首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimation of in-situ hydraulic diffusivity of rock masses   总被引:1,自引:0,他引:1  
A method of estimating in-situ hydraulic diffusivity of rock masses by means of well-injection history and frequency of induced seismicity is presented. The method is based on the diffusion of injected fluid from a spherical cavity in a poroelastic half-space and the effective stress theory, as proposed byTerzaghi (1925, 1936) andHubbert andRubey (1959). Application of the method to two different regions, one in western New York and the other in Japan, resulted in estimated diffusivities of the order 103 and 104 cm2/sec, respectively. These values lie within the range of published estimates of in-situ diffusivity by other means, a summary of which is presented in tabular form. The calculated diffusivities suggest that the characteristic time of fluid diffusion is close to 0.1, rather than unity, as is sometimes assumed in the literature.  相似文献   

2.
The quasi-normal scale elimination (QNSE) is an analytical spectral theory of turbulence based upon a successive ensemble averaging of the velocity and temperature modes over the smallest scales of motion and calculating corresponding eddy viscosity and eddy diffusivity. By extending the process of successive ensemble averaging to the turbulence macroscale one eliminates all fluctuating scales and arrives at models analogous to the conventional Reynolds stress closures. The scale dependency embedded in the QNSE method reflects contributions from different processes on different scales. Two of the most important processes in stably stratified turbulence, internal wave propagation and flow anisotropization, are explicitly accounted for in the QNSE formalism. For relatively weak stratification, the theory becomes amenable to analytical processing revealing just how increasing stratification modifies the flow field via growing anisotropy and gravity wave radiation. The QNSE theory yields the dispersion relation for internal waves in the presence of turbulence and provides a theoretical reasoning for the Gargett et al. (J Phys Oceanogr 11:1258–1271, 1981) scaling of the vertical shear spectrum. In addition, it shows that the internal wave breaking and flow anisotropization void the notion of the critical Richardson number at which turbulence is fully suppressed. The isopycnal and diapycnal viscosities and diffusivities can be expressed in the form of the Richardson diffusion laws thus providing a theoretical framework for the Okubo dispersion diagrams. Transitions in the spectral slopes can be associated with the turbulence- and wave-dominated ranges and have direct implications for the transport processes. We show that only quasi-isotropic, turbulence-dominated scales contribute to the diapycnal diffusivity. On larger, buoyancy dominated scales, the diapycnal diffusivity becomes scale independent. This result underscores the well-known fact that waves can only transfer momentum but not a scalar and sheds a new light upon the Ellison–Britter–Osborn mixing model. It also provides a general framework for separation of the effects of turbulence and waves even if they act on the same spatial and temporal scales. The QNSE theory-based turbulence models have been tested in various applications and demonstrated reliable performance. It is suggested that these models present a viable alternative to conventional Reynolds stress closures.  相似文献   

3.
Summary The study of heat exchanges or temperature changes in the surface layers of the soil are important in agricultural science at tropical latitudes. The quantity, thermal diffusivity largely determines the temperature change produced in any layer of the soil when heat is conducted there from an adjacent layer. Therefore, the authors have determined the thermal diffusivity of the soil from range and lag methods suggested byJohnson andDavies [15]2) andCoutis [7] respectively. The values of diffusivity cbtained from these methods agree well with each other. The effect of soil moisture on diffusivity has been studied. The diffusivity increases with the increase of moisture in the surface layers of the scil. The ratio of ranges of soil temperature at different depths is found to be approximately constant which is in agreement with the theory of heat flow into the soils. The results of diffusivity obtained from these methods agree well with those results of past workers. The mean value of the thermal diffusivity of red sandy soil at the experimental site of Waltair is found to be 6.336×10–3 cm2/sec.  相似文献   

4.
Abstract

Experiments have been made using shadowgraphs to examine the development of secondary structures in Kelvin-Helmhoitz billows at the diffuse interface between two layers of different densities moving in shear at moderate Reynolds numbers and high Prandtl number. The onset of turbulence in billows reported in earlier work resulted from an interaction between the billows and the side walls of the apparatus. Secondary structure within the billows remote from the side walls occurs later and is, in its early stages, well organised. Regular longitudinal bands lying parallel to the mean flow develop near the vertical boundaries of the billows and extend across their widths. The initial development and scale of the spanwise bands are similar to that of the convective rolls predicted to occur in billows by Klaassen and Peltier (1985a) using a numerical model. No longitudinal instability is observed to occur at the same time in the braids between the billows. Fine scale “turbulence” occurs in the billows about one stability period (for the original interface) after the secondaries first appear, so that the transition is not, as previously thought, “explosive” but is relatively slow. Two other “transitional” structures are reported. One has a tube-like appearance extending from one billow to its neighbour. Disturbances are transmitted down the tube and these ultimately initiate turbulence in the second billow. The second structure is a “knot” due to the spanwise amalgamation of two-billows into one.

