首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Precursor techniques, in particular those using geomagnetic indices, often are used in the prediction of the maximum amplitude for a sunspot cycle. Here, the year 2008 is taken as being the sunspot minimum year for cycle 24. Based on the average aa index value for the year of the sunspot minimum and the preceding four years, we estimate the expected annual maximum amplitude for cycle 24 to be about 92.8±19.6 (1-sigma accuracy), indicating a somewhat weaker cycle 24 as compared to cycles 21 – 23. Presuming a smoothed monthly mean sunspot number minimum in August 2008, a smoothed monthly mean sunspot number maximum is expected about October 2012±4 months (1-sigma accuracy).  相似文献   

2.
In the previous study (Dabas et al. in Solar Phys. 250, 171, 2008), to predict the maximum sunspot number of the current solar cycle 24 based on the geomagnetic activity of the preceding sunspot minimum, the Ap index was used which is available from the last six to seven solar cycles. Since a longer series of the aa index is available for more than the last 10 – 12 cycles, the present study utilizes aa to validate the earlier prediction. Based on the same methodology, the disturbance index (DI), which is the 12-month moving average of the number of disturbed days (aa≥50), is computed at thirteen selected times (called variate blocks 1,2,…,13; each of them in six-month duration) during the declining portion of the ongoing sunspot cycle. Then its correlation with the maximum sunspot number of the following cycle is evaluated. As in the case of Ap, variate block 9, which occurs exactly 48 months after the current cycle maximum, gives the best correlation (R=0.96) with a minimum standard error of estimation (SEE) of ± 9. As applied to cycle 24, the aa index as precursor yields the maximum sunspot number of about 120±16 (the 90% prediction interval), which is within the 90% prediction interval of the earlier prediction (124±23 using Ap). Furthermore, the same method is applied to an expanded range of cycles 11 – 23, and once again variate block 9 gives the best correlation (R=0.95) with a minimum SEE of ± 13. The relation yields the modified maximum amplitude for cycle 24 of about 131±20, which is also close to our earlier prediction and is likely to occur at about 43±4 months after its minimum (December 2008), probably in July 2012 (± 4 months).  相似文献   

3.
R. P. Kane 《Solar physics》2007,243(2):205-217
For many purposes (e.g., satellite drag, operation of power grids on Earth, and satellite communication systems), predictions of the strength of a solar cycle are needed. Predictions are made by using different methods, depending upon the characteristics of sunspot cycles. However, the method most successful seems to be the precursor method by Ohl and his group, in which the geomagnetic activity in the declining phase of a sunspot cycle is found to be well correlated with the sunspot maximum of the next cycle. In the present communication, the method is illustrated by plotting the 12-month running means aa(min ) of the geomagnetic disturbance index aa near sunspot minimum versus the 12-month running means of the sunspot number Rz near sunspot maximum [aa(min ) versus Rz(max )], using data for sunspot cycles 9 – 18 to predict the Rz(max ) of cycle 19, using data for cycles 9 – 19 to predict Rz(max ) of cycle 20, and so on, and finally using data for cycles 9 – 23 to predict Rz(max ) of cycle 24, which is expected to occur in 2011 – 2012. The correlations were good (∼+0.90) and our preliminary predicted Rz(max ) for cycle 24 is 142±24, though this can be regarded as an upper limit, since there are indications that solar minimum may occur as late as March 2008. (Some workers have reported that the aa values before 1957 would have an error of 3 nT; if true, the revised estimate would be 124±26.) This result of the precursor method is compared with several other predictions of cycle 24, which are in a very wide range (50 – 200), so that whatever may be the final observed value, some method or other will be discredited, as happened in the case of cycle 23.  相似文献   

4.
Duhau  S. 《Solar physics》2003,213(1):203-212
A non-linear coupling function between sunspot maxima and aa minima modulations has been found as a result of a wavelet analysis of geomagnetic index aa and Wolf sunspot number yearly means since 1844. It has been demonstrated that the increase of these modulations for the past 158 years has not been steady, instead, it has occurred in less than 30 years starting around 1923. Otherwise sunspot maxima have oscillated about a constant level of 90 and 141, prior to 1923 and after 1949, respectively. The relevance of these findings regarding the forecasting of solar activity is analyzed here. It is found that if sunspot cycle maxima were still oscillating around the 141 constant value, then the Gnevyshev–Ohl rule would be violated for two consecutive even–odd sunspot pairs (22–23 and 24–25) for the first time in 1700 years. Instead, we present evidence that solar activity is in a declining episode that started about 1993. A value for maximum sunspot number in solar cycle 24 (87.5±23.5) is estimated from our results.  相似文献   

