首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Annual indices of sea ice severity in Hudson Strait, for the period 1751 to 1870, are derived from written historical evidence contained in ships' log-books. These logs were all kept on Hudson's Bay Company ships sailing from London to the Company's trading posts. The log-books are homogeneous in nature and this property facilitates their numerical interpretation. The annual indices are subjected to face validity testing which indicates that they may plausibly be accepted as measures of sea ice severity. The results are examined in relation to the presentday behaviour of sea ice in Hudson Strait and they provide evidence that the summer severity of ice conditions is mainly determined by atmospheric circulation conditions.  相似文献   

2.
The seasonal cycle of water masses and sea ice in the Hudson Bay marine system is examined using a three-dimensional coastal ice-ocean model, with 10 km horizontal resolution and realistic tidal, atmospheric, hydrologic and oceanic forcing. The model includes a level 2.5 turbulent kinetic energy equation, multi-category elastic-viscous-plastic sea-ice rheology, and two layer sea ice with a single snow layer. Results from a two-year long model simulation between August 1996 and July 1998 are analyzed and compared with various observations. The results demonstrate a consistent seasonal cycle in atmosphere-ocean exchanges and the formation and circulation of water masses and sea ice. The model reproduces the summer and winter surface mixed layers, the general cyclonic circulation including the strong coastal current in eastern Hudson Bay, and the inflow of oceanic waters into Hudson Bay. The maximum sea-ice growth rates are found in western Foxe Basin, and in a relatively large and persistent polynya in northwestern Hudson Bay. Sea-ice advection and ridging are more important than local thermodynamic growth in the regions of maximum sea-ice cover concentration and thickness that are found in eastern Foxe Basin and southern Hudson Bay. The estimate of freshwater transport to the Labrador Sea confirms a broad maximum during wintertime that is associated with the previous summers freshwater moving through Hudson Strait from southern Hudson Bay. Tidally driven mixing is shown to have a strong effect on the modeled ice-ocean circulation.  相似文献   

3.
A regional sea-ice?Cocean model was used to investigate the response of sea ice and oceanic heat storage in the Hudson Bay system to a climate-warming scenario. Projections of air temperature (for the years 2041?C2070; effective CO2 concentration of 707?C950?ppmv) obtained from the Canadian Regional Climate Model (CRCM 4.2.3), driven by the third-generation coupled global climate model (CGCM 3) for lateral atmospheric and land and ocean surface boundaries, were used to drive a single sensitivity experiment with the delta-change approach. The projected change in air temperature varies from 0.8°C (summer) to 10°C (winter), with a mean warming of 3.9°C. The hydrologic forcing in the warmer climate scenario was identical to the one used for the present climate simulation. Under this warmer climate scenario, the sea-ice season is reduced by 7?C9?weeks. The highest change in summer sea-surface temperature, up to 5°C, is found in southeastern Hudson Bay, along the Nunavik coast and in James Bay. In central Hudson Bay, sea-surface temperature increases by over 3°C. Analysis of the heat content stored in the water column revealed an accumulation of additional heat, exceeding 3?MJ?m?3, trapped along the eastern shore of James and Hudson bays during winter. Despite the stratification due to meltwater and river runoff during summer, the shallow coastal regions demonstrate a higher capacity of heat storage. The maximum volume of dense water produced at the end of winter was halved under the climate-warming perturbation. The maximum volume of sea ice is reduced by 31% (592?km3) while the difference in the maximum cover is only 2.6% (32,350?km2). Overall, the depletion of sea-ice thickness in Hudson Bay follows a southeast?Cnorthwest gradient. Sea-ice thickness in Hudson Strait and Ungava Bay is 50% thinner than in present climate conditions during wintertime. The model indicates that the greatest changes in both sea-ice climate and heat content would occur in southeastern Hudson Bay, James Bay, and Hudson Strait.  相似文献   

4.
Abstract

Total alkalinity and total carbonate determinations together with salinity and temperature are used to characterize water masses in Foxe Basin, Hudson Bay and Hudson Strait. From these measurements, we are able to infer the amounts of fresh water from river runoff and from sea‐ice meltwater. The average ice cover is estimated to be 1.9 m, and the residence time of river runoff in Hudson Bay is 3—4 years. Estimates of biological productivity were made by “correcting” total carbonate measurements for effects of biological processes, giving a value of 24 gC m a for new production.  相似文献   

5.
Abstract

Using satellite pictures of Baffin Bay and Davis Strait, ice‐floes were tracked in order to give weekly surface velocities for 1978–1979. The approximate location of the edge of the ice sheet was also determined.

