首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 949 毫秒
1.
A new method for determining geomagnetic activity based on calculation of the hourly amplitudes of geomagnetic field variations at ground-based observatories has been developed. Observations performed in 2009, when unusually low solar and geomagnetic activity was registered, were used as a reference level. The described method was used to estimate the energy of local geomagnetic activity; such energy is estimated for observatories in the Earth’s Northern and Southern hemispheres, and a total estimation is made for both hemispheres and for the entire Earth’s surface during large magnetic storms. These are used to compare characteristics of magnetic storm intensity based on the classical Kp and Dst indices and calculated energy estimate.  相似文献   

2.
Global electron content (GEC) as a new ionospheric parameter was first proposed by Afraimovich et al. [2006]. GEC is equal to the total number of electrons in the near-Earth space. GEC better than local parameters reflects the global response to a change in solar activity. It has been indicated that, during solar cycle 23, the GEC dynamics followed similar variations in the solar UV irradiance and F 10.7 index, including the 11-year cycle and 27-day variations. The dynamics of the regional electron content (REC) has been considered for three belts: the equatorial belt and two midlatitude belts in the Northern and Southern hemispheres (±30° and 30°–65° geomagnetic latitudes, respectively). In contrast to GEC, the annual REC component is clearly defined for the northern and southern midlatitude belts; the REC amplitude is comparable with the amplitude of the seasonal variations in the Northern Hemisphere and exceeds this amplitude in the Southern Hemisphere by a factor of ~1.7. The dayside to nightside REC ratio, R(t), at the equator is a factor of 1.5 as low as such a GEC ratio, which indicates that the degree of nighttime ionization is higher, especially during the solar activity maximum. The pronounced annual cycle with the maximal R(t) value near 8.0 for the winter Southern Hemisphere and summer Northern Hemisphere is typical of midlatitudes.  相似文献   

3.
Using the minute data of the H component of geomagnetic field from the 20°E magnetic meridian chain and the 30°N magnetic latitudinal chain, the temporal evolution characteristics of the equatorial ring current during the storm on November 7-10, 2004 are studied. It is indicated that the UT-MLT and UT-MLAT graphics extremely exhibit the local time distribution, latitudinal variation and temporal evo- lution of the H component. The results show: (1) The UT-MLT contour clearly shows the increasing of the H component mostly around noon during the initial phase, representing the geomagnetic effect from the magnetopause current system. During the main phase, most negative values of the H com- ponent appear around the dusk-side, indicating the dawn-dusk asymmetric distribution of the ring cur- rent. (2) The contour of UT-MLAT suggests the latitudinal variation of the H component decreasing with the enhancement of the latitudes during geomagnetic storm, which is in good agreement with the Dst index. The latitudinal variations provide a new sight for describing the temporal characteristics of the intensity of the storm-time ring current. (3) Both the contours of UT-MLT and UT-MLAT are useful to monitor the space-time distribution of the equatorial ring current.  相似文献   

4.
Based on the observations in six pairs of almost conjugate high-latitude stations in the Arctic and Antarctic regions, the spectral and spatial-temporal structures of long-period geomagnetic pulsations (f = 2–5 mHz) during the magnetic storm of April 16–17, 1999, which is characterized by a high (up to 20 nPa) solar wind dynamic pressure, have been studied. It has been indicated that the magnetic storm sudden commencement is accompanied by a symmetrical excitation of np pulsations near the dayside polar cusps with close amplitudes. Under the conditions when IMF B z > 0 and B y < 0, strong magnetic field variations with the periods longer than 15–20 min were observed only in the northern polar cap. When IMF B z and B y became close to zero, geomagnetic pulsation bursts in both hemispheres were registered simultaneously but differed in the spectral composition and spatial distribution. In the Northern Hemisphere, pulsations were as a rule observed in a more extensive latitude region than in the Southern Hemisphere. In the Northern Hemisphere, the oscillation amplitude maximum was observed at higher latitudes than in the Southern Hemisphere. The pulsation amplitude at geomagnetic latitude lower than 74° was larger in the Arctic Regions than in the Antarctic Regions. This can be explained by sharply different geographic longitudes in the polar cap and latitudes in the auroral zone, which results in a different ionospheric conductivity affecting the amplitude of geomagnetic pulsations.  相似文献   