5.
Du  Zhanle 《Solar physics》2011,270(1):407-416
The correlation coefficient (r) between the maximum amplitude (R m) of a sunspot cycle and the preceding minimum aa geomagnetic index (aa min), in terms of geomagnetic cycle, can be fitted by a sinusoidal function with a four-cycle periodicity superimposed on a declining trend. The prediction index (χ) of the prediction error relative to its estimated uncertainty based on a geomagnetic precursor method can be fitted by a sinusoidal function with a four-and-half-cycle periodicity. A revised prediction relationship is found between the two quantities: χ<1.2 if r varies in a rising trend, and χ>1.2 if r varies in a declining trend. The prediction accuracy of R m depends on the long-term variation in the correlation. These results indicate that the prediction for the next cycle inferred from this method, R m(24)=87±23 regarding the 75% level of confidence (1.2-σ), is likely to fail. When using another predictor of sunspot area instead of the geomagnetic index, similar results can be also obtained. Dynamo models will have better predictive powers when having considered the long-term periodicities.  相似文献   

6.
We study the evolution of the longitudinal asymmetry in solar activity through the wave packet technique applied to the period domain of 25 – 31 days (centered at the 27-day solar rotation period) for the sunspot number and geomagnetic aa index. We observe the occurrence of alternating smaller and larger amplitudes of the 11-year cycle, resulting in a 22-year periodicity in the 27-day signal. The evolution of the 22-year cycle shows a change of regime around the year 1912 when the 22-year period disappears from the sunspot number series and appears in the aa index. Other changes, such as a change in the correlation between solar and geomagnetic activity, took place at the same time. Splitting the 27-day frequency domain of aa index shows an 11-year cycle for higher frequencies and a pure22-year cycle for lower frequencies, which we attribute to higher latitude coronal holes. This evidence is particularly clear after 1940, which is another benchmark in the evolution of the aa index. We discuss briefly the mechanisms that could account for the observed features of the 22-year cycle evolution.  相似文献   

7.
We use a precursor technique based on the geomagneticaa index during the decline (last 30%) of solar cycle 22 to predict a peak sunspot number of 158 (± 18) for cycle 23, under the assumption that solar minimum occurred in May 1996. This method appears to be as reliable as those that require a year of data surrounding the geomagnetic minimum, which typically follows the smoothed sunspot minimum by about six months.  相似文献   

8.
What the Sunspot Record Tells Us About Space Climate   总被引:1,自引:0,他引:1  
The records concerning the number, sizes, and positions of sunspots provide a direct means of characterizing solar activity over nearly 400 years. Sunspot numbers are strongly correlated with modern measures of solar activity including: 10.7-cm radio flux, total irradiance, X-ray flares, sunspot area, the baseline level of geomagnetic activity, and the flux of galactic cosmic rays. The Group Sunspot Number provides information on 27 sunspot cycles, far more than any of the modern measures of solar activity, and enough to provide important details about long-term variations in solar activity or “Space Climate.” The sunspot record shows: 1) sunspot cycles have periods of 131± 14 months with a normal distribution; 2) sunspot cycles are asymmetric with a fast rise and slow decline; 3) the rise time from minimum to maximum decreases with cycle amplitude; 4) large amplitude cycles are preceded by short period cycles; 5) large amplitude cycles are preceded by high minima; 6) although the two hemispheres remain linked in phase, there are significant asymmetries in the activity in each hemisphere; 7) the rate at which the active latitudes drift toward the equator is anti-correlated with the cycle period; 8) the rate at which the active latitudes drift toward the equator is positively correlated with the amplitude of the cycle after the next; 9) there has been a significant secular increase in the amplitudes of the sunspot cycles since the end of the Maunder Minimum (1715); and 10) there is weak evidence for a quasi-periodic variation in the sunspot cycle amplitudes with a period of about 90 years. These characteristics indicate that the next solar cycle should have a maximum smoothed sunspot number of about 145 ± 30 in 2010 while the following cycle should have a maximum of about 70 ± 30 in 2023.  相似文献   