The relevance of the observations to geophysical flows is discussed. Earlier estimates of the efficiency of mixing due to Kelvin-Helmhoitz instability are put into doubt. Billows typical of those observed by Woods (1968) in the oceanic seasonal thermocline should develop secondary bands at a scale of about 2 cms.  相似文献   

5.
Summary Many writers treated on the problem of dynamic instability of westerly flow due to the excessive horizontal shear, and the present author discusses the corresponding dynamic instability due to the vertical shear. The critical vertical shear in indifferent stratification is given by the condition — the meridional component of absolute vorticity vanishes, — and is an approximate negative valueof 10–4 sec –1 in middle latitude. However the critical vertical shear in normal stable stratification is a fairly large negative value of 2 sec–1. It might be emphasized that the problem of this study differs fromRichardson's criterion of turbulence, for the present author discusses the condition under which the zonal flow is dynamically stable, whileRichardson expressed the condition under which the turbulence will decrease.  相似文献   

6.
The decrease in density contrast of sedimentary rocks with depth in many sedimentary basins can be approximated by a parabolic density function. Analytical gravity expression of an outcropping two-dimensional vertical step along which the density contrast decreases parabolically with depth is derived in the space domain. A modification ofBott's (1960) method of gravity interpretation is proposed by considering two outcropping vertical steps on either side of the first and last observation points in addition toN outcropping vertical prisms in order to interpret the gravity anomalies of nonoutcropping basins. The thicknesses of the two outcropping vertical steps are made equal to the thicknesses of the two outcropping vertical prisms placed below the first and last observation points. The initial depth estimates of the sedimentary basin are calculated by the infinite slab formula ofVisweswara Rao et al. (1993). The gravity effects of theN outcropping prisms and the two outcropping vertical steps are calculated at each anomaly point and the depth to the floor of the basin are adjusted based on the differences between the observed and calculated anomalies. A gravity anomaly profile of Los Angeles basin, California is interpreted.  相似文献   

7.
Abstract

A unified analysis is given of the critical conditions for the onset of stratification due to either a vertical or a horizontal buoyancy flux, with tidal or wind stirring.

The critical conditions for the onset of stratification with a horizontal buoyancy flux are found to be of the form of ratios of the tidal slope, or wind setup, to the equivalent surface slope due to the lateral density gradient. These ratios, which are easily determined from sea data, indicate that the profiles of critical flux Richardson Number, averaged over the stirring cycle, are similar to those inferred from the laboratory experiments of Hopfinger and Linden (1982) in which there is zero mean shear turbulence with a stabilising buoyancy flux, and also that the efficiency for the conversion of kinetic energy to potential energy for tidal stirring is similar to that for wind stirring.

The observed much greater efficiency for wind stirring, compared with tidal stirring with a vertical buoyancy flux, is also consistent with the existence of flux Richardson Number profiles in the sea similar to those occurring in the corresponding laboratory experiments. Using the solution of the turbulent kinetic energy equation for the water column, the relative importance of the production of turbulent kinetic energy, and its diffusion by turbulence are assessed, and the critical conditions for the onset of stratification with a vertical buoyancy flux are shown to reduce the classical Simpson—Hunter form.  相似文献   

8.
The concentrations of222Rn and226Ra in the water column and in the sediments of Santa Barbara and San Nicolas Basins have been measured semi-annually over the last four years. Approximately one-third of excess radon profiles obtained in the water column in these basins can be adequately fit with a one-dimensional eddy diffusion-decay model. Exponential profiles in the center of San Nicolas Basin yield a vertical eddy diffusivity of 26±16 cm2/s and 3.4±1.0 cm2/s for Santa Barbara Basin. The application of a two-dimensional eddy diffusion-decay model to profiles obtained in the center and on the margins of San Nicolas Basin produces a better fit than is found using a one-dimensional vertical eddy diffusivity. The two-dimensional model for San Nicolas Basin predicts a vertical eddy diffusivity of 17 cm2/s and a horizontal eddy diffusivity of 105 cm2/s. These values are in reasonable agreement with those predicted from the vertical buoyancy gradient and the horizontal length scale.The vertically integrated radon excess (standing crop) in the water column of Santa Barbara Basin averages 53±23 atoms/m2 s. This is in good agreement with the flux across the sediment-water interface of 60±15 atoms/m2 s, calculated by measuring radon emanation in the sediments as a function of depth and applying a molecular diffusion-reaction model. Hence, one-dimensional molecular diffusion accurately predicts the flux of radon from the laminated Santa Barbara Basin sediments. In San Nicolas Basin the integrated radon excess in the water column is 376±143 atoms/m2 s, but the diffusive randon flux from San Nicolas Basin sediments averages only 190±53 atoms/m2 s. This descrepancy indicates that a non-diffusive process, probably macrofaunal irrigation, supplies much of the flux of radon from San Nicolas Basin sediments.  相似文献   

