首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 515 毫秒
1.
波浪对泥沙作用的数值研究及在渤海区域的检验   总被引:1,自引:1,他引:0  
滕涌  杨永增  芦静  崔廷伟 《海洋学报》2012,34(5):174-182
针对渤海海域开展了波致底切应力对泥沙作用的数值估计。针对浅水条件,通过理想试验估算了波致底切应力对波流耦合底切应力的贡献。针对渤海大风过程,利用ECOMSED模式,通过波流耦合底边界层模型模拟了渤海区域的泥沙浓度,并利用遥感资料对表层泥沙浓度的数值模拟进行了检验。对比结果表明,考虑波浪作用的情况下,模拟结果在总体分布上得到明显的改善。在大风过程中波浪对0~20 m近岸区域的泥沙再悬浮起主导作用。  相似文献   

2.
研究了波致底切应力和二维辐射应力对悬沙的作用.首先对东山湾的水动力进行了数值模拟并与实测资料进行了对比检验,然后对东山湾悬浮泥沙进行了考虑波浪和不考虑波浪两种情况下的数值模拟并与实测资料进行了相关对比分析.在模式建立过程中,依据东山湾独特的窄口型半封闭河口海湾的特点,基于ECOMSED模式(2002)建立了东山湾三维水动力模型,并通过第三代海浪模式MASNUM加入了波浪对底切应力及辐射应力的影响,通过ECOMSED中的底边界层模型考虑了波浪增强底摩擦的作用,综合分析了东山湾的水动力及泥沙状况.结果表明在东山湾数值模拟中,该模式能较好地模拟这类海域的水动力及泥沙输运状况.在东山湾模拟计算中,潮流的作用强于波浪的作用,但考虑波浪因素后,泥沙模拟结果更好.在波浪的作用中,底切应力相比于二维辐射应力占有绝对的优势,两者相差2个量级以上,因此可以不考虑二维辐射应力的影响.  相似文献   

3.
近岸区域波流耦合作用的数学模型   总被引:5,自引:0,他引:5  
本文提出了一个讨论近岸波浪和波生流耦合作用的二维数学模型。在波浪场中运用波数矢量无旋和波作用量守恒方程求解波浪在波生流作用下的折射、绕射变形,以辐射应力作为波生流场的驱动力,考虑地转柯氏力和海底底摩擦的作用。文中采用Dingemans(1987)的地形对波流耦合作用进行了分析。数值计算结果表明波流耦合作用对近岸波浪场和波生流场的影响比较显著,在工程实际上应当综合考虑波流耦合问题。  相似文献   

4.
长兴岛海区波流相互作用数值模拟研究   总被引:1,自引:0,他引:1  
王彪  沈永明  王亮 《海洋工程》2012,30(3):87-96
波和流是近岸海区的主要动力因素。应用二维潮流数学模型和最新第三代近岸海浪模式SWAN,建立了非结构网格下二维情况近岸波流耦合作用数学模型。时间离散采用欧拉向前格式,空间离散采用有限体积法显式格式。通过将波浪场及潮流场进行迭代耦合计算,实现了对波流共同作用下波浪场和潮流场的数值模拟。将模型应用于矩形海湾实验和李孟国数模实验等理想地形以及大连长兴岛海区实际复杂地形算例,并用现场实测资料对计算结果进行验证,结果表明:耦合结果与实测结果吻合良好,并且要优于未耦合的结果。  相似文献   

5.
海岸湿地是近海地区重要的生态系统,由于潮流、波浪尤其是非连续水流与植被的相互作用,导致该海域的水动力环境复杂多变。本文发展了一个深度平均二维波流耦合数学模型,模拟湿地海域波浪和波生沿岸流的运动特性。水动力模型中植物拖曳力作为源项放入动量方程中,在波浪作用量平衡方程增加波能耗散项用于解释水生植物对波浪产生的阻力作用。在动态耦合模型中,波浪模型为潮流模型提供波浪辐射应力、波高、波浪周期等数据信息,潮流模型为波浪模型提供计算的水位和流速,可以达到双向动态耦合。本文发展的波流耦合模型通过三个实验室试验数据加以验证,计算结果和实验数据吻合较好,在波浪、波生流和植物迭加条件下,所建模型能够有效地模拟波浪、沿岸流等不同现象。  相似文献   