9.
Forecasting solar and geomagnetic levels of activity is essential to help plan missions and to design satellites that will survive for their useful lifetimes. Therefore, amplitudes of the upcoming solar cycles and the geomagnetic activity were forecasted using the neuro-fuzzy approach. Results of this work allow us to draw the following conclusions: Two moderate cycles are estimated to approach their maximum sunspot numbers, 110 and 116 in 2011 and 2021, respectively. However, the predicted geomagnetic activity shown to be in phase with the peak of the 24th sunspot cycle will reach its minimum three years earlier, then it will rise sharply to reach the 25th maximum a year earlier (i.e., 2020). Our analysis of the three-century long sunspot number data-set suggests that the quasi-periodic variation of the long-term evolution of solar activity could explain the irregularity of the short-term cycles seen during the past decades.  相似文献   

10.
W. Dean Pesnell 《Solar physics》2014,289(6):2317-2331
We describe using Ap and F10.7 as a geomagnetic-precursor pair to predict the amplitude of Solar Cycle 24. The precursor is created by using F10.7 to remove the direct solar-activity component of Ap. Four peaks are seen in the precursor function during the decline of Solar Cycle 23. A recurrence index that is generated by a local correlation of Ap is then used to determine which peak is the correct precursor. The earliest peak is the most prominent but coincides with high levels of non-recurrent solar activity associated with the intense solar activity of October and November 2003. The second and third peaks coincide with some recurrent activity on the Sun and show that a weak cycle precursor closely following a period of strong solar activity may be difficult to resolve. A fourth peak, which appears in early 2008 and has recurrent activity similar to precursors of earlier solar cycles, appears to be the “true” precursor peak for Solar Cycle 24 and predicts the smallest amplitude for Solar Cycle 24. To determine the timing of peak activity it is noted that the average time between the precursor peak and the following maximum is ≈?6.4 years. Hence, Solar Cycle 24 would peak during 2014. Several effects contribute to the smaller prediction when compared with other geomagnetic-precursor predictions. During Solar Cycle 23 the correlation between sunspot number and F10.7 shows that F10.7 is higher than the equivalent sunspot number over most of the cycle, implying that the sunspot number underestimates the solar-activity component described by F10.7. During 2003 the correlation between aa and Ap shows that aa is 10 % higher than the value predicted from Ap, leading to an overestimate of the aa precursor for that year. However, the most important difference is the lack of recurrent activity in the first three peaks and the presence of significant recurrent activity in the fourth. While the prediction is for an amplitude of Solar Cycle 24 of 65±20 in smoothed sunspot number, a below-average amplitude for Solar Cycle 24, with maximum at 2014.5±0.5, we conclude that Solar Cycle 24 will be no stronger than average and could be much weaker than average.  相似文献   

11.
Precursor prediction techniques have generally performed well in predicting the maximum amplitude of sunspot cycles, based on cycles 10–21. Single variate methods based on minimum sunspot amplitude have reliably predicted the size of the sunspot cycle 9 out of 12 times, where a reliable prediction is defined as one having an observed maximum amplitude within the prediction interval (determined from the average error). On the other hand, single variate methods based on the size of the geomagnetic minimum have reliably predicted the size of the sunspot cycle 8 of 10 times (geomagnetic data are only available since about cycle 12). Bivariate prediction methods have, thus far, performed flawlessly, giving reliable predictions 10 out of 10 times (bivariate methods are based on sunspot and geomagnetic data). For cycle 22, single variate methods (based on geomagnetic data) suggest a maximum amplitude of about 170 ± 25, while bivariate methods suggest a maximum amplitude of about 140 ± 15; thus, both techniques suggest that cycle 22 will be of smaller maximum amplitude than that observed during cycle 19, and possibly even smaller than that observed for cycle 21. Compared to the mean cycle, cycle 22 is presently behaving as if it is a + 2.6 cycle (maximum amplitude about 225). It appears then that either cycle 22 will be the first cycle not to be reliably predicted by the combined precursor techniques (i.e., cycle 22 is an anomaly, a statistical outlier) or the deviation of cycle 22 relative to the mean cycle will substantially decrease over the next 18 months. Because cycle 22 is a large amplitude cycle, maximum smoothed sunspot number is expected to occur early in 1990 (between December 1989 and May 1990).  相似文献   

