首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 164 毫秒
1.
高光谱矿物填图技术与应用研究   总被引:11,自引:0,他引:11  
回顾和总结了"九五"以来,中国国土资源航空物探遥感中心在高光谱矿物识别和矿物填图领域所取得的成果,包括主要岩矿光谱特征与影响因素分析;矿物的种类识别、丰度反演和成分识别;中—热红外多/高光谱的数据处理和矿物识别;高光谱矿物识别的地质应用模式、矿物填图的工作方法和技术流程、矿物填图的技术体系;矿物填图在区域地质找矿、矿区勘查和成矿与找矿模型、植物地球化学探测、矿山环境监测以及月球和行星探测等方面的应用示范。最后,提出了高光谱矿物填图近期的研究方向。  相似文献   

2.
大气效应是影响成像光谱矿物识别和矿物填图精度的重要因素之一。本文采用理论分析、对比试验的方法,分析研究大气效应对成像光谱矿物识别和填图的影响,并对不同大气校正和光谱重建方法的效果作了对比和讨论。  相似文献   

3.
成象光谱图象光谱吸收鉴别模型与矿物填图研究   总被引:1,自引:0,他引:1  
本文提出了一种光谱吸收鉴别模型,拟通过矿物光谱吸收特征的鉴别,在成象光谱上实现矿物直接识别与填图。该模型的核心是光谱吸收指数技术(SAI)。从理论上探讨了SAI的本质,应用Hapke光谱模型讨论了SAI与光谱吸收系数(d)以及单散射反照率(w)之间的函数关系,并从成象光谱图象辐射信息传递过程分析了图象SAI与光谱吸收深度的关系,而光谱吸收深度与岩石矿物成分含量之间具有定量关系,这显示了SAI提取矿物定量遥感信息能力。SAI已经成功地应用于FIMS、MAIS和GERIS图象处理与矿物填图,本文通过哈图、塔里木、以及澳大利亚松谷的实例研究,表明SAI是一种有效的提取矿物类型与丰度信息的方法。  相似文献   

4.
 新疆哈密三种典型蚀变矿物的HyMap高光谱遥感信息提取   总被引:3,自引:0,他引:3  
利用机载的可见光、近红外及短波红外成像光谱(HyMap)数据,对新疆哈密地区岩矿信息识别方法进行研究。基于方解石、 绿泥石和绢云母3种常见蚀变矿物的光谱特征,在遥感数据定标和反射率图像转换的基础上,应用光谱角度模型(SAM)分类法进行自 动匹配识别和信息提取。通过掩膜技术进行方解石、绿泥石和绢云母矿物填图,并结合实验室光谱数据库光谱进行了验证。  相似文献   

5.
传统的遥感地质填图方法较少考虑到一个像元中多种地物共生存在的情况,因此所填图件难以反映矿物的分布特征。针对线性混合模型解混精度不高的问题,使用二次散射非线性混合模型对高光谱数据进行光谱解混,并在此基础上,提出了k(k≥2)类地物的填图规则。采用美国内华达州Cuprite地区AVIRIS数据进行填图实验,将其结果与Clark等的填图结果进行对比。实验结果表明:与线性模型的矿物填图相比,基于二次散射非线性混合模型所填图件更加接近矿物的真实分布;使用k(k≥2)类矿物填图规则的填图结果细节丰富,与Clark等人的填图结果吻合度高。  相似文献   

6.
以西藏班公湖-怒江成矿带西段多不杂矿集区东部的色那有利成矿区为研究区,基于Hyperion高光谱遥感数据,开展蚀变矿物提取研究;提取出褐铁矿、绿泥石和高岭土3类地表蚀变矿物波谱端元,并利用光谱角填图方法进行填图。野外验证结果显示,填图结果与野外调查基本吻合,矿物分带特征明显,并根据蚀变矿物分布情况划定了2个斑岩型矿床重点勘查区。  相似文献   

7.
柴达木盆地烃蚀变矿物高光谱遥感识别研究   总被引:2,自引:0,他引:2  
高光谱遥感识别烃蚀变矿物可用于探测油气烃类微渗漏和定位地下油气藏.以有天然气分布的柴达木盆地东部三湖地区为研究区,对Hyperion高光谱数据进行重采样处理,克服了目标识别矿物不明显和传感器低信噪比的影响.通过确定烃蚀变矿物高光谱遥感探测的指示标志,采用线性光谱(SAM)拟合与光谱匹配(SAM)相结合的方法确定了影像端元对应的矿物组分.识别结果表明,合理缩减影像波段数和确定影像端元的方法,能有效提高烃蚀变矿物的高光谱遥感识别精度.  相似文献   

