首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
《Sedimentology》2018,65(1):1-61
The Victoria Land Basin forms part of the failed West Antarctic Rift, and preserves a Cenozoic succession up to 4 km thick that records the onset of Cenozoic glaciation, and the history of Antarctic glaciation over the past 34 Myr. This succession is relevant both to investigations of modern climate change and to studies of long‐term palaeoclimate change in general. This study provides a sedimentological and stratigraphic review of the Victoria Land Basin succession, based on analysis of several continuous drillcores acquired since the 1970s, and supported by seismic stratigraphic analysis of a large array of seismic reflection data. An array of fifteen lithofacies is recognized within the Victoria Land Basin Cenozoic succession, including fossiliferous and diversely bioturbated mudrocks and diatomites, texturally mature sandstones and conglomerates, mixed mudstones and sandstones with dispersed gravel with restricted bioturbation, and diamictites and associated lithologies. These facies record a variety of marine, glaciomarine, proglacial and subglacial environments. Locally, volcanic and volcaniclastic deposits are interbedded in the succession. Lithofacies are arranged in repetitive vertical stacking patterns (depositional sequences) that record glacial advance–retreat cycles with attendant relative sea‐level changes. Seven varieties of depositional sequences (stratigraphic motifs) are recognized within the succession as a whole, and interpreted to record a range of depositional settings from rifts unaffected by glacial ice (Motif 7), through varying degrees of glacial influence with abundant meltwater contributions (Motifs 6 to 3), to cold, polar glaciated environments such as that of today (Motifs 2 and 1). Overall, there is a gradual trend upward through the succession from Motif 7 at the base towards Motif 1 at the top, but the trend is not monotonic. A significant conclusion of this work is that a record of dynamic climate and glacial conditions is preserved through the entire 34 Myr period of the Cenozoic icehouse, at least in the Victoria Land Basin. Intervals characterized by consistent stratigraphic style (motifs) are recognized throughout the Victoria Land Basin succession. These intervals are of 1 to 6 Myr duration, each containing numerous depositional sequences; they are one to two orders of magnitude longer than glacial–interglacial cycles, and record periods during which environmental conditions varied in an internally consistent manner. These intervals are considered to reflect convolutions of orbital parameters that remained stable for periods of 106 a, and then switched to alternative configurations. Such intervals are directly analogous to 1 to 8 Myr intervals characterized by glaciogenic strata that are preserved within the late Palaeozoic of eastern Australia among other areas, and may be a recurring stratigraphic response to icehouse climate regimes through geological time.  相似文献   

2.
The Late Pleistocene/Holocene Tiber delta succession represents the most recent and one of the best preserved, high‐frequency/low‐rank depositional sequences developed along the Latium continental margin of the Italian peninsula. Several previous studies have established a robust data set from which it has been possible to describe the stratigraphic architecture of the entire Tiber depositional sequence from the landward to seaward sectors and over a distance of 60 km. The Tiber depositional sequence shows many characteristics found in other Late Pleistocene to Holocene deltaic and coastal successions of the Mediterranean area. The stratigraphic architecture of the Tiber depositional sequence is controlled mainly by glacioeustasy, although factors such as tectonic uplift, volcanism and subsidence, exert an influence at a local scale. The resulting depositional model allowed discussion of some important points such as: (1) the genesis of the Tiber mixed bedrock‐alluvial valley, extending from the coastal plain to the innermost portion of the shelf, recording (i) multiple episodes of incision during relative sea‐level fall, and (ii) a downstream increase of depth and width of the valley during the base‐level fall and the subsequent base‐level rise; (2) the different physical expression of the Tiber depositional sequence boundary from landward to seaward, and its diachronous and composite character; (3) the maximum depth reached by the Tiber early lowstand delta at the end of the sea‐level fall is estimated at ca 90 m below the present sea‐level and not at 120 m as suggested by previous works; (4) the backward position of the Tiber late lowstand delta relative to the deposit of early lowstand; (5) the change of the channel pattern and of the stacking pattern of fluvial deposits within the Lowstand Systems Tract, Transgressive Systems Tract and Highstand Systems Tract. All of these features indicate that the Late Pleistocene/Holocene Tiber delta succession, even if deposited in a short period of time from a geological point of view, represents the result of the close interaction among many autogenic and allogenic factors. However, global eustatic variations and sediment supply under the control of climatic changes can be considered the main factors responsible for the stratigraphic architecture of this sedimentary succession, which has been heavily modified by human activity only in the last 3000 years.  相似文献   

