首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In a surface water screening, 30 representative surface water samples collected from rivers, canals, and lakes in Berlin were investigated for the presence of 22 substituted phenols. The phenols selected include the 11 phenols considered as “priority pollutants” by the US Environmental Protection Agency (US-EPA). Surface water samples were extracted applying solid-phase extraction with styrenedivinylbenzene adsorbent. The recoveries, determined in spiking experiments, were between 80 % and 103 %. After derivatization with N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide (MTBSTFA) the samples were analyzed by capillary gas chromatography-mass spectrometry (GC-MS). Phenol, cresols, 2-ethylphenol, 2-chlorophenol, 4-chloro-3-methylphenol, pentachlorophenol, 2-nitrophenol, and 4-nitrophenol were detected in the surface water samples at concentrations between 0.02 μg/L and 7.8 μg/L, respectively. The distribution of these residues in the Berlin surface waters showed that the phenolic residues, with the exception of pentachlorophenol and 2-ethylphenol, do not originate primarily from municipal sewage treatment plants discharges. Some of the phenols are formed naturally or occur as ubiquitous anthropogenic contaminants in the aquatic system.  相似文献   

2.
3.
The presence of acid pharmaceuticals in water environments poses a potential threat to ecosystems and human health. Recent research has shown that photo oxidation processes are much more effective for removing these pharmaceuticals. However, the existence of humic acid (HA) could inhibit the clearance efficiency of this process. In this study, we investigated the photochemical degradation of six selected acid pharmaceuticals in surface water and effluent from wastewater treatment plants using the UV/H2O2 process. The results showed that HA can act as a photo sensitizer or a . OH sink, and its concentration had a significant inhibitory effect on the degradation of acid pharmaceuticals. Most of these pharmaceuticals were inhibited during this process when HA was added to deionized water solutions. In addition, the effects of chloride, bicarbonate, and nitrate on the degradation of these pharmaceuticals were different. The removal efficiency of these acid pharmaceuticals is lower in natural samples than in deionized samples because of the complex constituents in the latter.  相似文献   

4.
Polyfluorinated compounds (PFCs) were investigated in waste water treatment plant (WWTP) effluents and surface waters of the River Elbe from samples collected in 2007. Concentrations of various PFCs, including C4–C8 perfluorinated sulfonates (PFSAs), C6 and C8 perfluorinated sulfinates, 6:2 fluorotelomer sulfonate, C5–C13 perfluorinated carboxylic acids (PFCAs), C4 and C8 perfluoroalkyl sulfonamides and 6:2, 8:2 and 10:2 unsaturated fluorotelomercarboxylic acids were quantified. ∑PFC concentrations of the river water ranged from 7.6 to 26.4 ng L−1, whereas ∑PFC concentrations of WWTP effluents were approximately 5–10 times higher (30.5–266.3 ng L−1), indicating that WWTPs are potential sources of PFCs in the marine environment. PFC patterns of different WWTP effluents varied depending on the origin of the waste water, whereas the profile of PFC composition in the river water was relatively constant. In both kinds of water samples, perfluorooctanoic acid (PFOA) was the major PFC, whereas perfluorobutane sulfonate (PFBS) was the predominant PFSA.  相似文献   

5.
The present study deals with the application of the hierarchical cluster analysis and non‐parametric tests in order to interpret the Gdańsk Beltway impact range. The data set represents concentration values for major inorganic ions (Na+, NH, K+, Mg2+, Ca2+, F, Cl, NO, and SO) as well as electrolytic conductivity and pH measured in various water samples [precipitation, throughfall water, road runoff, and surface water (drainage ditches, surface water reservoirs, and spring water)] collected in the vicinity of the beltway. Several similarity groups were discovered both in the objects and in the variables modes according to the water sample. In the majority of cases clear anthropogenic (fertilizers usage and transport, road salting in winter) and semi‐natural (sea salt aerosols, erosion of construction materials) impacts were discovered. Spatial variation was discovered for road runoff samples and samples collected from surface water reservoirs and springs. Surprisingly no clear seasonal variability was discovered for precipitation chemistry, while some evidences for existing of summer and winter specific chemical profile was discovered for road runoff samples. In general, limited range of the Gdańsk Beltway impact was proven.  相似文献   