8.
光谱角度填图方法及其在岩性识别中的应用   总被引:11,自引:0,他引:11  
光谱角度填图(SAM)是成像光谱图像处理技术中,对岩石矿物进行谱形识别的主要方法之一,但其应用效果并不十分理想。以内蒙古渣尔泰山为实验区,从岩石实验室反射光谱的相似系数聚类分析入手,研究了光谱角度填图方法的优劣,及其产生的原因。探讨了利用均值图像参与分类的处理方案,从而改善了光谱角度填图方法中易于产生“异类同谱”的不足,获得良好的岩性识别效果。  相似文献   

9.
高分五号高光谱影像矿物精细识别   总被引:2,自引:2,他引:0  
矿物识别是高光谱遥感技术优势之一,已在地质矿产领域取得了显著应用效果。随着光谱分辨率的不断提高,高光谱遥感矿物识别逐渐从识别矿物种类向矿物亚类、矿物成分等精细信息识别发展,且随着应用实践的不断深入,对矿物精细信息的需求也越来越大。而光谱分辨率和矿物识别方法是制约高光谱矿物精细识别的主要因素。高分五号(GF-5)超高的光谱分辨率为矿物精细识别提供了可能。首先在分析总结已有高光谱矿物识别方法优缺性的基础上,提出了综合光谱特征增强匹配度和特征参量的矿物识别方法;其次,选取甘肃柳园和美国Cuprite两个研究较多的地区为研究对象,基于GF-5卫星数据开展了矿物精细识别,在完成矿物种类、亚类识别的基础上,进一步对绢云母成分信息进行了反演;最后,结合上述地区已有机载高光谱数据及填图结果开展对比分析。结果表明:GF-5矿物识别信息分布与机载HyMap、AVIRIS一致性很好,相较机载数据GF-5矿物识别平均正确率优于90%,说明本研究提出的矿物识别方法能够满足GF-5矿物精细识别,可为后续业务化应用提供技术支撑,同时认为超高的光谱分辨率使得GF-5在矿物成分信息识别上更具优势。  相似文献   

10.
提出了一种基于Fisher权重分析的迭代光谱解混方法(WLSMA),该方法首先对高光谱图像进行区域分割,在分割后的各子块中自动提取端元;再次对提取的端元进行聚类,从光谱的整体特征上将不同类别的端元区分开,针对聚类结果中的每一类别各选取几个具有代表性的端元光谱,并对最优光谱进行窗口卷积处理,结合In_CoB指标构建端元光谱样本库;最后对图像进行迭代光谱解混处理,在丰度反演过程中引入基于Fisher准则的补偿权值矩阵以提高反演精度。AVIRIS高光谱数据实验证明,WLSMA不需要大量先验信息,利用Fisher准则和迭代光谱分析理论增强了相似性矿物的可分性,为加强对矿区地表岩性的认识和模拟提供了更大的灵活性和可能性,对高光谱矿物填图有一定的借鉴意义。  相似文献   

11.
The spectral angle mapper (SAM), as a spectral matching method, has been widely used in lithological type identification and mapping using hyperspectral data. The SAM quantifies the spectral similarity between an image pixel spectrum and a reference spectrum with known components. In most existing studies a mean reflectance spectrum has been used as the reference spectrum for a specific lithological class. However, this conventional use of SAM does not take into account the spectral variability, which is an inherent property of many rocks and is further magnified in remote sensing data acquisition process. In this study, two methods of determining reference spectra used in SAM are proposed for the improved lithological mapping. In first method the mean of spectral derivatives was combined with the mean of original spectra, i.e., the mean spectrum and the mean spectral derivative were jointly used in SAM classification, to improve the class separability. The second method is the use of multiple reference spectra in SAM to accommodate the spectral variability. The proposed methods were evaluated in lithological mapping using EO-1 Hyperion hyperspectral data of two arid areas. The spectral variability and separability of the rock types under investigation were also examined and compared using spectral data alone and using both spectral data and first derivatives. The experimental results indicated that spectral variability significantly affected the identification of lithological classes with the conventional SAM method using a mean reference spectrum. The proposed methods achieved significant improvement in the accuracy of lithological mapping, outperforming the conventional use of SAM with a mean spectrum as the reference spectrum, and the matching filtering, a widely used spectral mapping method.  相似文献   

