首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 453 毫秒
1.
使用2007~2011年THEMIS卫星数据,对位于地球磁尾(|YGSM|13RE,|ZGSM|5RE,–30REXGSM–6RE)等离子体片内的高速流及背景的等离子体特性和它们与太阳风参数之间的联系进行了统计研究.我们发现,距离地球越近,高速流温度的增加相较于其背景要更强一些;高速流与背景的离子数密度比值和离子温度比值也都有所升高;而我们的统计进一步表明,高速流密度与其发生前2 h的太阳风密度相关性最高,背景密度与其观测时刻前3.5 h的太阳风密度相关性最高,且二者的归一化密度(密度与太阳风密度之比)均与其前3 h的行星际磁场θ角(θ=arctan(Bz/sqrt(Bx2+By2)))相关性程度最大.行星际磁场越倾向于北向,高速流归一化密度越大,与磁尾背景等离子体的性质相似.  相似文献   

2.
空间飞船Helios 1和Helios 2的磁场探测发现,太阳风高速流中磁场脉动在低频区的能谱的谱指数是随日心距离r而变化的,谱密度的空间梯度是随频率f而变化的,现有关于行星际磁场脉动的理论都不能解释上述现象。本文提出了一个计算行星际磁场能谱径向发展的理论模式。假设在不同频率的脉动之间有由低频向高频传输的能流存在,在这一基础上建立了谱方程,并得到了谱方程的数值解。数值解表明,由0.3AU至1AU,低频区的谱指数增加,而高频区的谱指数近似保持为常数(-1.6);低频区平均谱密度随着日心距离的变化为r-3.5,在高频区为r-4.1,所有这些都与观测相符合。串级的能量很可能最后传输到质子回旋频率范围,由于回旋共振而耗散,最后加热太阳风质子。这一模式有可能用来计算太阳风的加速问题。  相似文献   

3.
基于可压缩磁流体动力学模型,数值研究了由太阳风引起的局部驱动力对地球远磁尾中磁场重联的影响.结果表明,在远磁尾等离子体片中将发生强迫磁场重联,并形成磁岛和等离子体团.形成磁岛的特征时间很大于流动撕裂模不稳定性引起磁岛非线性饱和的特征时间.磁岛宽度随着磁Reynolds数S的增大而减小,随着尾瓣中等离子体压力与磁压之比值β_∞的降低而减小.认为太阳风引起的局部驱动力对地球远磁尾等离子体片中磁场重联的影响,可能不如流动撕裂模不稳定性那样显著.  相似文献   

4.
时变行星际太阳风模拟及其结果评估   总被引:1,自引:0,他引:1       下载免费PDF全文
背景太阳风对于地球附近的空间环境有着重要的影响,三维磁流体力学太阳风模型是背景太阳风研究和预报的重要工具.通过太阳光球磁场数据驱动的边界条件,我们发展了一个时变的行星际三维磁流体力学太阳风模型.使用这个模型,我们模拟了2008年全年的行星际背景太阳风,分析了该年太阳风结构全球特征的演化和行星际局地观测与日冕结构间的联系.实现了一套太阳风连续参数和特征结构模拟质量的定量评估方法.对2008年模拟结果的评估表明,模型较好地重现了背景太阳风的大尺度特征.模拟与观测速度间的相关性系数达到了0.6以上,行星际磁场强度与观测吻合得较好,捕获了全部的行星际磁场极性反转和82.76%的流相互作用区,行星际磁场极性反转的误报率仅为6.67%,流相互作用区的误报率仅为11.11%,两种结构的到达时间误差在1天左右.同时,通过综合分析评估结果,我们明确了高速流结构、内边界磁场分布等模型在进一步改进中需要重点注意的问题.  相似文献   