9.
Vertical ash plumes were imaged at Santiaguito (Guatemala) using a thermal camera to capture plume ascent dynamics. The plumes comprised a convecting plume front fed by a steady feeder plume. Of the 25 plumes imaged, 24 had a gas thrust region within which ascent velocities were 15–50 m s−1. A transition to buoyant ascent occurred 20 to 50 m above the vent, where ascent velocities declined to 4–15 m s−1. Plumes that attained greater heights had higher heat contents, wider feeder plumes and higher buoyant ascent velocities.  相似文献   

10.
Summary A layer of a few hundred meters thickness with suspended matter (a nepheloid zone) was discovered byEwing andThorndike [4]3) near the bottom on the continental slope of the North Atlantic. A downward pressure gradient is produced in this layer due to increment of water density with suspensoid. When only the Coriolis force balances with this pressure gradient, a bottom nepheloid current flows southwestward parallel to the depth contours with a velocity of about 10 (cm/sec) for a slope of one degree. The pressure gradient for fluid with locally variable density above a sloping bottom is treated and an extra term due to density gradient along the slope is derived. The vertical profiles of the nepheloid current with an effect on the vertical eddy viscosity are computed. Two kinds of vertical distributions of eddy viscosity are determined from the observed nepheloid distributions and used in the calculations: constant but different values at two layers and those increasing with height. The effect of the change of density along the bottom is treated by introducing dimensionless variables. Rossby number of the nepheloid current becomes about 10–2 indicating inertia terms to be negligible. Rossby number of turbidity currents ranges from 2 (in a decaying area) to 5 (developing area), suggesting that inertia terms are more important than Coriolis terms. The trajectories of turbidity currents are computed from motion of a mass of mud under the Coriolis force and friction, and the results are applied to those inferred byHand andEmery [6] in the San Diego Through off California.LGO Contribution Number 925.  相似文献   

11.
Applicability of spectral analysis to determine hydraulic diffusivity   总被引:1,自引:1,他引:0  
This study is to evaluate the applicability of estimating the one-dimensional horizontal hydraulic diffusivity of an unconfined aquifer with time-dependent fluctuation of lateral head and vertical recharge boundaries using observed water level spectra. Different models of boundary condition are imposed to evaluate the statistical significance between the calculated hydraulic diffusivity (ξ) with the given hydraulic diffusivity (ξ). The auto-spectra of the water level in observation wells tapping the same aquifer are closely related to those at the disturbed boundaries. For an aquifer with a constant hydraulic diffusivity, the water level fluctuation in the monitoring wells is linearly related to the water level spectra observed at the boundaries. The spectral density function of aquifer hydraulic head varies inversely with specific yield (S y) and directly with recharge. Given small variation in water level spectra at the disturbed boundaries, the water level fluctuation in the aquifer is affected by the recharge condition and the aquifer spectral density function is sensitive to S y. Using an iterative technique to estimate ξ from 1400 sets of given parameters, 99% of the ξ/ξ values deviated within only one order of magnitude with the model length (L) being equal to 1 km and 10 km. For L equal to 100 m, approximately 82% of the ξ/ξ population falls within two orders of magnitude. Therefore, spectral analysis of aquifer hydraulic head response can be used to estimate the hydraulic diffusivity of an unconfined aquifer which is affected by periodic variations in recharge and head at boundaries.  相似文献   

12.
— Urban terrain poses a challenge for modeling air pollutant diffusion. In tropics, because of the dominant low wind speed environment, the importance of understanding the turbulence diffusion is even more critical, and uncertain. The objective of this study is to estimate the vertical eddy diffusivity of an urban, tropical atmosphere in low–wind speeds. Turbulence measurements at 1 Hz were made at 4-m level over an urban terrain with a roughness length of 0.78 m during winter months. Eddy diffusivity is estimated from spectral quantities of the turbulence data involving turbulent kinetic energy (E) and its dissipation rate (?). The spectral information of the vertical velocity fluctuations is used to estimate the vertical length scale which provides information on the eddy diffusivity. In addition, the product of friction velocity and the vertical length scale has been used to non-dimensionalize the eddy diffusivity, which is shown to increase with increasing instability. Using the eddy diffusivity (K) estimates from the E? approach, a relation is suggested for the mixing length based eddy diffusivity models of the form: K = c w .[2.5 ? 0.5(z/L)], where z is the measurement height, L is the Obukhov length, and c w has an average value close to 1 for unstable and near 0.5 for stable conditions for the urban terrains.  相似文献   