12.
In geological imaging spectrometry (i.e., hyperspectral remote sensing), surface compositional information (e.g., mineralogy and subsequently chemistry) is obtained by statistical comparison (by means of spectral matching algorithms) of known field- or library spectra to unknown image spectra. Though these algorithms are readily used, little emphasis has been given to comparison of the performance of the various spectral matching algorithms. Four spectral measures are presented: three that calculate the angle (spectral angle measure, SAM), the vector distance (Euclidean distance measure, ED) or the vector cross-correlation (spectral correlation measure, SCM), between a known reference and unknown target spectrum and a fourth measure that measures the discrepancy of probability distributions between two pixel vectors (the spectral information divergence, SID). The performance of these spectral similarity measures is compared using synthetic hyperspectral and real (i.e., Airborne Visible Infrared Imaging Spectrometer, AVIRIS) hyperspectral data of a (artificial or real) hydrothermal alteration system characterised by the minerals alunite, kaolinite, montmorillonite and quartz. Two statistics are used to assess the performance of the spectral similarity measures: the probability of spectral discrimination (PSD) and the power of spectral discrimination (PWSD). The first relates to the ability of the selected set of spectral endmembers to map a target spectrum, whereas the second expresses the capability of a spectral measure to separate two classes relative to a reference class. Analysis of the synthetic data set (i.e., simulated alteration zones with crisp boundaries at 1–2 nm spectral resolution) shows that (1) the SID outperforms the classical empirical spectral matching techniques (SAM, SCM and ED), (2) that SCM (SID, SAM and ED do not) exploits the overall shape of the reflectance curve and hence its outcomes are (positively and negatively) affected by the spectral range selected, (3) SAM and ED give nearly similar results and (4) for the same reason as in (2), the SCM is also more sensitive (again in positive and negative sense) to the spectral noise added. Results from the study of AVIRIS data show that SAM yields more spectral confusion (i.e., class overlap) than SID and SCM. In turn, SID is more effective in mapping the four target minerals than SCM as it clearly outperforms SCM when the target mineral coincides with the mineral phase on the ground.  相似文献   

13.
Mineral mapping is an important step for the development and utilization of mineral resources. The emergence of remote sensing technology, especially hyperspectral imagery, has paved a new approach to geological mapping. The k-means clustering algorithm is a classical approach to classifying hyperspectral imagery, but the influence of mixed pixels and noise mean that it usually has poor mineral mapping accuracy. In this study, the mapping accuracy of the k-means algorithm was improved in three ways: similarity measurement methods that are insensitive to dimensions are used instead of the Euclidean distance for clustering; the spectral absorption features of minerals are enhanced; and the mineral mapping results are combined as the number of cluster centers (K) is incremented from 1. The improved algorithm is used with combined spectral matching to match the clustering results with a spectral library. A case study on Cuprite, Nevada, demonstrated that the improved k-means algorithm can identify most minerals with the kappa value of over 0.8, which is 46% and 15% higher than the traditional k-means and spectral matching technology. New mineral types are more likely to be found with increasing K. When K is much greater than the number of mineral types, the accuracy is improved, and the mineral mapping results are independent of the similarity measurement method. The improved k-means algorithm can also effectively remove speckle noise from the mineral mapping results and be used to identify other objects.  相似文献   

14.
光谱匹配分类方法以光谱相似性测度为分类准则,一种相似性测度只对应于光谱曲线的一种特征,用于光谱匹配分类效果并不好;组合不同类型的相似性测度能够有效改善分类效果,但光谱匹配分类往往忽略了相邻像元间的相关性。为了更好地利用空间信息,提高光谱匹配分类精度,首先组合欧氏距离测度和相关系数测度,得到欧氏距离-相关系数测度;其次通过加入空间乘子,得到结合空间信息的欧氏距离-相关系数测度,从而在光谱匹配分类中增加了空间信息约束。采用两组高光谱影像进行实验验证,结果表明,相比于单一相似性测度及组合相似性测度,结合空间信息的欧氏距离-相关系数测度用于光谱匹配分类能够有效改善分类精度。  相似文献   

15.
Modern hyperspectral imaging and non-imaging spectroradiometer has the capability to acquire high-resolution spectral reflectance data required for surface materials identification and mapping. Spectral similarity metrics, due to their mathematical simplicity and insensitiveness to the number of reference labelled spectra, have been increasingly used for material mapping by labelling reflectance spectra in hyperspectral data labelling. For a particular hyperspectral data set, the accuracy of spectral labelling depends considerably upon the degree of unambiguous spectral matching achieved by the spectral similarity metric used. In this work, we propose a new methodology for quantifying spectral similarity for hyperspectral data labelling for surface materials identification. Developed adopting the multiple classifier system architecture, the proposed methodology unifies into a single framework the differential performances of eight different spectral similarity metrics for the quantification of spectral matching for surface materials. The proposed methodology has been implemented on two types of hyperspectral data viz. image (airborne hyperspectral images) and non-image (library spectra) for numerous surface materials identification. Further, the performance of the proposed methodology has been compared with the support vector machines (SVM) approach, and with all the base spectral similarity metrics. The results indicate that, for the hyperspectral images, the performance of the proposed methodology is comparable with that of the SVM. For the library spectra, the proposed methodology shows a consistently higher (increase of about 30% when compared to SVM) classification accuracy. The proposed methodology has the potential to serve as a general library search method for materials identification using hyperspectral data.  相似文献   