3.
This study examines the sedimentary response to a tectonically driven relative sea‐level fall that occurred in the Neuquén Basin, west‐central Argentina, during the late Early Valanginian (Early Cretaceous). At this time the basin lay behind the emergent Andean magmatic arc to the west. Following the relative sea‐level fall, sedimentation was limited to the central part of the Neuquén Basin, with the deposition of a predominantly clastic, continental to shallow marine wedge on top of basinal black shales. This lowstand wedge is called the Mulichinco Formation and consists of a third‐order sequence that lasted about 2 Myr and contains high frequency lowstand, transgressive, and highstand deposits. Significant variations in facies, depositional architecture, and internal organization of the sequence occur along depositional strike. These variations are attributed mainly to tectonic and topographic controls upon sediment flux, basin gradient, fault tilting, and shifting of the depocentre through time. These controls were ultimately related to asymmetrically distributed tectonic activity that was greater towards the magmatic arc in the west. The superposition of fluvial deposits directly upon offshore facies provides unequivocal evidence for a sequence boundary at the base of the Mulichinco Formation. However, the Mulichinco sequence boundary is marked by shallow, low erosional relief and widespread fluvial deposition. The surface lacks prominent valleys traditionally associated with sequence boundaries. This non‐erosive sequence boundary geometry is attributed to the ramp‐type geometry of the basin and/or rapid uplift that limited stratigraphic adjustment to base‐level fall. Significant along‐strike facies changes and a low‐relief sequence boundary are attributes that may be common in tectonically active, semi‐enclosed basins (e.g. shallow back‐arc basins, foreland basins).  相似文献   

4.
5.
Discussion points raised by Rose ( 2016 ) concentrate on late Albian stratigraphic relationships between formations of the East Texas Basin and the San Marcos Arch of the Comanche Platform in the northern Gulf of Mexico. Criticisms of Phelps et al. (2014) regarding stratigraphic nomenclature, palaeogeography and regional lithostratigraphic correlations generally focus on interpretive aspects of the study or do not account for the full scope of published information. Revisions to the top Aptian–Albian Supersequence boundary by Rose are incompatible with the relative location of a subaerial unconformity, as well as deepening lithofacies trends and retrogradational stratigraphic patterns below the interpreted boundary. Rose's placement of the top Aptian–Albian Supersequence boundary precisely at the Albian–Cenomanian stage boundary also implies ca 1·4 Ma of diachroneity in second order sea‐level patterns between the northern Gulf of Mexico and other documented global sedimentary basins.  相似文献   