6.
Competitive solid phase enzyme immunoassays using polyclonal antibodies were developed for the detection of the phenoxycaboxylic acids MCPB [4-(4-chloro-2-methylphenoxy)butyric acid], Mecoprop [2-(4-chloro-2-methylphenoxy)propionic acid], and 2,4-D [(2,4-dichloro-phenoxy)acetic acid] in drinking water and ground water. The carrier protein for the immunization was bovine serum albumin, horseradish peroxidase conjugates were employed as enzyme tracer. For the three antisera, the optimization of detection limits and test sensitivities was our first consideration. For the mecoprop and 2,4-D antisera, the strongest influences were the pH value and the ionic strength, as much as the use of enzyme tracers with lower affinities. The MCPB antiserum reacted with 2,4-DB[4-(2,4-dichlorophenoxy)butyric acid] with equal specificity, either could be detected at 0.02 μg/L (80% B/B0), middle of the test (50 B/B0) lying at 0.1 μg/L. The detection limit with mecoprop antiserum was optimized to 0.02 μg/L, the prescribed limit for drinking water of 0.1 μg/L ling at 60 % B/B0. The strongest cross-reactivity was found for mecoprop methyl ester. MCPB. 2,4-DB, and dichloroprop have crossreactivities of 50%, 6.7%, and 6.3%, respectively. The 2,4-D antiserum reacts less sensitively with 2,4-D, the detection limit being 0.4 μg/L. The 2,4-D isooctyl ester and 2,4-D methyl ester demonstrate as cross-reacting compounds high cross-reactivites of 3630% and 2230%. The cross-reactions of the compounds 2,4-DB, MCPB, and MCPA [(4-chloro-2-methylphenoxy)acetic acid] lie at 52%, 69%, and 41%. 100 ground water tests were spiked within laboratory. All positive samples were correctly identified. Falsely negative results did not appear.  相似文献   

7.
To explore whether quinone moieties are important in chromophoric dissolved organic matter (CDOM) photochemistry in natural waters, hydrogen peroxide (H2O2) production and associated optical property changes were measured in aqueous solutions irradiated with a Xenon lamp for CDOM model compounds (dihydroquinone, benzoquinone, anthraquinone, napthoquinone, ubiquinone, humic acid HA, fulvic acid FA). All compounds produced H2O2 with concentrations ranging from 15 to 500 μM. Production rates were higher for HA vs. FA (1.32 vs. 0.176 mM h−1); values ranged from 6.99 to 0.137 mM h−1 for quinones. Apparent quantum yields (Θapp; measure of photochemical production efficiency) were higher for HA vs. FA (0.113 vs. 0.016) and ranged from 0.0018 to 0.083 for quinones. Dihydroquinone, the reduced form of benzoquinone, had a higher production rate and efficiency than its oxidized form. Post-irradiation, quinone compounds had absorption spectra similar to HA and FA and 3D-excitation–emission matrix fluorescence spectra (EEMs) with fluorescent peaks in regions associated with CDOM.  相似文献   

8.
Water samples collected at the 21°N hydrothermal site on the East Pacific Rise crest, including Deep-Tow and hydrocast samples collected in 1977 and three hot vent water samples collected recently with the submersible “Alvin”, contain significant additions of3He,4He, and Mn. Although the vent water collections were at least 50-fold diluted with ambient seawater, they are up to 53 times enriched in3He and 7.4 times enriched in4He relative to saturated seawater, with concentrations of total dissolvable manganese (TDM) up to 310 μg/kg.3He and4He covary in the vent samples, with3He/4He about 8 times the atmospheric ratio, reflecting a mantle helium source. In contrast to the helium isotopes the Mn/3He ratio in the vent samples is variable, ranging from 4.3 × 104 up to 1.0 × 105 g/cm3. Profiles of3He/4He and TDM in the water column at 21°N show a sharp maximum ofδ(3He) = 47%and TDM= 0.69 μg/kg, much higher than the average values of 34% and 0.2 μg/kg for the deep water in this region. This spike in3He and Mn occurs at 2400 m depth, 200 m above the level of the 21°N vents, and 100 m higher than any local bathymetry, evidence for upward transport of the hydrothermal discharge via rising plumes of hot vent water. Two of the 21°N Deep-Tow samples associated with small (?0.010°C) temperature anomalies hadδ(3He) = 38%and TDM= 0.28 and 0.58 μg/kg, also slightly elevated relative to background. The Deep-Tow and hydrocast samples have lower Mn/3He ratios than average vent samples due to Mn removal by scavenging. Comparison of vent samples and water column measurements at 21°N indicate that the pure vent water could be detected using3He and Mn even when diluted ~105 times with seawater, confirming that these two tracers are extremely sensitive indicators of submarine hydrothermal activity.  相似文献   