16.
Recent developments in hyperspectral remote sensing technologies enable acquisition of image with high spectral resolution, which is typical to the laboratory or in situ reflectance measurements. There has been an increasing interest in the utilization of in situ reference reflectance spectra for rapid and repeated mapping of various surface features. Here we examined the prospect of classifying airborne hyperspectral image using field reflectance spectra as the training data for crop mapping. Canopy level field reflectance measurements of some important agricultural crops, i.e. alfalfa, winter barley, winter rape, winter rye, and winter wheat collected during four consecutive growing seasons are used for the classification of a HyMAP image acquired for a separate location by (1) mixture tuned matched filtering (MTMF), (2) spectral feature fitting (SFF), and (3) spectral angle mapper (SAM) methods. In order to answer a general research question “what is the prospect of using independent reference reflectance spectra for image classification”, while focussing on the crop classification, the results indicate distinct aspects. On the one hand, field reflectance spectra of winter rape and alfalfa demonstrate excellent crop discrimination and spectral matching with the image across the growing seasons. On the other hand, significant spectral confusion detected among the winter barley, winter rye, and winter wheat rule out the possibility of existence of a meaningful spectral matching between field reflectance spectra and image. While supporting the current notion of “non-existence of characteristic reflectance spectral signatures for vegetation”, results indicate that there exist some crops whose spectral signatures are similar to characteristic spectral signatures with possibility of using them in image classification.  相似文献   

17.
陈颖  舒宁 《国土资源遥感》2005,(4):32-37,i0001
基于多光谱纹理“映射模式”概念,提出了基于光谱数据相似性的多光谱、高光谱数据的编码方法。利用光谱相似测度对不同类型的纹理进行编码,表征地物的全局纹理特征,将纹理提取的算法扩展到多维光谱图像分析中,提出了多尺度纹理组合算法。试验证明,该方法合理有效,可大大提高分类的准确性和精度。  相似文献   

18.
Desertification is a severe stage of land degradation, manifested by “desert-like” conditions in dryland areas. Climatic conditions together with geomorphologic processes help to mould desert-like soil surface features in arid zones. The identification of these soil features serves as a useful input for understanding the desertification process and land degradation as a whole. In the present study, imaging spectrometer data were used to detect and map desert-like surface features. Absorption feature parameters in the spectral region between 0.4 and 2.5 μm wavelengths were analysed and correlated with soil properties, such as soil colour, soil salinity, gypsum content, etc. Soil groupings were made based on their similarities and their spectral reflectance curves were studied. Distinct differences in the reflectance curves throughout the spectrum were exhibited between groups. Although the samples belonging to the same group shared common properties, the curves still showed differences within the same group.Characteristic reflectance curves of soil surface features were derived from spectral measurements both in the field and in the laboratory, and mean reflectance values derived from image pixels representing known features. Linear unmixing and spectral angle matching techniques were applied to assess their suitability in mapping surface features for land degradation studies. The study showed that linear unmixing provided more realistic results for mapping “desert-like” surface features than the spectral angle matching technique.  相似文献   

19.
Hyperspectral remote sensing/imaging spectroscopy has enabled precise identification and mapping of hydrothermal alteration mineral assemblages based on diagnostic absorption features of minerals. In the present study, we use Airborne Visible InfraRed Imaging Spectrometer-Next Generation (AVIRIS-NG) datasets acquired over Rishabdev ultramafic suite to derive surficial mineral map using least square based spectral shape matching in wavelength range of diagnostic absorption features of minerals. Resulting mineral map revealed presence of hydrothermally altered serpentine group of minerals and associated alteration products (talc and dolomite) along with clays and phyllosilicates. Mineral maps are validated using field spectral measurements and published geological map. Involvement of low temperature (<350 °C) hydrothermal fluid in serpentinization of ultramafic rocks in the region is inferred from analysis of deepest absorption features of muscovites at 2.20 μm, spectral abundance of lizardite and absence of prenhite-pumpyllite facies mineral assemblages. Talc was found to be the most common alteration product of serpentines followed by dolomites. Intense alteration of serpentines to talc along the fracture zone is attributed to the circulation of carbon dioxide rich hydrothermal fluids along these conduits. Kaolinite and halloysite are primarily associated with granites and are the result of hydrothermal alteration of plagioclase feldspar in granites while muscovite and illites are generally associated with phyllites and quartzites . The study demonstrates the potential of imaging spectroscopy for mapping hydrothermal alteration mineral assemblages in ultramafic complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号