6.
The attributes of a ‘four-systems-tract’ sequence are at times difficult to identify in outcrop-scale carbonate successions. Poor exposure conditions, variable rates of sediment production, erosion and/or superposition of surfaces that are intrinsic to the nature of carbonate systems frequently conceal or remove its physical features. The late Early–Middle Aptian platform carbonates of the western Maestrat Basin (Iberian Chain, Spain) display facies heterogeneity enabling platform, platform-margin and slope geometries to be identified, and provide a case study that shows all the characteristics of a quintessential four systems tract-based sequence. Five differentiated systems tracts belonging to two distinct depositional sequences can be recognized: the Highstand Systems Tract (HST) and Forced Regressive Wedge Systems Tract (FRWST) of Depositional Sequence A; and the Lowstand Prograding Wedge Systems Tract (LPWST), Transgressive Systems Tract (TST) and subsequent return to a highstand stage of sea-level (HST) of Depositional Sequence B. An extensive carbonate platform of rudists and corals stacked in a prograding pattern marks the first HST. The FRWST is constituted by a detached, slightly cross-bedded calcarenite situated at the toe of the slope in a basinal position. The LPWST is characterized by a small carbonate platform of rudists and corals downlapping over the FRWST and onlapping landwards. The TST exhibits platform backstepping and marly sedimentation. Resumed carbonate production in shelf and slope settings characterizes the second HST. A basal surface of forced regression, a subaerial unconformity, a correlative conformity, a transgressive surface and a maximum flooding surface bound these systems tracts, and are well documented and widely mappable across the platform-to-basin transition area analyzed. Moreover, the sedimentary succession studied is made up of four types of parasequence that constitute stratigraphic units deposited within a higher-frequency sea-level cyclicity. Ten lithofacies associations form these basic accretional units. Each facies assemblage can be ascribed to an inferred depositional environment in terms of bathymetry, hydrodynamic conditions and trophic level. The architecture of the carbonate platform systems reflects a flat-topped non-rimmed depositional profile. Furthermore, these carbonate shelves are interpreted as having been formed in low hydrodynamic conditions. The long-term relative fall in sea-level occurred during the uppermost Early Aptian, which subaerially exposed the carbonate platform established during the first HST and resulted in the deposition of the FRWST, is interpreted as one of global significance. Moreover, a possible relationship between this widespread sea-level drop and glacio-eustasy seems plausible, and could be linked to the cooling event proposed in the literature for the late Early Aptian. Because of the important implications in sequence stratigraphy of this study, the sedimentary succession analyzed herein could serve as an analogue for the application of the four-systems-tract sequence stratigraphic methodology to carbonate systems.  相似文献   

7.
Neogene strata of the northern part of the Pegu (Bago) Yoma Range, Central Myanmar, contain a series of shallow marine clastic sediments with stratigraphic ages ranging from the Early to Late Miocene. The studied succession (around 750 m thick) is composed of three major stratigraphic units deposited during a major regression and four major transgressive cycles in the Early to Late Miocene. The transgressive deposits consist of elongate sand-bars and broad sand-sheets that pass headward into mixed-flats of tidal environments. Marine flooding in transgressive deposits is associated with coquina beds and allochthonous coral-bearing sandy limestone bands. Major marine regressions are associated with lowstand progradation of thick estuary point-bars passing up into upper sand-flat sand bodies encased within the tidal flat sequences and lower shoreface deposits with local unconformities. The succession initially formed in a large scale incised-valley system, and was later interrupted by two major marine transgressions in the generally regressive or basinward-stepping stratigraphic sequences. Successive sandbodies were formed during a sea-level lowstand and early stage of the subsequent relative rise of sea level in a tide-dominated estuary system in the eastern part of the Central Myanmar Tertiary Basin during Early to Late Miocene times.  相似文献   