12.
Correlations are investigated between the pattern of solar activity described by the smoothed monthly relative sunspot numbers (Wolf numbers) near the minimum of a solar cycle and the cycle amplitude. The closest correlation is found between the amplitude of a solar cycle and the sum of the decrease in activity over two years prior to the cycle minimum and the increase in activity over two years after the minimum; the correlation coefficient between these parameters is 0.92. This parameter is used as a precursor to predict the amplitude of solar cycle 24, which is expected to reach its maximum amplitude (85 ± 12) in February 2014. Based on the correlations between the mean parameters of solar cycles, cycle 24 is expected to last for approximately 11.3 years and the minimum of the next cycle 25 is predicted for May 2020.  相似文献   

13.
Pishkalo  Mykola I. 《Solar physics》2011,270(1):347-363
The photometrical flattening index of the solar corona a+b is defined according to Ludendorff. In this paper we have investigated how the flattening index varies with respect to the phase of solar activity and the sunspot number. We have compiled 170 values of the flattening index using the data on 60 total solar eclipses from 1851 to 2010. We have found that the flattening index takes values from 0 to 0.4, and is anticorrelated with solar activity. The value of the flattening index at the beginning of solar cycle 24 was used as a precursor to forecast the amplitude of the cycle. It was found that the amplitude of solar cycle 24 will be about 95 in terms of the smoothed monthly sunspot numbers.  相似文献   

14.
Jain  Rajmal 《Solar physics》1997,176(2):431-437
A few prediction methods have been developed using the precursor techniques and are found to be successful. On the basis of geomagnetic activity aa indices during the descending phase of the preceding cycle, we have established an expression which predicts the maximum annual mean sunspot number in cycle 23 to be 166.2. This indicates that cycle 23 would be a highly active and historic cycle. The average geomagnetic activity aa index during the ascending phase of cycle 23 would be about 24.9, comparable to 22.2 and 24.8 in cycles 21 and 22, respectively. This further indicates that during the ascending phase of cycle 23 energetic two-ribbon flares will be produced so as to give rise to strong proton events.  相似文献   

15.
In the previous study (Hiremath, Astron. Astrophys. 452:591, 2006a), the solar cycle is modeled as a forced and damped harmonic oscillator and from all the 22 cycles (1755–1996), long-term amplitudes, frequencies, phases and decay factor are obtained. Using these physical parameters of the previous 22 solar cycles and by an autoregressive model, we predict the amplitude and period of the present cycle 23 and future fifteen solar cycles. The period of present solar cycle 23 is estimated to be 11.73 years and it is expected that onset of next sunspot activity cycle 24 might starts during the period 2008.57±0.17 (i.e., around May–September 2008). The predicted period and amplitude of the present cycle 23 are almost similar to the period and amplitude of the observed cycle. With these encouraging results, we also predict the profiles of future 15 solar cycles. Important predictions are: (i) the period and amplitude of the cycle 24 are 9.34 years and 110 (±11), (ii) the period and amplitude of the cycle 25 are 12.49 years and 110 (±11), (iii) during the cycles 26 (2030–2042 AD), 27 (2042–2054 AD), 34 (2118–2127 AD), 37 (2152–2163 AD) and 38 (2163–2176 AD), the sun might experience a very high sunspot activity, (iv) the sun might also experience a very low (around 60) sunspot activity during cycle 31 (2089–2100 AD) and, (v) length of the solar cycles vary from 8.65 years for the cycle 33 to maximum of 13.07 years for the cycle 35.  相似文献   