6.
一方面将波浪对底部剪切应力、表面拖曳力系数,辐射应力以及表面混合长度的影响引入至COHERENS.另一方面又将水动力模型COHERENS和第三代波浪模型SWAN耦合,使两模型能够随时互相交换水流、水位以及波浪信息,最终获得波流耦合模型COHERENS-SWAN并将其应用于荣喜近岸区波流共同存在情况下的波流作用模拟研究.计算所得的流速、流向和水位与实测数据吻合较好.  相似文献   

7.
近年来,由于河口、海岸地区的泥沙运动与港口、航道以及海岸的冲淤有着直接的关系,对一些海岸建筑物比如防波堤、护岸工程等造成一定的威胁,甚至于使其完全丧失使用价值,造成巨大的损失。为此人们越来越重视对这一问题的研究。本文为估计岸滩的冲淤变化和了解岸滩的演变规律,对影响泥沙运动的海洋动力要素进行了研究。 为研究悬沙的输移规律,建立了一个由两部分组成的二维悬沙模型系统:①水动力模式。建立了一个综合多因素的二维波浪、潮汐和风暴潮耦合模式,以此来研究波、潮、风暴潮间的相互作用,并为泥沙计算提供流速场。②二维悬沙模式。运用得出的流场来研究悬沙的输移扩散规律。其中所采用的波浪模式是将流对波浪场的影响同时加以考虑的耦合数学模型,将流速加入波能方程,并考虑由于水面的升降而产生的不定常水深对波浪场的影响,再将波浪场对流场的影响通过辐射应力、考虑波浪影响的底应力以及依赖波龄的表面风应力耦合到流场中,从而建立了一个综合多种因素的波浪、潮汐、风暴潮联合作用下的二维悬沙模型系统。并在此模型系统的基础上,对黄河口泥沙的输移问题作了探讨,为今后的防堤、护岸工程提供依据。  相似文献   

8.
基于波-流耦合模型的珠江口悬浮泥沙数值模拟   总被引:1,自引:0,他引:1  
为研究珠江口悬浮泥沙输运动力机制,本文发展了一套三维波、流、泥沙耦合数值模型。模型结果与观测数据吻合较好,统计显示模型获得良好的评分分值。利用数值模拟研究了不同强迫(径流,波浪和风)对珠江口中悬浮泥沙的影响。模型结果表明,河口重力环流对珠江口最大浑浊带的发展起着重要作用,特别是在小潮期间。另外,径流的增加可导致泥沙向海输运。底部的悬浮泥沙浓度随着波浪底部轨迹速度和波高的增大而增加。由于西滩水深较浅,波浪对西滩悬浮泥沙的影响大于东槽。西南风引起的波浪对悬沙的影响大于东北风引起的波浪的影响,而东北风致流对悬沙的影响略大于对西南风致流的影响。在其他条件相同情况下,稳定的西南风比稳定的东北风更有利于伶仃洋悬浮泥沙浓度的增加;在稳定的西南风下,伶仃洋平均悬浮泥沙浓度约为稳定东北风下的1.1倍。  相似文献   

9.
结合椭圆型缓坡方程模拟近岸波流场   总被引:9,自引:3,他引:6  
波浪向近岸传播的过程中,由波浪破碎效应所产生的近岸波流场是近岸海域关键的水动力学因素之一.结合近岸波浪场的椭圆型缓坡方程和近岸波流场数学模型对近岸波浪场及由斜向入射波浪破碎后所形成的近岸波流场进行了数值模拟.计算中考虑到波浪向近岸传播中由于波浪的折射、绕射、反射等效应使局部复杂区域波向不易确定,采用结合椭圆型缓坡方程所给出的波浪辐射应力公式来计算波浪产生的辐射应力,在此基础上耦合椭圆型缓坡方程和近岸波流场数学模型对近岸波流场进行数值模拟,从而使模型综合考虑了波浪的折射、绕射、反射等效应且避免了对波向角的直接求解,可以应用于相对较复杂区域的近岸波流场模拟.  相似文献   

10.
研究近海海域水流、悬沙运动规律,运用基于COHERENS发展的水动力悬沙模型COHERENS-SED,结合当地一般波浪条件,模拟了青岛近海悬浮泥沙输运情况,并验证及分析了水动力环境及悬沙输运的模拟结果。结果表明:在波流合作用下,近岸掀沙明显,大潮期间该海域近岸悬沙浓度值最高可达50mg/L。  相似文献   