5.
高速流是磁尾等离子体片中质量、能量和磁通量最重要的输运形式.高速流在地向运动到近地磁尾后流速会降低,主导方向也经常转为晨昏方向.在等离子体流速及其主导分量、密度和温度等宏观参数变化的过程中,可能伴随有不同类型的能量转换.为此,我们分析近地磁尾方位角流事件期间的能量转换过程.基于整体流速的主导分量为晨昏向,及事件期间的平均温度比其前后增强的选取原则,从2008—2020年期间THEMIS中的三颗卫星(THA,THD,THE)运行在磁尾时的观测数据中,共筛选出821个平均温度比其前/后(事件之前或事件之后10 min)升高的方位角流事件.2011年5月16日的方位角流事例研究发现:能量超过1 keV尤其是超过10 keV的高能离子通量增加,可导致低速低温等离子体的密度、温度和流速增加;磁场减小及磁场功率谱密度的分析表明等离子体和磁能的转换发生在频率为0.01~0.334 Hz的低频波动,仅1%能量耗散.统计给出方位角流事件的平均温度约为3.7 keV,比其前后增加的幅度大部分集中在100~1000 eV.事件期间的平均数密度可能升高或者降低,二者概率大致相当.约96%的平均温度和密度同时大...  相似文献   

6.
Alfven脉动串级加热加速太阳风的二元流体模型   总被引:2,自引:1,他引:2       下载免费PDF全文
为研究太阳风的加速及加热机制,本又提出计算太阳风加速与加热的二元流体模型.该模型是建立在涂传治等提出的Alfven脉动的波能本级理论的基础上的.它能够描述从1Rs到1AU空间范围内太阳风的加速与加热,特别是它能够描述Alfven脉动的主要特性和Helios卫星对0.29-IAU空间范围内太阳风高速流的观测.上述结果说明Alfven波对太阳风的加速和加热有着十分重要的作用,并为研究太阳风的起源提供理论依据.  相似文献   

7.
冕洞是太阳风高速流的源区.当冕洞出现在中低纬区域时,太阳风高速流会扫过地球并引发地球空间环境扰动,如地磁暴和高能电子暴等.在太阳活动周下降年和低年,这种类型的扰动占据主导地位.因此,冕洞高速流的到达时间、峰值时间、峰值强度和持续时间等,是空间天气预报的重要内容.本文基于2010年5月到2016年12月的SDO/AIA太阳极紫外图像以及1AU处ACE和WIND卫星的太阳风观测数据,确定了160个冕洞-太阳风高速流事件,定量计算了他们的特征参数,包括冕洞与太阳风高速流的开始时间、峰值时间、峰值强度和结束时间,分析了各个特征参数的分布规律,对冕洞-高速流之间的关系进行了统计研究,并提出了一种新的预报方法,为基于冕洞成像观测的太阳风高速流的精准预报提供了依据.  相似文献   

8.
齐兆辉  刘勇  刘若炎 《地球物理学报》2021,64(11):3837-3845
慢太阳风的起源是一个困扰空间物理领域多年的问题,一些研究人员认为慢太阳风中阿尔芬度比较高的部分起源于小冕洞或者是冕洞的边界,不过另外一些研究者发现高阿尔芬度慢太阳风在成分上和低阿尔芬度的慢太阳风并无显著差别.最近的一项研究中发现的慢太阳风中的小冕洞风并没有特别高的阿尔芬度.我们利用一个简单的二维太阳风模型计算了阿尔芬波和小冕洞风的传播;计算结果显示,由于阿尔芬波的传播特性,从小冕洞出发的等离子体和阿尔芬波动在传播到1AU的过程中会发生分离,形成了低阿尔芬度的小冕洞风和高阿尔芬度的普通慢风.这个结果定性地解释了慢太阳风中观测到的小冕洞风和高阿尔芬度慢风的特性,也为解开慢太阳风的起源之谜提供了新的思路.  相似文献   

9.
本文首先指出经典粘性理论应适用于扇形边界低速风,接着论证了常用太阳风粘性数学表式的不正确性,导出了螺旋磁场中径向球对称强磁化等离子体流动的各种经典粘性表式,并证明了这些公式的合理性;最后讨论了常用太阳风经典粘性表式出错原因,估计了具有正确粘性公式的扇形边界低速太阳风粘性模式应有的结果。  相似文献   