8.
The Early Oligocene (Late Rupelian) Alzey Formation (Mainz Basin, Upper Rhine Graben, Germany) records the development of a rocky coast depositional system during transgression. The formation unconformably overlies Permian bedrock across a composite transgressive ravinement surface. Exposure of the surface shows a succession of subplanar bedrock terraces, separated by near‐vertical risers. Terraces show a broad staircase geometry and display wave‐erosional features (notches, sea stacks, furrows). Detailed sedimentological and palaeoecological investigations reveal prograding beachface and shoreface depositional units that overlie terraces and are adjacent to risers. Terraces are interpreted as wave‐cut platforms, backed by palaeocliffs. The staircase architecture records the episodic landward migration of palaeoshorelines onto palaeotopographic highs during the Early Oligocene. Stacking patterns of gravelly beach and shoreface associated units (facies tracts) indicate successive episodes of terrace cutting, beach development, drowning and shoreline backstepping during an overall relative sea‐level rise. The exceptional preservation of the stair‐cased rocky shore may be attributed to a highly jerky rising relative sea‐level, as the result of the conjugated effects of rift‐controlled tectonic subsidence and eustatic sea‐level oscillations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
To elucidate the signature of isostatic and eustatic signals during a deglaciation period in pre‐Pleistocene times is made difficult because very little dating can be done, and also because glacial erosion surfaces, subaerial unconformities and subsequent regressive or transgressive marine ravinement surfaces tend to amalgamate or erode the deglacial deposits. How and in what way can the rebound be interpreted from the stratigraphic record? This study proposes to examine deglacial deposits from Late‐Ordovician to Silurian outcrops at the Algeria–Libya border, in order to define the glacio–isostatic rebound and relative sea‐level changes during a deglaciation period. The studied succession developed at the edge and over a positive palaeo‐relief inherited from a prograding proglacial delta that forms a depocentre of glaciogenic deposits. The succession is divided into five subzones, which depend on the topography of this depocentre. Six facies associations were determined: restricted marine (Facies Association 1); tidal channels (Facies Association 2); tidal sand dunes (Facies Association 3); foreshore to upper shoreface (Facies Association 4); lower shoreface (Facies Association 5); and offshore shales (Facies Association 6). Stratigraphic correlations over the subzones support the understanding of the depositional chronology and associated sea‐level changes. Deepest marine domains record a forced regression of 40 m of sea‐level fall resulting from an uplift caused by a glacio‐isostatic rebound that outpaces the early transgression. The rebound is interpreted to result in a multi‐type surface, which is interpreted as a regressive surface of marine erosion in initially marine domains and as a subaerial unconformity surface in an initially subaerial domain. The transgressive deposits have developed above this surface, during the progressive flooding of the palaeo‐relief. Sedimentology and high‐resolution sequence stratigraphy allowed the delineation of a deglacial sequence and associated sea‐level changes curve for the studied succession. Estimates suggest a relatively short (<10 kyr) duration for the glacio‐isostatic uplift and a subsequent longer duration transgression (4 to 5 Myr).  相似文献   

10.
Falling‐stage deltas are predicted by sequence stratigraphic models, yet few reliable criteria are available to diagnose falling‐stage deltaic systems in surface exposures. Recent work on the Upper Cretaceous (Turonian) Ferron Sandstone in the western Henry Mountains Syncline of south‐central Utah has established its environment of deposition as a series of modest‐sized (5 to 20 km wide), probably asymmetrical, mixed‐influence deltas (‘Ferron Notom Delta’) that dispersed sediment eastwards from the rising Sevier orogenic hinterland into the Western Cordilleran Foreland Basin. Analysis of sandstone body stacking patterns in a 67 km long, depositional strike‐parallel (north–south) transect indicates that the growth of successive deltas was strongly forced by synsedimentary growth of a long wavelength (ca 100 km), 50 m amplitude fold structure. Herein, two discrete areas within this transect, superbly exposed in three dimensions, are documented in order to determine the details of stratal stacking patterns in the depositional dip direction, and thereby to assess the stratigraphic context of the Ferron Notom Delta. In the two study areas, dip transects expose facies representing river mouth bar to distal delta front environments over distances of 2 to 4 km. Key stratal packages are clinothems that offlap, downlap, and describe descending regressive trajectories with respective to basal and top datums; they are interpreted as the product of relative sea‐level fall. The vertical extent of clinoforms suggests that deltas prograded into <30 m of water. Furthermore, these deltaic successions preserve abundant evidence of delta front slope failure, growth faulting, and incision and filling of deep (<15 m) slope gullies. Gully fills are composed of chaotic intraformational breccia and/or massive sandstone, and constitute linear, ‘shoestring’ sandbodies in the distal portions of individual palaeodelta systems. They are interpreted to have been cut and filled during the late falling‐stage and lowstand of relative sea‐level cycles. The north–south distribution of the stratal style described above seems to be focused on the flanks of the growth anticline, and so the numerous falling‐stage systems tracts preserved within the Ferron Notom Delta probably owe their origin to synsedimentary structural growth, and the unstable fluid pressure regime that this growth imposed on the sea floor and shallow subsurface.  相似文献   