5.
The features of the amplitude distributions of magnetic impulse events have been investigated using the observations from a number of high-latitude observatories in the Northern and Southern hemispheres. It has been shown that the tails of the statistical distribution functions of the impulse amplitudes are approximated by a power law of the form f(A) = A −α, where A is the impulse amplitude and α is the exponent. Therefore, the magnetic-impulse generation regime corresponds to the features of the on-off intermittency model. The distribution of the magnetic impulse amplitudes has been analyzed for various geomagnetic latitudes, local times, seasons, solar activity cycle phases, and interplanetary conditions. It has been found that most statistical distributions of magnetic impulse amplitudes have the exponent α larger than 2, which is typical of the chaotic regimes called “strong turbulence.” In some cases, the exponent α is close to 1, which is typical of the regimes generated in a weakly turbulent medium. Qualitative estimates of the plasma wave turbulence level in the high-latitude magnetosphere have been obtained.  相似文献   

6.
Strong magnetic fields at latitudes of ±40° are studied on the basis of synoptic maps of the photospheric magnetic field from the Kitt Peak Observatory (1976–2003). The time variations and imbalance between positive and negative magnetic fluxes are studied for the Southern and Northern hemispheres. A change in the imbalance between fluxes of leading/following sunspots with a 22-year magnetic cycle is shown. The imbalance sign coincides with the sign of the global magnetic field in the Northern/Southern solar hemispheres, respectively.  相似文献   

7.
本文利用2014年9月到2017年8月全球高时空分辨率TEC数据对北半球四个经度带电离层中纬槽的发生率和槽极小位置的变化进行了统计研究.基于Kp指数,我们引入了一个包含地磁活动变化历史效应的地磁指数(Kp 9)来分析中纬槽位置变化与地磁活动水平的关系.通过与其他地磁活动指数的对比,发现槽极小纬度与Kp 9指数的相关性最好.此外,本文重点分析了中纬槽发生率及槽极小纬度的经度差异、季节变化、地方时变化以及与地磁活动强度等的关系.结果表明,中纬槽的发生率与经度关系不大,主要受到季节、地方时与地磁活动的影响.午夜中纬槽发生率在夏季较低,其随地方时的变化则呈现出负偏态分布的特点,在后半夜发生率更高,而地磁活动增强对中纬槽的发生具有明显的促进作用.对于槽极小纬度,其在四个经度带的分布差异不大,但月变化各不相同,其中-120°经度带呈单峰分布,在夏季槽极小纬度更高,而0°经度带夏季槽极小纬度更低.槽极小的位置显著依赖于地磁活动、地方时以及季节变化.一般说来,地磁活动越强,中纬槽纬度越低.中纬槽位置随地方时的变化有明显的季节差异,冬季昏侧槽极小纬度随地方时变化较快,弱地磁活动条件下22∶00 LT前即达到最低纬度,其后位置几乎保持不变,而两分季槽极小纬度从昏侧至午夜都在降低,夏季槽极小纬度从昏侧连续下降至03∶00 LT左右.  相似文献   

8.
Based on the data of the ground observations, the global distributions of the Pc5 geomagnetic pulsation amplitudes during the recovery phase of the superstorm of October 31, 2003, have been mapped, and an unusually deep penetration of these pulsations into the inner magnetosphere has been found out. Thus, two more zones with identical dynamic spectra and oscillation amplitudes from the polar to equatorial latitudes have been detected in the postnoon sector simultaneously with morning classical Pc5 pulsations in the narrow (~63°–68° CGM) latitudinal band extended along longitude. The higher-latitude zone as if continues the morning band, and the lower-latitude zone is characterized by the maximal intensity at latitudes of ~50°–57° CGM. The oscillation amplitudes are of the same order of magnitude in both zones. The zones are spatially separated by a very narrow latitudinal amplitude minimum and by a change in the phase and sense of rotation of the wave polarization vector. The pulsation spectra in the morning and daytime sectors are different, which indicates that the nature of the morning and postnoon oscillations is different.  相似文献   