In winter the direction of travel was mainly southward in Davis Strait then, as the summer approached, the edge of the ice sheet retreated northward and floe motion became less clearly defined — even going north on occasion in Baffin Bay.

Near shore speeds along Baffin Island exceeded 50 cm s‐1 in Davis Strait during November and February. Typical values in the winter/spring period were 10–15 cm s‐1 between Davis Strait and Hudson Strait. Wind records at nearby shore stations showed directions to be mainly from the northwest, roughly parallel to the Baffin Island coastline.

The study confirms the usefulness of satellite pictures as a data source for modelling surface ice movement and for selecting navigation routes in these northern waters.  相似文献   

6.
Abstract

The baroclinic circulation in the mouth of Hudson Strait is modelled using general results for nearly geostrophic flow along an indented coastline. A simple T‐junction model is first discussed, followed by a somewhat more faithful idealization that includes the sharp northern tip of Labrador, the southwest tip of Baffin Island and part of Ungava Bay. The results show that the mouth of Hudson Strait does not present a significant obstacle to baroclinic flow in and out of it. We thus conclude that the observed recirculation must be due to other effects.  相似文献   

7.
Abstract

Three arrays of current‐meter moorings were deployed under landfast sea ice in southeast Hudson Bay for eight weeks in spring 1986. Spectral analysis shows low‐frequency signals with periods of 3 to 11 days. These signals are interpreted as being due to coastal‐trapped waves propagating cyclonically in Hudson Bay; their theoretical dispersion relations and corresponding modal structures are presented for winter stratification and are compared with observations. At a period of 3 days both the modified external Kelvin wave and higher mode continental shelf waves may be important in describing the observed low‐frequency variability, whereas at a period of 10 days the Kelvin wave appears to be the dominant mode. The generation mechanisms for these coastal trapped waves are also investigated. Two sources have been studied: the longshore atmospheric pressure gradient and the average atmospheric pressure over the ice cover in Hudson Bay. Coherence and phase analyses performed with time series of longshore current and atmospheric forcing data reveal that both the average atmospheric pressure and the longshore atmospheric pressure gradient are important in explaining the observed low‐frequency variability, without indicating which one is the most important.  相似文献   

8.
Since the late 1990s the semi-diurnal tide at Churchill, on the western shore of Hudson Bay, has been decreasing in amplitude, with M2 amplitudes falling from approximately 154?cm in 1998 to 146?cm in 2012 and 142?cm in 2014. There has been a corresponding small increase in phase lag. Mean low water, decreasing throughout most of the twentieth century, has levelled off. Although the tidal changes could reflect merely a malfunctioning tide gauge, the fact that there are no other measurements in the region and the possibility that the tide is revealing important environmental changes calls for serious investigation. Satellite altimeter measurements of the tide in Hudson Bay are complicated by the seasonal ice cover; at most locations less than 40% of satellite passes return valid ocean heights and even those can be impacted by errors from sea ice. Because the combined TOPEX/Poseidon, Jason-1, and Jason-2 time series is more than 23 years long, it is now possible to obtain sufficient data at crossover locations near Churchill to search for tidal changes. The satellites sense no changes in M2 that are comparable to the changes seen at the Churchill gauge. The changes appear to be localized to the harbour, or to the Churchill River, or to the gauge itself.  相似文献   