11.
Deglacial sequences typically include backstepping grounding zone wedges and prevailing glaciomarine depositional facies. However, in coastal domains, deglacial sequences are dominated by depositional systems ranging from turbiditic to fluvial facies. Such deglacial sequences are strongly impacted by glacio‐isostatic rebound, the rate and amplitude of which commonly outpaces those of post‐glacial eustatic sea‐level rise. This results in a sustained relative sea‐level fall covering the entire depositional time interval. This paper examines a Late Quaternary, forced regressive, deglacial sequence located on the North Shore of the St. Lawrence Estuary (Portneuf Peninsula, Québec, Canada) and aims to decipher the main controls that governed its stratigraphic architecture. The forced regressive deglacial sequence forms a thick (>100 m) and extensive (>100 km2) multiphased deltaic complex emplaced after the retreat of the Laurentide Ice Sheet margin from the study area ca 12 500 years ago. The sedimentary succession is composed of ice‐contact, glaciomarine, turbiditic, deltaic, fluvial and coastal depositional units. A four‐stage development is recognized: (i) an early ice‐contact stage (esker, glaciomarine mud and outwash fan); (ii) an in‐valley progradational stage (fjord head or moraine‐dammed lacustrine deltas) fed by glacigenics; (iii) an open‐coast deltaic progradation, when proglacial depositional systems expanded beyond the valley outlets and merged together; and (iv) a final stage of river entrenchment and shallow marine reworking that affected the previously emplaced deltaic complex. Most of the sedimentary volume (10 to 15 km3) was emplaced during the three‐first stages over a ca 2 kyr interval. In spite of sustained high rates of relative sea‐level fall (50 to 30 mm·year?1), delta plain accretion occurred up to the end of the proglacial open‐coast progradational stage. River entrenchment only occurred later, after a significant decrease in the relative sea‐level fall rates (<30 mm·year?1), and was concurrent with the formation and preservation of extensive coastal deposits (raised beaches, spit platform and barrier sands). The turnaround from delta plain accretion to river entrenchment and coastal erosion is interpreted to be a consequence of the retreat of the ice margin from the river drainage basins that led to the drastic drop of sediment supply and the abrupt decrease in progradation rates. The main internal stratigraphic discontinuity within the forced regressive deglacial sequence does not reflect changes in relative sea‐level variations.  相似文献   

12.
The Alexandra Formation, located in the Northwest Territories of Canada, is formed of a Late Devonian (Frasnian) reef system that developed on a gently sloping, epicontinental ramp in the Western Canada Sedimentary Basin. High‐resolution sequence stratigraphic analysis of its deposits delineates two reef complexes that are separated by a Type I sequence boundary. The second reef complex developed on the outer ramp, basinward of the first, after sea‐level fell ≈17 m. Stratigraphic complexity of the second reef complex was a result of its initiation during forced regression, and its development through an entire cycle of sea‐level rise followed by sea‐level fall. Its highstand systems tract was not characterized by high rates of carbonate production or sediment shedding. Rather, these features took place as sea‐level fell, after its highstand systems tract. The sequence stratigraphic framework of this regressive reef system highlights a number of depositional parameters that differ from high‐relief, shelf‐situated reef systems with steep, narrow margins. These have implications for understanding the controls on the development of ramp‐situated reef systems, and the nature of reef systems with gently sloping profiles. This study demonstrates that the development of stromatoporoid reef systems may be far more complex than generally realized, and that high‐resolution sequence stratigraphy may provide the tools for better understanding of complex, often enigmatic, aspects of these systems.  相似文献   

13.
《Sedimentology》2018,65(3):670-701
The depositional setting of the 2·1 Ga fill of the Franceville Basin of Gabon is important for understanding the habitat (energy and availability of light and oxygen) and taphonomy of recently discovered early macro‐organisms buried in black shales in Unit FB . The available data bearing on the stratigraphy and sedimentology of Unit FB provide new insight into processes acting on the palaeo‐sea floor. The shales are interpreted to have formed as fluid mud deposits interstratified with structureless sands. The latter (Poubara sandstones) were emplaced during a forced regression during the terminal infill of fault‐bounded sub‐basins following a stage characterized by a ferruginous to anoxic water column. The structureless sandstones were deposited from high‐density gravity currents along with a locally strong bottom oscillation of the water column. Tuft structures preserved in cyanobacterial mats, together with the position of the macro‐organisms at the top of the sandstone beds within associated black shales, point to a water depth of less than 80 m. The relative sea‐level fall that drove deposition of the Poubara sandstones controlled the rise of a phototrophic ecosystem and also possibly favoured the supply of oxygen and nutrients via density flows.  相似文献   