16.
Sunspot numbers form a comprehensive, long-duration proxy of solar activity and have been used numerous times to empirically investigate the properties of the solar cycle. A number of correlations have been discovered over the 24 cycles for which observational records are available. Here we carry out a sophisticated statistical analysis of the sunspot record that reaffirms these correlations, and sets up an empirical predictive framework for future cycles. An advantage of our approach is that it allows for rigorous assessment of both the statistical significance of various cycle features and the uncertainty associated with predictions. We summarize the data into three sequential relations that estimate the amplitude, duration, and time of rise to maximum for any cycle, given the values from the previous cycle. We find that there is no indication of a persistence in predictive power beyond one cycle, and we conclude that the dynamo does not retain memory beyond one cycle. Based on sunspot records up to October 2011, we obtain, for Cycle 24, an estimated maximum smoothed monthly sunspot number of 97±15, to occur in January??C?February 2014 ± six months.  相似文献   

17.
The predictions of the maximum yearly mean sunspot number in the current cycle 24 made by means of the astrophysical approach (by analyzing the instrumental data on solar activity and using various dynamo models) and the paleoastrophysical approach (by analyzing the paleoreconstructions of solar activity spanning the interval from 8555 BC to 1605 AD) are compared. The paleoastrophysical predictions are shown to be considerably more accurate. The amplitude of the next cycle 25 is predicted. It is shown that from the standpoint of solar paleoastrophysics, cycle 25 will most likely be of medium power, R max(25) = 85.0 ± 30.5.  相似文献   

18.
The time series of the relative sunspot number is interpreted as a sequence of physical cycles of sunspot activity overlapping in the minimum. The cycle periodicity, i.e., the time interval between neighboring cycles, can be considered as a quantitative characteristic of the sequence. Estimates of this interval have been obtained for 11 and 22-year cycles. In the growth phase and in the century cycle maximum, the 22-year cycles follow one another with an interval of 21 ± 0.4 years, and in the decline phase, 23 ± 0.3 years. This division of intervals into two groups depending on the century cycle phase should be taken into consideration when developing a theory of solar activity cycles.  相似文献   

19.
A “Solar Dynamo” (SODA) Index prediction of the amplitude of Solar Cycle 25 is described. The SODA Index combines values of the solar polar magnetic field and the solar spectral irradiance at 10.7 cm to create a precursor of future solar activity. The result is an envelope of solar activity that minimizes the 11-year period of the sunspot cycle. We show that the variation in time of the SODA Index is similar to several wavelet transforms of the solar spectral irradiance at 10.7 cm. Polar field predictions for Solar Cycles 21?–?24 are used to show the success of the polar field precursor in previous sunspot cycles. Using the present value of the SODA index, we estimate that the next cycle’s smoothed peak activity will be about \(140 \pm30\) solar flux units for the 10.7 cm radio flux and a Version 2 sunspot number of \(135 \pm25\). This suggests that Solar Cycle 25 will be comparable to Solar Cycle 24. The estimated peak is expected to occur near \(2025.2 \pm1.5\) year. Because the current approach uses data prior to solar minimum, these estimates may improve as the upcoming solar minimum draws closer.  相似文献   

20.
Meyer  F. De 《Solar physics》2003,217(2):349-366
The mean annual sunspot record for the time interval 1700–2002 can be considered as a sequence of independent, partly overlapping events, triggered quasi-periodically at intervals of the order of 11 years. The individual cycles are approximated by the step response of a band-pass dynamical system and the resulting model consists of the superposition of the response to the independent pulses. The simulated sunspot data explain 98.4% of the cycle peak height variance and the residual standard deviation is 8.2 mean annual sunspots. An empirical linear relationship is found between the amplitude of the transfer function model for each cycle and the pulse interval of the preceding cycle that can be used as a tool of short-term forecasting of solar activity. A peak height of 112 for the solar cycle 23 occurring in 2000 is predicted, whereas the next cycle would start at about 2007 and will have a maximum around 110 in 2011. Cycle 24 is expected to have an annual mean peak value in the range 95 to 125. The model reproduces the high level of amplitude modulation in the interval 1950–2000 with a decrease afterwards, but the peak values for the cycles 18, 19, 21, and 22 are fairly underestimated. The semi-empirical model also recreates recurring sunspot minima and is linked to the phenomenon of the reversal of the solar magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号