11.
This paper presents a wave-resolving sediment transport model, which is capable of simulating sediment suspension in the field-scale surf zone. The surf zone hydrodynamics is modeled by the non-hydrostatic model NHWAVE (Ma et al., 2012). The turbulent flow and suspended sediment are simulated in a coupled manner. Three effects of suspended sediment on turbulent flow field are considered: (1) baroclinic forcing effect; (2) turbulence damping effect and (3) bottom boundary layer effect. Through the validation with the laboratory measurements of suspended sediment under nonbreaking skewed waves and surfzone breaking waves, we demonstrate that the model can reasonably predict wave-averaged sediment profiles. The model is then utilized to simulate a rip current field experiment (RCEX) and nearshore suspended sediment transport. The offshore sediment transport by rip currents is captured by the model. The effects of suspended sediment on self-suspension are also investigated. The turbulence damping and bottom boundary layer effects are significant on sediment suspension. The suspended sediment creates a stably stratified water column, damping fluid turbulence and reducing turbulent diffusivity. The suspension of sediment also produces a stably stratified bottom boundary layer. Thus, the drag coefficient and bottom shear stress are reduced, causing less sediment pickup from the bottom. The cross-shore suspended sediment flux is analyzed as well. The mean Eulerian suspended sediment flux is shoreward outside the surf zone, while it is seaward in the surf zone.  相似文献   

12.
13.
Bingchen Liang  Huajun Li  Dongyong Lee   《Ocean Engineering》2007,34(11-12):1569-1583
In the present work, a three-dimensional suspended sediment model (SED) is built. A three-dimensional hydrodynamic model (COHERENS) and a third-generation wave model (SWAN) are fully coupled through accounting for mutual influences between wave and current in them. SED is combined with the coupled model built up above. Damping function of suspended sediment on turbulence is introduced into COHERENS. Then a coupled hydrodynamic–sediment model COHERENS-SED incorporating mutual influences between wave and current is obtained. COHERENS-SED is adopted to simulate three-dimensional suspended sediment transport of Yellow River Delta with wave–current co-existing. The simulated tidal current velocities and suspended sediment concentration match well with field measurement data. The simulated significant wave height and wave period for a case with current's effects can give better agreement with measurement data than a case without current's effects. Numerical simulation results of COHERENS-SED are demonstrated to be reasonable though being compared with previous studies and field measurements [Wang, H., Yang, Z.S., Li, R., Zhang, J., Chang, R., 2001. Numerical modeling of the seabed morphology of the subaqueous Yellow River Delta. International Journal of Sediment Research 16(4), 486–498; Wang, H., 2002. 3-dimensional numerical simulation on the suspended sediment transport from the Huanghe to the Sea. Ph.D. Thesis, Ocean University of China, pp. 12–14 (in Chinese)].  相似文献   

14.
The combined tidal and wind driven flow and resulting sediment transport in the ocean over a flat bottom at intermediate water depth has been investigated, using a simple one dimensional two-equation turbulence closure model. This model has been verified against field measurements of a tidal flow in the Celtic Sea. The tidal velocity ellipses and the time series of the horizontal velocity components at given elevations above the bottom are well predicted through the water column although there are some deviations between the predicted and measured velocities near the bottom due to the uncertainty of the bottom roughness. For the combined tidal and wind driven flows the velocity profiles, turbulent kinetic energy profiles and surface particle trajectories are predicted for weak and strong winds. Furthermore, the bottom shear stress and the resulting bedload transport have been predicted; the parts of the particle trajectories in the close vicinity of the bottom where the bedload transport exists are displayed. Finally, the direction and magnitude of the surface drift, the depth-averaged mean velocity and the mean bedload transport are given, and the effect of the bottom roughness on the sea surface drift is investigated.  相似文献   