9.
The mathematical model of the magnetic field of the partial ring current has been proposed. This current is considered as a pair of spatial current circuits in the Northern and Southern hemispheres, either of which includes two ring zones, in the geomagnetic equator plane and ionosphere, and two zones of the field-aligned current, flowing along the geomagnetic dipole field lines and joining ring fragments of the circuit. The model parameters are: colatitude of the eastward electrojet, longitudinal shift relative to the Sun-Earth axis, circuit half-angle, and the total current flowing in the circuit. The Biot-Savart-Laplace law has been used to calculate the magnetic field of the current circuit. The magnetic field of the partial ring current has been calculated under the conditions typical of a strong magnetic storm. The technique for calculating the partial ring current intensity, using the Asym-H geomagnetic index, has been proposed.  相似文献   

10.
The data of the DMSP F7 spacecraft are used for studying the influence of the geomagnetic dipole tilt angle on the latitudinal position of auroral precipitation boundaries in the nighttime (2100–2400 MLT) and daytime (0900–1200 MLT) sectors. It is shown that, in the nighttime sector, the high-latitude zone of soft diffuse precipitation (SDP) and the boundary of the polar cap (PC) at all levels of geomagnetic activity are located at higher and lower latitudes relative to the equinox period in winter and summer, respectively. The position of boundaries of the diffuse auroral precipitation zone (DAZ) located equatorward from the auroral oval does not depend on the season. In the daytime sector, the inverse picture is observed: the SDP precipitation zone takes the most low-latitude and high-latitude positions in the winter and summer periods, respectively. The total value of the displacements from winter to summer of both the nighttime and daytime boundaries of the PC is ∼2.5°. A diurnal wave in the latitudinal position of the nighttime precipitation boundaries is detected. The wave is most pronounced in the periods of the winter and fall seasons, is much weaker in the spring period, and is almost absent in summer. The diurnal variations of the position of the boundaries are quasi-sinusoidal oscillations with the latitude maximum and minimum at 0300–0500 and 1700–2100 UT, respectively. The total value of the diurnal displacement of the boundaries is ∼2.5° of latitude. The results obtained show that, undergoing seasonal and diurnal variations, the polar cap is shifted as a whole in the direction opposite to the changes in the tilt angle of the geomagnetic dipole. The seasonal displacements of the polar cap and its diurnal variations in the winter period occur without any substantial changes in its area.  相似文献   

11.
The altitude profiles of particulate extinction in the upper troposphere and lower stratosphere (UTLS) obtained from SAGE-II in the latitude region 0–30°N over the Indian longitude sector (70–90°E) are used to study the latitudinal variation of its annual pattern in this region during the volcanically quiescent period of 1998–2003. The SAGE-II data is compared with the lidar measurements from Gadanki (13.5°N, 79.2°E) when the satellite had an overhead occultation pass over a small geographical grid centered at this location. The particulate optical depth (τp) in the UT region shows a general decrease with increase in latitude and a pronounced summer–winter contrast with relatively low values during winter and high values during summer. In general, these variations are in accordance with the latitudinal variation of convective available potential energy (CAPE) and thunderstorm activity, which are good representative indices of tropospheric convection. While the particulate extinction (and τp) in the 18–21 km (LS1) region is relatively low in the equatorial region up to 15°N, it shows an increase in the off-equatorial region, beyond 15°N. While the annual variation of τp in the LS1 region is almost insignificant near the equator, it is rather well pronounced in latitude region between 10 and 15°N with relatively high values during winter and low values during summer. Beyond 20°N, this shows a prominent peak during summer. At a higher altitude, the 21–30 km (LS2) region, the latitude variation of τp shows a different pattern with high values near the equator and low values in the off-equatorial region confirming the existence of a stratospheric aerosol reservoir. Low values of τp at lower regime (LS1) near the equator could be due to rapid transport of particulates from the near equatorial region to higher latitudes, while the equatorial high at upper regime (LS2) could be due to lofting and subsequent accumulation.  相似文献   