9.
Abstract

The spatial and temporal relationships between subarctic Canadian sea‐ice cover and atmospheric forcing are investigated by analysing sea‐ice concentration, sea‐level pressure and surface air temperature data from 1953 to 1988. The sea‐ice anomalies in Hudson Bay, Baffin Bay and the Labrador Sea are found to be related to the North Atlantic Oscillation (NAO) and the Southern Oscillation (SO). Through a spatial Student's i‐test and a Monte Carlo simulation, it is found that sea‐ice cover in both Hudson Bay and the Baffin Bay‐Labrador Sea region responds to a Low/Wet episode of the SO (defined as the period when the SO index becomes negative) mainly in summer. In this case, the sea‐ice cover has a large positive anomaly that starts in summer and continues through to autumn. The ice anomaly is attributed to the negative anomalies in the regional surface air temperature record during the summer and autumn when the Low/Wet episode is developing. During strong winter westerly wind events of the NAO, the Baffin Bay‐Labrador Sea ice cover in winter and spring has a positive anomaly due to the associated negative anomaly in surface air temperature. During the years in which strong westerly NAO and Low/Wet SO events occur simultaneously (as in 1972/73 and 1982/83), the sea ice is found to have large positive anomalies in the study region; in particular, such anomalies occurred for a major portion of one of the two years. A spectral analysis shows that sea‐ice fluctuations in the Baffin Bay‐Labrador Sea region respond to the SO and surface air temperature at about 1.7‐, 5‐ and 10‐year periods. In addition, a noticeable sea‐ice change was found (i.e. more polynyas occurred) around the time of the so‐called “climate jump” during the early 1960s. Data on ice thickness and on ice‐melt dates from Hudson Bay are also used to verify some of the above findings.  相似文献   

10.
The 3D ice sheet model of Marshall and Clarke, which includes both dynamics and thermodynamics, is used to successfully simulate millennial-scale oscillations within an ice sheet under steady external forcing. Such internal oscillations are theorized to be the main cause of quasi-periodic large-scale ice discharges known as Heinrich Events. An analysis of the mechanisms associated with multi-millennial oscillations of the Laurentide Ice Sheet, including the initiation and termination of sliding events, is performed. This analysis involves an examination of the various heat sources and sinks that affect the basal ice temperature, which in turn determines the nature of the ice sheet movement. The ice sheet thickness and surface slope, which affect the pressure-melting point and strain heating, respectively, are found to be critical for the formation and development of fast moving ice streams, which lead to large iceberg calving. Although the main provenance for Heinrich Events is thought to be from Hudson Bay and Hudson Strait, we show that the more northerly regions around Lancaster Strait and Baffin Island may also be important sources for ice discharges during the last glacial period. This paper is dedicated to the memory of Gerard C. Bond.  相似文献   

11.
Abstract

High‐resolution versions of the Canadian operational regional finite‐element model (RFE) have been developed to assess their potential in simulating mesoscale, difficult‐to‐forecast and potentially dangerous weather systems commonly referred to as polar lows. The operational (1989) 100‐km version and a 50‐km version of the model have been run for two different polar low cases: one over Hudson Bay and one over Davis Strait. More integrations have also been performed on the Hudson Bay event both at 50 and 25 km to assess the model sensitivity to ice cover. As expected, the reduction in spatial truncation errors provided by the increase in resolution results in a better simulation of the systems. Moreover, when run at higher resolutions the model shows a significant sensitivity to ice cover. The results of the ice‐cover experiments also put into perspective the interaction between the heat and moisture fluxes at the surface, the low‐level wind structure, and the relation of these to the development of the polar low. This study suggests that the improved forecast accuracy obtained from increased resolution is limited by the correctness of the analysis of the ice cover, which acts as a stationary forcing for the entire forecast period.  相似文献   

12.
Abstract

Three sites were instrumented to measure all components of the energy balance. The sites were located in the Churchill, Manitoba region and comprised a Sea Site on a sand spit 1 km seaward from the mainland, a Nearcoast Site 2 km inland from the coast and an Inland Site 65 km inland. Measurements were made continuously over a 90‐day period from 19 May to 16 August 1984. This period encompassed the bulk of the growing season.