14.
The Valanginian is a period of global environmental change as illustrated by sedimentary, palaeontological, geochemical and climatic perturbations. A production crisis in most of the carbonate platforms suggests important changes in palaeoenvironmental conditions. During the same time interval, a major positive excursion in δ13C, the Weissert Event, suggests perturbations of the carbon cycle from the latest Early Valanginian to the Early Hauterivian. In order to better understand the link between these changes, sea‐level fluctuations have been reconstructed in detail from the Middle Berriasian to the earliest Hauterivian. Sections from the Peri‐Vocontian Zone (South‐east France) have been investigated because of the good quality of outcrops on the carbonate platforms, their margins and in the Vocontian Basin. Sections ranging from the most proximal zone (Swiss Jura) to the basin were interpreted in terms of sequence stratigraphy and cyclostratigraphy, and correlated at high resolutions. Using the identified small, medium and large‐scale sequences as well as depositional geometries, sea‐level fluctuations were reconstructed. Two main trends are evidenced during the studied interval: (i) the peak amplitude (magnitude) of the sea‐level fluctuations increased gradually from the Middle Berriasian to the Early Valanginian, and reached a maximum (more than 50 m) from the middle Early Valanginian to the Valanginian/Hauterivian boundary; and (ii) sea‐level variations were quite symmetrical during the Late Berriasian, slightly asymmetrical during the Early Valanginian and strongly asymmetrical (fast sea‐level rise, slow fall) from the latest Early Valanginian to the earliest Hauterivian. Moreover, three orders of sea‐level fluctuations were recognized in the sedimentary rocks of the Peri‐Vocontian Zone. Platform‐basin correlations and cyclostratigraphic interpretations of the basinal sections evidence an astronomical control on the sea‐level variations, mainly by the two eccentricity cycles of 100 and 400 kyr. The increase in the amplitude of the sea‐level fluctuations and their change from symmetrical to asymmetrical can be related to the onset of a major cooling event in the Early Valanginian. Fast transgressions followed by slower regressions would correspond to waxing and waning of high‐latitudinal ice during most of the Valanginian, especially from the latest Early Valanginian to the latest Late Valanginian. Glacio‐eustatic sea‐level fluctuations in tune with the 100 and 400 kyr eccentricity cycles are in agreement with glaciations during the Valanginian.  相似文献   

15.
The 14 km wide Valdorria outcrop (Pennsylvanian, northern Spain) is one of the few examples of entirely exposed flat‐topped and high‐relief carbonate platforms reported in the fossil rock record. Laterally and vertically traceable stratal patterns expose three phases of growth. Phase I is a 430 m thick platform to slope succession that prograded over 6 km, and is dated as Early Bashkirian (Akavasian–Askynbashian). Phase II aggraded and prograded, exhibiting 180 m thickness of cyclical platform top deposits, dated as Late Bashkirian (Asatauian). Phase III is a mound‐shape structure that developed over the platform top of Phase II as a new phase of platform nucleation. It is 535 m thick and 2 km wide, and dated as Late Bashkirian (Asatauian–Transition interval). The observed changes of growth styles during platform evolution, from a prograding to an aggrading–prograding system, and a rapid aggradational phase, are inferred to be controlled by flexural subsidence in the active Cantabrian foreland basin, at the Variscan orogenic front. The metre‐scale shallowing‐upward cycles of the platform top are most probably due to glacioeustasy, as evidenced by well‐recorded subaerial exposure surfaces superimposed on subtidal deposits, and by a stratal pattern recurrent in a short interval of about 160 kyr. Observations of outcropping Bashkirian cyclothems in an isolated carbonate system, devoid of siliciclastic input, are relevant for a better understanding of the impact of high‐frequency sea‐level fluctuations on the carbonate factory. Moreover, progradation of the platform margin during Phase I reaches a rate of 2500 m/Myr, and 1810 m/Myr during Phase II; rates that are high when compared to other Pennsylvanian examples. The aggradation rate of 447 m/Myr calculated for the Late Bashkirian–Transition interval (Phases II and III; uncorrected for compaction, missing beats and erosion) is uncommonly high in comparison to coeval Pennsylvanian examples. The platform exhibits a self‐nourishing prograding microbial boundstone‐dominated slope. Thus, the slope‐shedding model applies well to Valdorria. However, Phase II recorded eustatic variations able to inhibit the slope microbial boundstone factory during low sea‐level stands; this is marked by common slope red‐stained breccias synchronous to platform top subaerial exposure phases. Contrarily, periods of relative high sea‐level and rapid subsidence in Phase III registered a greater development of cemented microbial boundstone. These observed, partly opposing relationships of sea‐level stands, shedding modes and slope architecture provide an improvement of the currently used slope‐shedding model. The overall architecture of the Valdorria outcrop compares well with that of other contemporaneous platforms, such as Sierra del Cuera and Bolshoi Karatau. Valdorria shares the high‐relief and flat‐topped, steep slopes, cyclothemic patterns and occurrence of karst features with the Pricaspian Basin platforms (Tengiz, Karachaganak and Kashagan), with minor variations in facies distribution of the internal platform. Furthermore, the continuous seismic‐scale outcrop of Valdorria, together with its isolated setting and asymmetrical growth, makes it a very good candidate for potential subsurface analogues of hydrocarbon‐bearing systems.  相似文献   