10.
王明  吕建永  李刚 《地球物理学报》2014,57(11):3804-3811
利用全球磁流体力学(MHD)的模拟结果,研究了太阳风压力系数与上游太阳风参数和日下点磁层顶张角的相关性.在识别出日下点附近磁层顶位置后,通过拟合得到日下点附近的磁层顶张角.在考虑上游太阳风中的磁压和热压以及磁层顶外侧的太阳风动压的情况下,计算了太阳风压力系数.通过分析行星际磁场不同方向时太阳风动压在日地连线上与磁压和热压的转化关系,详细研究了太阳风参数和日下点磁层顶张角对太阳风压力系数的影响,得到以下相关结论:(1) 在北向行星际磁场较大(Bz≥5 nT)时,磁层顶外侧磁压占主导,南向行星际磁场时磁层顶外侧热压占主导;(2) 太阳风压力系数随着行星际磁场的增大而增大,随着行星际磁场时钟角的增大而减小;并且在行星际磁场大小和其他太阳风条件相同时,北向行星际磁场时的太阳风压力系数要大于南向行星际磁场时的;北向行星际磁场时,太阳风压力系数随着太阳风动压的增大而减小,南向行星际磁场时,太阳风压力系数随着太阳风动压的增大而增大;以上结论是对观测结果的扩展;(3) 最后,我们还发现太阳风压力系数随着日下点磁层顶张角的增大而增大.  相似文献   

11.
文采用球坐标下2.5维理想MHD模型,对日球子午面内方位磁场扰动的传播进行数值模拟,重点分析它对行星际磁场螺旋角的影响. 本文认为,观测到的行星际磁场螺旋角大于Parker模型的预言值,是太阳表面不断向行星际发出同向方位磁场扰动的结果;太阳较差自转在太阳内部产生的方位磁场为这类扰动提供了源头. 模拟结果表明,采用持续时间等于周期的十分之一、扰动幅度为103nT量级的正向方位磁场扰动,就可使1 AU处行星际磁场的螺旋角增加2°左右,与有关观测结果相符. 模拟结果还表明,上述方位磁场扰动对日球子午面内的太阳风特性和磁场位形的影响基本上可以忽略.  相似文献   

12.
We investigate the inclinations of heliospheric current sheet at two sites in interplanetary space, which are generated from the same solar source. From the data of solar wind magnetic fields observed at Venus (0.72 AU) and Earth (1 AU) during December 1978–May 1982 including the solar maximum of 1981, 54 pairs of candidate sector boundary crossings are picked out, of which 16 pairs are identified as sector boundaries. Of the remainder, 12 pairs are transient structures both at Venus and Earth, and 14 pairs are sector boundaries at one site and have transient structures at the other site. It implies that transient structures were often ejected from the coronal streamer belt around the solar maximum. For the 16 pairs of selected sector boundaries, we determine their normals by using minimum variance analysis. It is found that most of the normal azimuthal angles are distributed between the radial direction and the direction perpendicular to the spiral direction both at Venus and Earth. The normal elevations tend to be smaller than ≈45° with respect to the solar equatorial plane, indicating high inclinations of the heliospheric current sheet, in particular at Earth. The larger scatter in the azimuth and elevation of normals at Venus than at Earth suggests stronger effects of the small-scale structures on the current sheet at 0.72 AU than at 1 AU. When the longitude difference between Venus and Earth is small (<40° longitudinally), similar or the same inclinations are generally observed, especially for the sector boundaries without small-scale structures. This implies that the heliospheric current sheet inclination tends to be maintained during propagation of the solar wind from 0.72 AU to 1 AU. Detailed case studies reveal that the dynamic nature of helmet streamers causes variations of the sector boundary structure.  相似文献   