The measurements were stratified into onshore and offshore wind directions and were compared for 10‐day periods. The comparisons show very significant differences attributable to the cold summer conditions promoted by the sea ice in Hudson Bay. The ground heat flux and latent heat flux were much greater during offshore winds but the sensible heat flux was greatest for onshore winds. Air temperatures averaged 7°C warmer for offshore than for onshore winds. The reasons for these differences are detailed and the climatic modifications that would probably result from earlier sea‐ice melt are discussed. Some implications of climatic modification are also noted.  相似文献   

13.
Abstract

A lagged cross‐correlation analysis of climatic data from the period 1953–1984 was carried out for three regions of Northern Canada (Beaufort Sea, Hudson Bay, Baffin Bay/Labrador Sea) to determine the relationships between sea‐ice anomalies and surface air temperature and river discharge anomalies. Significant negative correlations at the 95% level were found between sea‐ice and temperature anomalies. A significant correlation at the 95% level was found between sea‐ice and river discharge anomalies in only one of two subregions studied.  相似文献   

14.
Abstract

The present study examines sources of the interannual variability in salinity on the Newfoundland continental shelf observed in a 40‐year time series from an oceanographic station known as Station 27. Specifically, we investigate, through lag‐correlation analysis, the a priori hypotheses that the salinity anomalies at Station 27 are determined by freshwater runoff anomalies from Hudson and Ungava bays and by ice‐melt anomalies in Hudson Bay and on the Labrador Shelf. Interannual variations of summer runoff into Hudson Bay were significantly negatively correlated with salinity anomalies on the Newfoundland Shelf with a lag (9 months) that is consistent with expected travel times based on known current velocities in Hudson Bay and along the Labrador Shelf. Sea‐ice extent over the Labrador and northern Newfoundland shelves was significantly negatively correlated with salinity at a lag of 3 to 4 months, corresponding to the time of minimum salinity at Station 27. It appears that ice‐melt over the Labrador‐northern Newfoundland Shelf is primarily responsible for the seasonal salinity minimum over the Newfoundland Shelf. Interannual variability in runoff into Ungava Bay and ice‐melt in Hudson Bay were not correlated with interannual salinity variations on the Newfoundland Shelf.  相似文献   

15.
华北夏季降水与哈得孙湾海冰的相关分析   总被引:3,自引:2,他引:3  
利用195l一2000年全国160站逐月降水资料划分了华北夏季的旱涝年,并分析了该地区夏季降水的气候特征。在分析华北夏季降水与北极各海区海冰同期和滞后相关的基础上,发现哈得孙湾5—8月的海冰与同年华北夏季降水存在很好的负相关。同时发现哈得孙湾关键时段内的海冰与亚洲夏季风指数呈负相关,与8月西太平洋副热带高压的西伸脊点呈明显的正相关,而与8月西太平洋副高的强度呈明显的负相关。此外还发现哈得孙湾海冰多、少年,东亚西风急流有显著差异。结果表明,哈得孙湾关键时段内海冰面积偏大(小),同年亚洲夏季风偏弱(强),8月西太平洋副高的位置偏东(西),强度偏弱(强),东亚西风急流减弱(加强)。  相似文献   

16.
Abstract

A sea‐ice dataset derived from passive microwave data acquired by the Scanning Multichannel Microwave Radiometer (SMMR) is compared with a conventional sea‐ice dataset from Ice Branch, Atmospheric Environment Service, Canada. The conventional set uses data from several sources including ships of opportunity, reconnaissance aircraft, satellite photographs and climate stations. The comparison was made for a 3‐year period from 1979 to 1981 over Hudson Bay, an area that is covered with first‐year ice only. For 8 of the 12 months of the year, monthly area‐average ice concentrations are within one tenth; larger differences are evident during periods of melting and freeze‐up. Extensive ponding on first‐year ice during the melt season is interpreted as open water by the SMMR algorithm, leading to significant “errors” in the passive microwave dataset. By comparing the two datasets, we were able to show the extent of ponding on the ice for a complete seasonal melt cycle. During freeze‐up the algorithm, under some conditions, provides a better estimate of the amount of ice than a conventional dataset owing to the difficulty of observing the presence of new ice.  相似文献   