16.
Although Jurassic-Early Cretaceous sedimentary systems were extensively developed on northeastern Gondwana, deciphering their paleogeography has been complicated by poor exposure and the lack of a robust chronostratigraphic framework. The southeastern margin of the Carpentaria Basin, northeastern Australia is one of the few regions where these sedimentary systems are extensively exposed. Employing a combination of facies analysis and new data from paleontology and detrital zircon geochronology, we present a temporally and environmentally refined paleogeographic framework for this region. A Late Jurassic, southeasterly directed marine incursion invaded northeastern Gondwana, extending inland across the Carpentaria Basin, as demonstrated by a thin (~30 m), marine influenced (fluvio-estuarine) stratigraphic succession capped by a sequence bounding ~30 myr paraconformity. The depositional hiatus marked the Late Jurassic-Early Cretaceous uplift of the Euroka Arch, with loss of sedimentary and fluvial connectivity between the Carpentaria Basin and adjoining Eromanga Basin. Subsequent deposition by low-accommodation fluvial systems resulted in a thin, fluviatile depositional package developing during the Early Cretaceous. Paleocurrent and provenance data indicate that the Middle to Late Jurassic (c. 170–160 Ma) fluvial systems predating the paraconformity extended from the Eromanga Basin to the south across the southeastern Carpentaria Basin, transporting sediment from distal sources in the Lachlan Orogen of southeastern Australia. Fluvial systems of the southeastern Carpentaria Basin post-dating the paraconformity and Euroka Arch uplift show a provenance shift to easterly sources in the Mossman Orogen and Kennedy Igneous Association. Previously unrecognised Jurassic-Early Cretaceous igneous activity provided a persistent source of sediment to the southeastern Carpentaria Basin succession due to reworking of air fall tuff from an active magmatic arc located on the continental margin of northeastern Gondwana.  相似文献   