13.
在日心距离1AU处的高速流的前沿部位,经常观测到厚度≈10km的流界面(streaminterface):跨过它密度陡降,温度陡增,风速上升,气压和磁场几乎连续.本文从日心距离0.3AU处一典型高速流的方位剖面出发,采用二维定态MHD模型,研究它在日球赤道面内随日心距离的演化.结果表明,流界面系高速流前沿非线性演化的产物.它先于前、后向激波形成,在日心距离1AU处得到充分发展,且作为高速流前沿的特征结构之一,可一直延伸到1AU以远的外日球层.  相似文献   

14.
Plasma and magnetic field data from the Helios 1/2 spacecraft have been used to investigate the structure of magnetic clouds (MCs) in the inner heliosphere. 46 MCs were identified in the Helios data for the period 1974–1981 between 0.3 and 1 AU. 85% of the MCs were associated with fast-forward interplanetary shock waves, supporting the close association between MCs and SMEs (solar mass ejections). Seven MCs were identified as direct consequences of Helios-directed SMEs, and the passage of MCs agreed with that of interplanetary plasma clouds (IPCs) identified as white-light brightness enhancements in the Helios photometer data. The total (plasma and magnetic field) pressure in MCs was higher and the plasma- lower than in the surrounding solar wind. Minimum variance analysis (MVA) showed that MCs can best be described as large-scale quasi-cylindrical magnetic flux tubes. The axes of the flux tubes usually had a small inclination to the ecliptic plane, with their azimuthal direction close to the east-west direction. The large-scale flux tube model for MCs was validated by the analysis of multi-spacecraft observations. MCs were observed over a range of up to 60° in solar longitude in the ecliptic having the same magnetic configuration. The Helios observations further showed that over-expansion is a common feature of MCs. From a combined study of Helios, Voyager and IMP data we found that the radial diameter of MCs increases between 0.3 and 4.2 AU proportional to the distance, R, from the Sun as R0.8 (R in AU). The density decrease inside MCs was found to be proportional to R–2.4, thus being stronger compared to the average solar wind. Four different magnetic configurations, as expected from the flux-tube concept, for MCs have been observed in situ by the Helios probes. MCs with left-and right-handed magnetic helicity occurred with about equal frequencies during 1974–1981, but surprisingly, the majority (74%) of the MCs had a south to north (SN) rotation of the magnetic field vector relative to the ecliptic. In contrast, an investigation of solar wind data obtained near Earths orbit during 1984–1991 showed a preference for NS-clouds. A direct correlation was found between MCs and large quiescent filament disappearances (disparition brusques, DBs). The magnetic configurations of the filaments, as inferred from the orientation of the prominence axis, the polarity of the overlying field lines and the hemispheric helicity pattern observed for filaments, agreed well with the in situ observed magnetic structure of the associated MCs. The results support the model of MCs as large-scale expanding quasi-cylindrical magnetic flux tubes in the solar wind, most likely caused by SMEs associated with eruptions of large quiescent filaments. We suggest that the hemispheric dependence of the magnetic helicity structure observed for solar filaments can explain the preferred orientation of MCs in interplanetary space as well as their solar cycle behavior. However, the white-light features of SMEs and the measured volumes of their interplanetary counterparts suggest that MCs may not simply be just H-prominences, but that SMEs likely convect large-scale coronal loops overlying the prominence axis out of the solar atmosphere.  相似文献   

15.
Compressible fluctuations in solar wind plasma are analyzed on the basis of the 1995–2010 WIND and Advanced Composition Explorer (ACE) spacecraft data. In the low-speed solar wind (V 0 < 430 km/s), correlations between fluctuations in the magnetic field direction and plasma density, as well as between velocity fluctuations and plasma density, are found. The covariance functions of these parameters calculated as functions of the local magnetic field direction are axially symmetric relative to the axis, which is oriented nearly along the regular magnetic field of the heliosphere (the Parker spiral). Fluctuations in the magnetic field and velocity are polarized in the plane that is orthogonal to the axis of symmetry. Plasma oscillations of these properties can be caused by fast magnetosonic waves propagating from the Sun along the Parker spiral.  相似文献   