17.
Abstract

The vertical structures of the mean and tidal flows in Hudson Strait are described from moored current‐meter data collected during an 8‐week period in August to October of 1982. The residual flow in the strongly stratified waters off Quebec is directed along the Strait to the southeast, is highly baroclinic and is concentrated near shore (within an offshore length scale of approximately an internal Rossby radius). Maximum mean speeds of 0.3 m s?1 were observed near‐surface (30 m). In the weakly stratified waters on the northern side of the Strait along Baffin Island the mean flow is northwestward. The maximum speeds are 0.1 m s?1 near‐surface (30 m) and the current amplitudes decrease to 0.05 m s?1 at 100 m. The mean southeastward transport is estimated to be 0.93 ±0.23 × 106 m3 s?1 with a northwestward transport of 0.82 ± 0.24 × 106 m3 s?1. Over most of the Strait the across‐channel residual currents are directed towards the Quebec shore with velocities ranging from 0.02 to 0.1 ms?1. Current variability is dominated by the tides, the M2 being the major tidal constituent. In the vicinity of the mooring the M2 tide is primarily barotropic, progressive in nature, and has along‐channel current amplitudes varying across the Strait from 0.20 to 0.45 m s?1. Observed differences in tidal sea‐level elevations across the Strait can be accounted for by the cross‐channel variations characteristic of Kelvin waves.  相似文献   

18.
As a result of affiliation between the Hudson's Bay Company and the Royal Society a relatively large number of instrumental temperature records are available from York Factory and Churchill Factory on the southwest of Hudson Bay beginning in 1768. The nature of these records, details of the instruments and information about the observers are presented. The major difficulty with the records is that the number of observations and the time of observation varied considerably. Adjustment factors were calculated for all of the combinations using a modern record maintained at the Churchill airport. By combining the Hudson's Bay Company record with data recorded by members of the Royal Canadian Mounted Police after 1852, and up to 1910, a long and relatively continuous record of daily and monthly average temperatures has been created for Central Canada.  相似文献   

19.
Abstract

A one‐dimensional oceanic mixed‐layer model was used to simulate the annual surface layer properties of Hudson Bay. The model reproduces the sparse available data well and shows the equal importance of seasonal ice cover and run‐off on the pycnocline pattern. In spring, the large freshwater input from run‐off and local ice melt followed by summer heating slows the deepening of the pycnocline depth by wind mixing. As these stabilizing effects decrease and the wind strength increases, the pycnocline depth increases in the fall and continues to increase in the winter when the salt rejection effect during ice growth replaces the cooling effect. In the spring the salt rejection reduces and run‐off increases; the large pycnocline depth cannot be maintained and a shallow pycnocline is formed, starting a new seasonal cycle.

When the run‐off cycle includes the effects of hydroelectric developments, the results indicate that a new shallow surface pycnocline is formed earlier in the spring. This causes a decrease in surface layer temperature and salinity, thus stimulating more ice growth. On the other hand, in the summer the surface layer salinity is higher and the temperature lower. This decreases the stability, thus further deepening the pycnocline and increasing the deviations from normal conditions.  相似文献   

20.
General circulation models (GCMs) are unanimous in projecting warmer temperatures in an enhanced CO2 atmosphere, with amplification of this warming in higher latitudes. The Hudson Bay region, which is located in the Arctic and subarctic regions of Canada, should therefore be strongly influenced by global warming. In this study, we compare the response of Hudson Bay to a transient warming scenario provided by six-coupled atmosphere-ocean models. Our analysis focuses on surface temperature, precipitation, sea-ice coverage, and permafrost distribution. The results show that warming is expected to peak in winter over the ocean, because of a northward retreat of the sea-ice cover. Also, a secondary warming peak is observed in summer over land in the Canadian and Australian-coupled GCMs, which is associated with both a reduction in soil moisture conditions and changes in permafrost distribution. In addition, a relationship is identified between the retreat of the sea-ice cover and an enhancement of precipitation over both land and oceanic surfaces. The response of the sea-ice cover and permafrost layer to global warming varies considerably among models and thus large differences are observed in the projected regional increase in temperature and precipitation. In view of the important feedbacks that a retreat of the sea-ice cover and the distribution of permafrost are likely to play in the doubled and tripled CO2 climates of Hudson Bay, a good representation of these two parameters is necessary to provide realistic climate change scenarios. The use of higher resolution regional climate model is recommended to develop scenarios of climate change for the Hudson Bay region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号