17.
18.
Syn-rift shallow-marine carbonates of Late Aptian to Early Albian age in the southern Maestrat Basin (E Spain) register the thickest Aptian sedimentary record of the basin, and one of the most complete carbonate successions of this age reported in the northern Tethyan margin. The host limestones (Benassal Formation) are partially replaced by dolostones providing a new case study of fault-controlled hydrothermal dolomitization. The syn-rift sediments filled a graben controlled by normal basement faults. The Benassal Fm was deposited in a carbonate ramp with scarce siliciclastic input. The lithofacies are mainly characterized by the presence of orbitolinid foraminifera, corals and rudist bivalves fauna. The succession is stacked in three transgressive–regressive sequences (T–R) bounded by surfaces with sequence stratigraphic significance. The third sequence, which is reported for the first time in the basin, is formed by fully marine lithofacies of Albian age and represents the marine equivalent to the continental deposits of the Escucha Fm in the rest of the basin.The dolomitization of the host rock is spatially associated with the basement faults, and thus is fault-controlled. The dolostone forms seismic-scale stratabound tabular geobodies that extend several kilometres away from the fault zones, mostly in the hanging wall blocks, and host Mississippi Valley Type (MVT) deposits. The dolostones preferentially replaced middle to inner ramp grain-dominated facies from the third T–R sequences consisting of bioclastic packestones and peloidal grainstones. Field and petrology data indicate that the replacement took place after early calcite cementation and compaction, most likely during the Late Cretaceous post-rift stage of the basin. The dolostone registers the typical hydrothermal paragenesis constituted by the host limestone replacement, dolomite cementation and sulfide MVT mineralization. The Aptian succession studied provides a stratigraphic framework that can be used for oil exploration in age-equivalent rocks, especially in the València Trough, offshore Spain. Moreover, this new case study constitutes a world class outcrop analogue for similar partially stratabound, dolomitized limestone reservoirs worldwide.  相似文献   

19.
The Harz Mountains and the adjacent Subhercynian Cretaceous Basin figure as the most prominent surface representative for Late Cretaceous inversion structures in Central Europe. Facies, depositional architecture and provenance of the basin fill reflect mechanisms and timing of the exhumation of the Harz. From Hauterivian to Early Santonian there is no evidence for detrital input from the nearby Harz area. Sediments are mature quartzarenites derived from Paleozoic basement rocks and/or recycled Permian to Mesozoic sedimentary rocks. This situation changed drastically in Middle to Late Santonian when freshly exhumed and eroded Mesozoic sedimentary cover rocks of the Harz were delivered into the basin. Feldspar and lithoclasts reflect erosion of Triassic and, in places, Jurassic to Turonian strata. Apatite and garnet in heavy mineral spectra are derived from largely unweathered Lower Triassic Buntsandstein as indicated by apatite and garnet chemistry. In Early Campanian, Paleozoic lithoclasts indicate erosion cutting down into the basement of the Harz. Simultaneous strong decrease of feldspar, garnet and apatite suggest an almost complete removal of the 2–3 km thick Mesozoic cover of the Harz within only 2–4 Myr. This translates into an exhumation rate of approximately 1 mm/a consistent with apatite fission track data from granitoid rocks of the Harz Mountains.  相似文献   

20.
In large parts of the Kachchh Basin, a Mesozoic rift basin situated in western India, the Oxfordian succession is characterized by strong condensation and several depositional gaps. The top layer of the Early to Middle Oxfordian Dhosa Oolite member, for which the term ‘Dhosa Conglomerate Bed’ is proposed, is an excellent marker horizon. Despite being mostly less than 1 m thick, this unit can be followed for more than 100 km throughout the Kachchh Mainland. A detailed sedimentological analysis has led to a complex model for its formation. Signs of subaerial weathering, including palaeokarst features, suggest at least two phases of emersion of the area. Metre‐sized concretionary slabs floating in a fine‐grained matrix, together with signs of synsedimentary tectonics, point to a highly active fault system causing recurrent earthquakes in the basin. The model takes into account information from outcrops outside the Kachchh Mainland and thereby considerably refines the current understanding of the basin history during the Late Jurassic. Large fault systems and possibly the so‐called Median High uplift separated the basin into several sub‐basins. The main reason for condensation in the Oxfordian succession is an inversion that affected large parts of the basin by cutting them off from the sediment supply. The Dhosa Conglomerate Bed is an excellent example, demonstrating the potential of condensed units in reconstructing depositional environments and events that took place during phases of non‐deposition. Although condensed sequences occur frequently throughout the sedimentary record, they are particularly common around the Callovian to Oxfordian transition. A series of models has been proposed to explain these almost worldwide occurrences, ranging from eustatic sea‐level highstands to glacial phases connected with regressions. The succession of the Kachchh Basin shows almost stable conditions across this boundary with only a slight fall in relative sea‐level, reaching its minimum not before the late Early Oxfordian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号