16.
利用HeliosA,B飞船1974年至1980年的太阳风探测资料,分析了不同速度间隔太阳风质子温度径向变化指数在太阳不同活动期的变化,以及不同太阳活动期间内日球行星际激波强度分布的变化.结果指出,在0.3-1.0AU区间行星际激波可能是太阳风加热的一个重要因素,这一因素在太阳活动高年可能起着主要的作用.激波MHD数值模拟也从量的方面表明激波加热太阳风的有效性.  相似文献   

17.
The relationship between the IMF azimuthal angle and plasma velocity has been studied independently for three types of solar wind streams (recurrent and transient high-speed streams and low-speed background wind) based on the interplanetary medium parameters measured in the near-Earth orbits in 1964–1996. The relationships between the IMF azimuthal angle cotangent and plasma velocity are close to linear but strongly differ from one another and from the theoretical relationship for all types of streams. These differences area caused by the magnetic field disturbance on the time scales smaller than a day, and the effect of this disturbance has been studied quantitatively. The effective periods of rotation of the IMF sources on the Sun, depending on the solar cycle phase, have been obtained from the relations between the IMF azimuthal angle cotangent and plasma velocity. During the most part of the solar cycle, the periods of rotation of the IMF sources are close to the period of rotation of the solar equator but abruptly increase to the values typical of the solar circumpolar zones in the years of solar minimums.  相似文献   

18.
The numerical three-dimensional MHD model is used to study the formation of the magnetic barrier in the inner part of the magnetosheath near the magnetopause. The set of the quasistationary solutions for several characteristic directions of the interplanetary magnetic field (IMF) has been obtained: for northward and southward IMF, for the direction along the Parker helix (at an angle of 45° with respect to the Sun-Earth line), and for the predominantly radial direction (at an angle of 20° with respect to the Sun-Earth line). The mechanism used to take into account the effect of magnetic reconnection at the magnetopause on a flow in the magnetosheath is introduced in the case of southward IMF. The results of the calculations indicate that the magnetic field absolute value in the magnetic barrier reaches its maximal value when IMF is northward. The introduction of magnetic reconnection at southward IMF can result in an insignificant decrease in the field value. However, the model predicts that a decrease in the magnetic field is much more substantial when the IMF direction is close to radial.  相似文献   

19.
An extended structure-function model is developed by including the new effect in the p-model of Meneveau and Sreenivasan which shows that the averaged energy cascade rate changes with scale, a situation which has been found to prevail in nonfullydeveloped turbulence in the inner solar wind. This model is useful for the small-scale fluctuations in the inner heliosphere, where the turbulence is not fully developed and cannot be explained quantitatively by any of the previous intermittency turbulence models. With two model parameters, the intrinsic index of the energy spectrum <alpha>, and the fragmentation fraction P 1, the model can fit, for the first time, all the observed scaling exponents of the structure functions, which are calculated for time lags ranging from 81 s to 0.7 h from the Helios solar wind data. From the cases we studied we cannot establish for P 1 either a clear radial evolution trend, or a solar-wind-speed or stream-structure dependence or a systematic anisotropy for both the flow velocity and magnetic field component fluctuations. Generally, P 1 has values between 0.7 and 0.8. However, in some cases in low-speed wind P 1 has somewhat higher values for the magnetic components, especially for the radial component. In high-speed wind, the inferred intrinsic spectral indices (<alpha>) of the velocity and magnetic field components are about equal, while the experimental spectral indices derived from the observed power spectra differ. The magnetic index is somewhat larger than the index of the velocity spectrum. For magnetic fluctuations in both high- and low-speed winds, the intrinsic exponent <alpha> has values which are near 1.5, while the observed spectral exponent has much higher values. In the solar wind with considerable density fluctuations near the interplanetary current sheet near 1 AU, it is found that P 1 has a comparatively high value of 0.89 for V x . The impact of these results on the understanding of the nature of solar wind fluctuations is discussed, and the limitations in using structure functions to study intermittency are also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号