12.
An inter-hemispheric asymmetry is found in the characteristics of polar mesosphere summer echoes (PMSE) and upper mesosphere temperatures at conjugate latitudes (~69°) above Antarctica and the Arctic. The second complete mesosphere–stratosphere–troposphere (MST) radar summer observation season at Davis (68.6°S) revealed that PMSE occur less frequently, with lower strength and on average 1 km higher compared with their northern counterparts at Andenes (69.3°N). We consider the thermodynamic state of the mesosphere for conjoining hemispheric summers based on satellite and ground-based radar measurements, and show the mesopause region near ~80–87 km of the Southern Hemisphere (SH) to be up to 7.5 K warmer than its Northern Hemisphere (NH) counterpart. We show that this is consistent with our observation of asymmetries in the characteristics of PMSE and demonstrate how the mesosphere meridional wind field influences the existence and strength of the echoes in both hemispheres.  相似文献   

13.
This study assesses the relation between the year-to-year variability of the semidiurnal tides (SDT) observed at high latitudes of both hemispheres and the global stratospheric stationary planetary wave (SPW) with zonal wavenumber S=1 (SPW1) derived from the UKMO temperature data. No significant positive correlation can be identified between the interannual variability of the Northern Hemisphere (NH) SDT and the Southern Hemisphere (SH) SPW1 for austral late-winter months. In contrast, a good consistency is evident for the interannual variations between the SDT observed at Rothera (68°S, 68°W) and the Arctic SPW1 for NH mid-winter months. Since it has been observed that during austral summer the non-migrating SDT often plays a significant role at the latitude of Rothera, a physical link between the SH SDT and the NH SPW is suggested. This asymmetry in the interhemispheric link is also noted in a recent study.  相似文献   

14.
One of the reasons for performing paleomagnetic studies is to determine whether the geomagnetic field remains dipolar during a polarity transition. Data on 23 field reversals of Recent, Tertiary and Upper Mesozoic age are examined with regard to the longitudinal and latitudinal distribution of paleomagnetic poles during a polarity change. Both frequency distributions of the transitional pole positions are not random. The results suggest that some field reversals are characterized by the rotation of the dipole axis in the meridional plane and show that two preferential meridional bands of polarity transitions exist centered on planes through 40°E–140°W and 120°E–60°W respectively. The latitudinal distribution of transitional paleopoles shows that there is a decrease in the number of observed poles with decreasing latitude. This is interpreted as the result of an acceleration in the motion of the dipole axis when it approaches the equator. Comparison of transitional velocities and paleointensity magnitudes reveals that the dipole moment is very weak only for a short part of the transitional period when the paleopole position lies within the latitudes of 10°N and 10°S. The overall conclusion is that the geomagnetic field retains its dipolar character during polarity changes.  相似文献   

15.
Long-term series of midnight temperature in the mesopause region have been obtained from spectral observations of hydroxyl airglow emission (OH(6-2) λ840 nm band) at the Tory station (52° N, 103° E) in 2008–2016 and Zvenigorod (56° N, 37° E) station in 2000–2016. On their basis, the Lomb-Scargle spectra of the variations in the period range from ~12 days to ~11 years have been determined. Estimates of the amplitudes of statistically significant temperature fluctuations are made. The dominant oscillations are the first and second harmonics of the annual variation, the amplitudes of which are 23–24 K and 4–7 K, respectively. The remaining variations, the number of which was 16 for the Tory and 22 for Zvenigorod stations, have small amplitudes (0.5–3 K). Oscillations with combinational frequencies, which arise from modulation of the annual variation harmonics, are observed in a structure of the variation spectra in addition to interannual oscillations (periods from ~2 to ~11 years) and harmonics of the annual variation (up to its tenth harmonic).  相似文献   

