-condensing astronomical environments they will be highly suitable precursors for thermally supported, dust-aging reactions whereby the condensates form more complex refractory silicates, e.g., diopside and wollastonite, and calcite and dolomite carbonates. This kinetically controlled condensation experiment shows how the aging of amorphous refractory condensates could produce the same minerals that are thought to require high-temperature equilibrium condensation. We submit that evidence for this thermal annealing of dust will be the astronomical detection of silica (amorphous or crystalline) that is the common, predicted, by-product of most of these reactions.  相似文献   

14.
Attention is given to the radiation of microwaves by charged dust in space. Presently-used particle distributions do not restrict the presence in space of large numbers of small (r<10–6 cm) silicate grains, but it is shown that such densities (10–25–10–26 g cm–3) of small grains would produce a microwave background with an energy density of the same order of magnitude as the energy density of the (presumed) cosmological 3 K background. Limits set by the isotropy of the latter are: (HI clouds)10–26, (Galactic plane)10–30, (Halo)10–32, (Local Group)10–34 g cm–3. These limits imply that either there is a cutoff in particle distributions atr10–6 cm, or that the density of silicate grains in space has been generally overestimated, or that cosmic rays have broken up a lot of grains so that they now form a population of grains of very small size (10–7 cm) which are difficult to detect by conventional methods. One way to look for the latter population is by studying expected distortions of the 3 K spectrum to the short wavelength side of the portion hitherto observed (grains may have a size distribution able to give an approximate black-body curve for radiation from larger grains of 10–6 cm size), and by testing the effective energy density of the 3 K field in other galaxies.  相似文献   

15.
The results of JHKLM photometry for Nova Delphini 2013 obtained in the first sixty days after its outburst are analyzed. Analysis of the energy distribution in a wide spectral range (0.36–5 µm) has shown that the source mimics the emission of normal supergiants of spectral types B5 and A0 for two dates near its optical brightness maximum, August 15.94 UT and August 16.86 UT, respectively. The distance to the nova has been estimated to be D ≈ 3 kpc. For these dates, the following parameters have been estimated: the source’s bolometric fluxes ~9 × 10?7 and ~7.2 × 10?7 erg s?1 cm?2, luminosities L ≈ 2.5 × 105 L and ≈2 × 105 L , and radii R ≈ 6.3 × 1012 and ≈1.2 × 1013 cm. The nova’s expansion velocity near its optical brightness maximum was ~700 km s?1. An infrared (IR) excess associated with the formation of a dust shell is shown to have appeared in the energy distribution one month after the optical brightness maximum. The parameters of the dust component have been estimated for two dates of observations, JD2456557.28 (September 21, 2013) and JD2456577.18 (October 11, 2013). For these dates, the dust shell parameters have been estimated: the color temperatures ≈1500 and ≈1200 K, radii ≈6.5 × 1013 and 1.7 × 1014 cm, luminosities ~4 × 103 L and ~1.1 × 104 L , and the dust mass ~1.6 × 1024 and ~1025 g. The total mass of the material ejected in twenty days (gas + dust) could reach ~1.1 × 10?6 M . The rate of dust supply to the nova shell was ~8 × 10?8 M yr?1. The expansion velocity of the dust shell was about 600 km s?1.  相似文献   

16.
A pulsed laser has been used to vaporize olivine, pyroxene, nickel-iron alloy, Al2O3, carbon, calcium carbonate, and silicon carbide, as well as mixtures of immiscible phases (Au–Al2O3 and Au-olivine) in oxidizing, reducing, and inert atmospheres. The collected condensates usually consist of strings of grains which have a median diameter of 20–30 nm, which is comparable to the calculated sizes of some interstellar and circumstellar dust grains. The silicate minerals vaporized in O2 as well as calcium carbonate and carbon vaporized in Ar or H2, are collected as glassy grains while the other materials produced crystalline grains. The systems of immiscible phases when vaporized produced condensates consisting of intermixed 2–50 nm grains of both components. The type of size distribution, crystal structures, and qualitiative elemental analyses of the condensates are given. Possible similarities between the mechanism of grain growth, structure, morphology, and chemistry of laboratory grains compared to interstellar and circumstellar grains, phases in meteorites and extraterrestrial dust collected in the stratosphere are examined. Applications of the experimental technique include the production of grain systems to serve as laboratory analogues for spectral studies of grain materials believed to exist in astronomical environments, and studies of the structure of grains condensed from complex gas mixtures.Paper presented at the Conference on Protostars and Planets, held at the Planetary Science Institute, University of Arizona, Tucson, Arizona, between January 3 and 7, 1978.  相似文献   