15.
Results are reported herein of an open channel flow laboratory based study of the development of ripples on a fine silica sand bed, and under non-uniform turbulent subcritical flow conditions. The hydraulic model used included a diverging channel, which resulted in a variation of hydraulic and sediment transport parameters along the channel. Sediment supply limitation occurred during experimentation, impacting bed form development. The overall aim of this study was to improve the understanding and modelling capability of the development of bed forms under limited sediment supply and non-uniform flow conditions. In particular, the applicability of an existing empirical model capable of predicting ripple development was tested for the conditions of this study, using measured ripple dimensions. The ripple height and length results were extracted from detailed bed profile records, obtained using an acoustic Doppler probe traversed longitudinally over the sediment bed, at various experimentation time intervals. It was found that the non-uniform flow conditions affected the development rate of the bed forms, while sediment supply limitation impacted their steady state dimensions. The measured steady state ripple dimensions were lower, on average, than the corresponding equilibrium dimensions predicted using existing empirical equations. Non-uniform flow also caused the simultaneous occurrence of bed forms at different stages of development along the hydraulic model, where 3D and 2D ripples and incipient bed forms were recorded. Such a scenario can occur in estuarine and coastal flows, due to changing hydraulic conditions and/or a limitation of sediment supply. The ripple development model tested was verified for the conditions of this study, with its accuracy being shown to depend on an accurate determination of steady state parameters.  相似文献   

16.
Numerical simulation of sediment transport is a coupled problem based on computation of profiles of water velocity and suspended sediment concentration. Effects of the water velocity profile and turbulent pulsation on vertical motion of suspended particles are emphasized in this study. Explanation of amplified sediment deposit in zones of separated flow near both natural and manmade bottom irregularities (like walls of shipping channels) is given. A semi-empirical approach to determination of long-term sediment deposit/erosion is suggested.  相似文献   

17.
Sediment transport in the Hangzhou Bay is extremely complicated due to its bathymetry and hydrodynamic conditions. The ECOMSED model is employed to simulate three-dimensional (3-D) cohesive sediment transport in Hangzhou Bay. Dynamical factors such as Coriolis force, tides, salinity, river discharges, and waves are considered in the model. The wave parameters, including the significant wave height, period, and direction, are calculated with the SWAN model. The Grant-Madsen model is introduced for the bed shear stress due to the combined effect of waves and currents. The formulation of bed shear stress used to calculate the sink/source terms is modified based on previous research that sufficiently validated the formulation with measurement data. The integrated model of the above-mentioned models is applied to simulate sediment transport in Hangzhou Bay. The results of the simulation agree well with field observations concerning the distribution of suspended sediment, indicating that the sediments are remarkably suspended in Hangzhou Bay under the action of waves and currents.  相似文献   

18.
A large data set on ripples was collected and examined. A set of new formulas for the prediction of the ripple characteristics is proposed with an emphasis on the disappearance of the ripples. The ripple wavelength was observed to be proportional to the bottom wave excursion but also to be a function of the grain-related Shields parameter and wave period parameter introduced by Mogridge et al. (1994). The ripple steepness was found to be nearly constant for orbital ripples, and with a sharp decrease for suborbital ripples. Two empirical functions are added including the effects of the critical Shields parameters (inception of transport and inception of sheet flow), i.e. giving the boundaries for the ripple existence's domain. The proposed formulas yield better prediction capabilities compared to the previously published formulas, especially when ripples are washed out. The effect of the ripple characteristics on the roughness height and the calculation of the bed shear stress is also discussed. It appeared that the bed shear stress calculation is more sensitive to the empirical coefficient ar introduced in the estimation of the ripple-induced roughness height or to the limits of existence of the ripples than the ripple characteristics themselves.  相似文献   

19.
A random-walk model for a nonuniform diffusivity media coupled with an ocean circulation model has been applied to describe the pathways of suspended particles transport in the bottom boundary layer (BBL) of the southern Baltic Sea. The circulation model is based on the Princeton Ocean Model, in which the vertical grid size is logarithmically refined towards the bottom in order to resolve the BBL. Fields of the flow velocity and eddy diffusivities simulated by the POM, along with the settling velocity of the suspended particles, are used as an input for the random-walk model. A number of numerical experiments were performed to study the pathways of suspended particles in the southern Baltic BBL depending on the wind conditions. In particular, the suspended particles introduced into the BBL in the center of the Bornholm Basin at westerly and southerly winds are found to be trapped in the basin provided that the particles’ settling velocity is equal or greater than 2 m/day. The trapping phenomenon is explained by the combined effect of the Ekman transport convergence in the BBL due to the cyclonic gyre and the gravitational settling of the particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号