13.
Summary An analysis of the existing second derivative systems has been attempted and the superiority ofPeters' method overElkins' is brought out. Some properties of vertical derivatives have been discussed and it is clearly proved that the derivative values are independent of the regional. Finally, the weak and strong points of grid and least square methods have been assessed. Some interesting applications of the least square methods are also described.  相似文献   

14.
Hasselblad and Nikon stereographic photographs taken from Skylab between 9 June 1973 and 1 February 1974 give synoptic plan views of several entire eruption clouds emanating from Sakura-zima volcano in Kagoshima Bay, Kyushu, Japan. Analytical plots of these stereographic pairs, studied in combination with meteorological data, indicate that the eruption clouds did not penetrate the tropopause and thus did not create a stratospheric dust veil of long residence time. A horizontal eddy diffusivity of the order of 106 cm2 s?1 and a vertical eddy diffusivity of the order of 105 cm2 s?1 were calculated from the observed plume dimensions and from available meteorological data. These observations are the first, direct evidence that explosive eruption at an estimated energy level of about 1018 ergs per paroxysm may be too small under atmospheric conditions similar to those prevailing over Sakura-zima for volcanic effluents to penetrate low-level tropospheric temperature inversions and, consequently, the tropopause over northern middle latitudes. Maximum elevation of the volcanic clouds was determined to be 3.4 km. The cumulative thermal energy release in the rise of volcanic plumes for 385 observed explosive eruptions was estimated to be 1020 to 1021 ergs (1013 to 1014 J), but the entire thermal energy release associated with pyroclastic activity may be of the order of 2.5 × 1022 ergs (2.5 × 1015 J).Estimation of the kinetic energy component of explosive eruptions via satellite observation and meteorological consideration of eruption clouds is thus useful in volcanology as an alternative technique to confirm the kinetic energy estimates made by ground-based geological and geophysical methods, and to aid in construction of physical models of potential and historical tephra-fallout sectors with implications for volcano-hazard prediction.  相似文献   

15.
We present simulations of the 3D nonlinear induction equation in order to investigate the temporal evolution of large-scale magnetic fields in spiral galaxies. Our model includes differential rotation, ambipolar diffusion and, based on small-scale turbulence, eddy diffusivity and the tensorial -effect with magnetic feedback. The nonaxisymmetric spiral pattern and – if considered – the vertical stratification of the galaxy are represented in its density and turbulence profile. Neglecting vertical stratification the lifetime and geometry of an initial magnetic field depend on the correlation time of interstellar turbulence corr . Short correlation times increase the lifetime of the initial magnetic field, but the field is rapidly wound up. Its pitch-angles develop to zero. The magnetic field has disappeared after at most 1 to 1.5 Gyr. A resonance like phenomenon is found by tuning the pattern velocity of the galactic spiral. The simulations then show an exceptional amplification of the magnetic field in the case that the pattern speed and a magnetic drift velocity have similar values. Considering a vertical stratification we achieve sufficiently long living grand-designed magnetic fields excited by dynamo action. The behaviour and geometry of the resulting field is again significantly influenced by the correlation time corr . Small values of corr lead to axisymmetric fields with small pitch-angles and field-concentration between the spiral arms. Increasing the correlation time the solutions show larger pitch-angles; and depending on very large correlation times the galactic dynamo rather generates fields clearly within the spiral arms and having a bisymmetric structure.  相似文献   

16.
Abstract

A new non-linear model of mixing and convection based on a modelling of two buoyant interacting fluids is applied to penetrative convection in the upper ocean due to surface cooling. In view of simple algebra, the model is one-dimensional. Dissipation is included, but no mean shear is present. A non-similar analytical solution is found in the case of a well-mixed layer bounded below by a sharp thermocline treated as a boundary layer. This solution is valid if the Richardson number, R i , defined as the ratio of the total mixed-layer buoyancy to a characteristic rms vertical velocity, is much greater than unity. The model predicts a deepening rate proportional to R i ?3/4. The thermocline remains of constant thickness, and the ratio thermocline thickness to mixed-layer depth decreases as R i ?3/4 as the mixed layer deepens. If the surface flux is constant, the mixed-layer depth increases with time as t ½. The vertical structure throughout the mixed layer and thermocline is given by the analytical solution, and vertical profiles of mean temperature and vertical fluxes are plotted. Computed profiles and available laboratory data agree remarkably well. Moreover, the accuracy of the simple analytical results presented here is comparable to that of sophisticated turbulence numerical models.  相似文献   

17.
Abstract

The intrusion of seawater in a tidal river is treated as a diffusion problem, characterized by a coefficient of longitudinal diffusivity.