17.
A substantial fraction of interstellar dust probably formed in the nebulae around protostars, a setting similar to that envisioned for meteoritic material. From studies of the mineralogy and composition of meteorites it is possible to obtain quantitative information on the conditions that prevailed in the nebula. For example, pressures in the range 10–3 to 10–6 atm are indicated. At these pressures the kinetics of nucleation and grain growth are favorable.The fact that the gas associated with interstellar dust has solar H/S ratios indicates that FeS, which forms at 680 K, independent of pressure, is not present in the dust. Since iron only becomes oxidized at even lower temperatures, also via pressure-independent reactions, oxidized iron is not expected in the dust. If most interstellar dust forms in nebulae and is ejected back into space, a relatively high temperature is implied, 700K. Dust formation around stars with high C/O ratios is expected to produce minerals found in the highly reduced enstatite chondrites.High-temperature fractionation processes ( 1000 K) played an important role in the nebula. Much of the Al, Ca, Ti, etc., evidently condensed and accreted into cm-sized objects, some of which are found in carbonaceous chondrites. These objects are explicable in terms of formation from a cooling neutral gas with cosmic composition. Their most important distinguishing characteristics are low volatile and low Si contents, coupled with high refractory element contents constrains formation via isothermal compression to grain temperature 1000 K.Invited contribution to the proceedings of a workshop onThermodynamics and Kinetics of Dust Formation in the Space Medium held at the Lunar and Planetary Institute, Houston, 6–8 September, 1978.  相似文献   

18.
We present the results of our visible and near-IR observations of Comet 9P/Tempel 1 during the Deep Impact encounter. The comet was observed before, during, and after impact from Kitt Peak National Observatory (J, H, K) and Observatorio Astronómico Nacional-San Pedro Mártir, Mexico (B, V, R, I). High time-resolution images in R, J, H, and K the night of impact with a 3.5 radius aperture revealed a rapid brightening which had multiple slopes and lasted for approximately 25 min before leveling off. The brightness decreased on subsequent nights and returned to near pre-impact levels by July 8 UT. The R-J, R-H, R-K, J-H, J-K, and H-K colors became bluer the night of impact. The R-J, R-H, and R-K colors remained blue on the night after impact while the J-H, J-K, and H-K colors returned to baseline levels. The observed color changes suggest the bluening was due to an increase in small grains relative to the ambient coma, an increase in ice relative to refractory dust in the coma, or a combination of the two. The ejecta were initially directed towards the southwest but had been driven southeast by solar radiation pressure by the second night after impact. The mean projected ejecta velocity was estimated at 0.20-0.23 km s−1 over the first 24 h after impact.  相似文献   

19.
It has been controversial whether the flare-associated hard X-ray bursts are thermal emission or non-thermal emission. Another controversial point is whether or not the associated microwave impulsive burst originates from the common electrons emitting the hard X-ray burst.It is shown in this paper that both the thermal and non-thermal bremsstrahlung should be taken into account in the quantitative explanation of the time characteristics of the hard X-ray bursts observed so far in the photon energy range of 10–150 keV. It is emphasized that the non-thermal electrons emitting the hard X-rays and those emitting the microwave impulsive burst are not common. The model is as follows, which is also consistent with the radio observations.At the explosive phase of the flare a hot coronal condensation is made, its temperature is generally 107 to 108K, the number density is about 1010 cm–3 and the total volume is of the order of 1029 cm3. A small fraction, 10–3–10–4, of the thermal electrons is accelerated to have power law distribution. Both the non-thermal and thermal electrons in the sporadic condensation contribute to the X-ray bursts above 10 keV as the bremsstrahlung. Fast decay of the harder X-rays (say, above 20 keV) for a few minutes is attributed to the decay of non-thermal electrons due to collisions with thermal electrons in the hot condensation. Slower decay of the softer X-rays including around 10 keV is attributed to the contribution of thermal component.The summary of this paper was presented at the Symposium on Solar Flares and Space Research, COSPAR, Tokyo, May, 1968.  相似文献   

20.
《New Astronomy Reviews》2002,46(8-10):519-524
Five SiC and two graphite presolar grains exhibit isotopic ratios characteristic of ONe nova nucleosynthesis: low 12C/13C (4–9), low 14N/15N (5–20), high 26Al/27Al, high 30Si/28Si (2×solar) with close-to-normal 29Si/28Si. The upper limit of 20Ne/22Ne (<0.01) of one graphite grain suggests that the 22Ne excess is due to the decay of 22Na. In order to achieve the isotopic ratios of the grains, however, synthesized material during nova explosion had to be mixed with isotopically close-to-solar material, which should consist of more than 95% of the mix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号