16.
The ring current dynamics during the magnetic storm has been studied in the work. The response of the magnetospheric current systems to the external influence of the solar wind, specifically, resulting in the development of the asymmetric ring current component, has been calculated using the magnetic field paraboloid model. The asymmetric ring current has been considered as a family of spatial current circuits in the Northern and Southern hemispheres, composed of the zones of the partial ring current in the geomagnetic equator plane, which close through the system of field-aligned currents into the ionosphere. The value of the total partial ring current has been estimated by comparing the calculated asymmetry of the magnetospheric magnetic field at the geomagnetic equator with the value of the Asym-H geomagnetic index. The variations in the symmetric and asymmetric components of the ring current magnetic field have been calculated for the magnetic storm of November 6–14, 2004. The contributions of the magnetospheric current systems to the Dst and AU geomagnetic indices have been calculated.  相似文献   

17.
The maximal R ratios of the winter-to-summer NmF2 values of each ionosonde are calculated for a specified UT under daytime quiet geomagnetic conditions and at approximately equal levels of solar activity, based on foF2 measurement data of 98 ionosondes at mid- and low geomagnetic latitudes of the Northern and Southern hemispheres for 1957–2009. The P(R > 1) conditional probability of NmF2 winter anomaly observations, as well as the most probable RMP and average <R> of R values are calculated for low, moderate, and high solar activity on the base of foF2 measurements during the periods December 22 ± 30 days and June 21 ± 30 days. Variations in P(R > 1), RMP, and 〈R〉 with latitude and solar activity are analyzed.  相似文献   

18.
The dependence of the origination of G conditions in the ionospheric F region on solar and geomagnetic activity has been determined based on numerical simulation of the ionosphere over points 50° N, 105° E and 70° N, 105° E for summer conditions at noon. It has been found that the threshold value of the Kp geomagnetic activity index (Kp S ), beginning from which a G condition can originate, is minimal for a low solar activity level at relatively high latitudes during the recovery phase of a geomagnetic storm. On average, Kp S increases with increasing solar activity, but G conditions can originate at high solar activity levels and be absent at moderate ones for certain Kp values, which was apparently predicted for the first time. These properties of the origination of G conditions do not contradict the known results of a G-condition statistical analysis performed based on the data from the global network of ionospheric stations.  相似文献   

19.
The results of instrumental observations of geomagnetic variations at the Mikhnevo midlatitudinal observatory of Institute of Geosphere Dynamics of the Russian Academy of Sciences (54.9595° N; 37.7664° E) are presented and discussed. The main periodicities of the local background variations of geomagnetic field are determined. Variations of ~ 27 days have been registered, as well as periodicities with periods of ~6–9, 12–14, 60 days, and a semiannual periodicity. It has been shown that the background geomagnetic variation periodicities have a sporadic and scaling character. An alternating effect of increasing and degradation periods in geomagnetic variation intensity (the intermittency effect) is found.  相似文献   

20.
The USU time-dependent ionospheric model (TDIM) simulated the northern (winter) and southern (summer) ionospheres as they responded to the changing solar wind and geomagnetic activity on 14 January 1988. This period began with moderately disturbed conditions, but as the IMF turned northward, the geomagnetic activity decreased. By 1400 UT, the IMF By component became strongly negative with Bz near zero; and eventually Bz turned southward. This began a period of intense activity as a magnetic storm developed. The magnetospheric electric field and auroral electron precipitation drivers for these simulations were obtained from the Naval Research Laboratories (NRL) Magnetohydrodynamic (MHD) magnetospheric simulation for this event.The F-region ionospheric simulations contrast the summer–winter hemispheres. Then, the difference in how the two hemispheres respond to the geomagnetic storm is related to the differences in magnetospheric energy deposition in the two hemispheres. This also emphasizes the role played by the E-region in the magnetosphere–ionosphere (M–I) coupling and subsequent lack of conjugacy in the two hemispheres. The F-region’s response to the changing geomagnetic conditions also demonstrates a striking lack of conjugacy. This manifests itself in a well-defined ionospheric morphology in the summer hemisphere and a highly irregular morphology in the winter hemisphere. These differences are found to be associated with the differences in the magnetospheric electric field input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号