In order to analyse the longitudinal diffusivity, a mathematical model is set up, consisting of two bodies of water, either one besides the other or one on top of the other. The two bodies are assumed to move relatively to each other, as a secondary effect of the tidal flow. It is moreover assumed that there is turbulent exchange of salt between the bodies.

It is demonstrated that the diffusion of salt into the river is greatest for an optimum value of the coefficient of exchange between the two bodies.

Exchange weaker or stronger than this optimum both diminish the salt intrusion.

The theory is applied to the Rotterdam Waterway, for which estimates of the exchange are made. Estimation of the reduction of the turbulence by stratification and hence of the vertical exchange, shows that the observed strong intrusion is explainable.

Intensified vertical mixing, for instance as provoked by compressed air, need not always result in less intrusion, and hence should be considered carefully.  相似文献   

18.
A tracer plume was created within a thin aquifer by injection for 299 d of two adjacent “sub‐plumes” to represent one type of plume heterogeneity encountered in practice. The plume was monitored by snapshot sampling of transects of fully screened wells. The mass injection rate and total mass injected were known. Using all wells in each transect (0.77 m well spacing, 1.4 points/m2 sampling density), the Theissen Polygon Method (TPM) yielded apparently accurate mass discharge (Md) estimates at three transects for 12 snapshots. When applied to hypothetical sparser transects using subsets of the wells with average spacing and sampling density from 1.55 to 5.39 m and 0.70 to 0.20 points/m2, respectively, the TPM accuracy depended on well spacing and location of the wells in the hypothesized transect with respect to the sub‐plumes. Potential error was relatively low when the well spacing was less than the widths of the sub‐plumes (>0.35 points/m2). Potential error increased for well spacing similar to or greater than the sub‐plume widths, or when less than 1% of the plume area was sampled. For low density sampling of laterally heterogeneous plumes, small changes in groundwater flow direction can lead to wide fluctuations in Md estimates by the TPM. However, sampling conducted when flow is known or likely to be in a preferred direction can potentially allow more useful comparisons of Md over multiyear time frames, such as required for performance evaluation of natural attenuation or engineered remediation systems.  相似文献   

19.
We present 9 bottom222Rn profiles measured from the western and southern Indian Ocean during the 1977–1978 GEOSECS expedition. These profiles can be grouped into three cypes: one-layer, two-layer, and irregular types. The one-layer profiles with quasi-exponential distributions allow one to estimate the apparent vertical eddy diffusivity,Kv, with a simple model. The two-layer profiles show that there is a benthic boundary layer of the order of 50–100 m in which the excess222Rn distribution shows a vertical gradient much smaller than that of the layer immediately above. Within the boundary layer, the STD potential temperature (θ) and density(σ4) profiles are practically constant, and theKv values are of the order of 1000 cm2/s. The STD profiles for the water column above the boundary layer show gradients of increasing stability, and theKv values are of the order of 100 cm2/s. Modeling of the Rn data in the water column above the boundary layer indicates that there is a transition layer which effectively reduces the penetration of excess Rn from the benthic boundary layer into the upper layer.Sarmiento et al. [10] have shown that the buoyancy gradient or stability is inversely correlated with the apparent vertical eddy diffusivity, and the resulting buoyancy flux is fairly uniform, ranging from 1 to 14 × 10?6 cm2/s3 in the Atlantic and Pacific Oceans. However, Sarmiento et al. [11] show that a much higher buoyancy flux is associated with an intensified flow of the bottom water through a passage. In the Indian Ocean basins, we have found that the buoyancy flux has a comparable range (3–14 × 10?6 cm2/s3), except for a couple of stations where both stability and apparent vertical diffusivity are higher, resulting in a much higher buoyancy flux, probably indicative of rapid bottom water flow.  相似文献   

20.
Summary The displacement due to vertical impulsive load has been obtained by function theoretic method. Graphs have been drawn for horizontal as well as for vertical displacement. It has been shown thatPekeris's [12]2) method is easier to apply than that ofCagniard [2] for the same purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号