9.
10.
11.
For 25 years, a plant in Israel manufacturing ammonium perchlorate disposed of untreated wastewater in four unlined ponds. This study explores the transport mechanisms of perchlorate infiltrated from 1965 to 1990 from one of these active storage ponds into a deep (40 m) layered vadose zone and the underlying Israeli coastal aquifer. Perchlorate migration from 1990, when wastewater disposal ceased, until today, with infiltration due only to natural rain (500 mm y−1), was also studied. Several indirect methods were used, including: mass balance in the unsaturated zone profile, δ18O and δ2H profiles below the pond, and a comparison of the same sediment profiles in 2005 and 2007. The isotopic composition of the pore water could be divided into two separate groups: lighter (depleted) and heavier (enriched) samples. All samples in the lighter group were from the shallow vadose zone, above two clayey layers, and represent natural infiltration of rainwater. The enriched samples were from the deeper section of the unsaturated zone (20–40 m) and represent water used for perchlorate manufacturing 14 years prior to drilling. Consequently, the overall maximum infiltration rate was estimated to be 1.4 m y−1. Below the clayey layer almost identical perchlorate concentrations were found along the sediment profile in 2005 and 2007 (two boreholes, 3 m apart). Very different perchlorate profiles were observed above the clayey layers. This suggests that perchlorate below the clay layers (20–40 m) is practically stagnant under the current natural conditions. The reduction in perchlorate concentration in groundwater below the ponds vs. its increased concentration further downgradient supports the contention that the current migration of perchlorate from the vadose zone to the groundwater is very small. We estimate that perchlorate concentration in the groundwater under the infiltration pond, which was 187 mg l−1 in 2004, will reach 10 μg l−1 within about 14 years. The existence of a clayey layer crossing the thick vadose zone was thus found to significantly change the infiltration rate when ponded conditions were replaced with natural precipitation.  相似文献   

12.
Mobilization Potential of Hydrophobic Organic Compounds (HOCs) in Contaminated Soils and Waste Materials. Part I: Mobilization Potential of PCBs, PAHs, and Aliphatic Hydrocarbons in the Presence of Solubilizing Substances When using an elution procedure for organic pollutants to estimate the leaching behaviour of contamined soils and waste deposits, the influence of organic matter in solids and eluates adequately has to be considered. In batch tests with a solid/liquid ratio of 1:10, various aqueous solutions were composed, the solubilizing effect of which can be attributed to ubiquitous natural compounds (e. g., phospholipids, humic and carbonic acids). These solutions were evaluated in regard to the mobilization of PAHs, PCBs, and aliphatic hydrocarbons in soil and waste samples. The results were compared with batch tests containing sodium dodecyl sulfate (SDS), the properties and applications of which are selected and optimized in order to simulate the chemical interactions between pollutant and solubilizing substances of natural sources. Under alkaline conditions, the part of eluated pollutants was high because of the release of humic substances indigenous to the sample. Low concentrations of phospholipids and humic acid could decrease the mobility of aliphatic hydrocarbons. The extend of HOC mobilization is affected by specific interdependences between solubilizing substances and reactive matter of the samples. For most samples, 5.0 g/L concentrated SDS solution was able to simulate the most effective natural solutizer potential in regard to the mobilization of PAHs, PCBs, and aliphatic hydrocarbons within the system of batch tests. Whereas elution with pure water caused significant deviations in pollutant composition and too low yields, the use of SDS effected à good conformity. Modified in such a manner, the elution procedure can follow DIN 38414 part 4, when loss of pollutants will be minimized; e. g., centrifugation is needed to separate phases.  相似文献   

13.
Studies of the effect of dissolved salts on the oxygen isotope activity ratio of water have been extended to 275°C. Dehydrated salts were added to water of known isotope composition and the solutions were equilibrated with CO2 which was sampled for analysis. For comparison similar studies were made using pure water. Results on water nearly coincide with earlier calculations. Salt effects diminish with increasing temperature only for solutions of MgCl2 and LiCl. Other salt solutions show complex behavior due to the temperature-dependent formation of ion pairs of changing character. Equilibrium fractionations (103 ln α) between 1 molal solutions and pure water at 25, 100, and 275°C are: NaCl 0.0, ?1.5, +1.0; KCl 0.0, ?1.0, +2.0; LiCl ?1.0, ?0.6, ?0.5; CaCl2 ?0.4, ?1.8, +0.8; MgCl2 ?1.1, ?0.7, ?0.3; MgSO4 ?1.1, +0.1, ?; NaF (0.8 m) 0.0, ?1.5, ?0.3; and NH4Cl (0.55 m) 0.0, ?1.2, ?1.3. These effects are significant in the isotope study of hot saline fluids responsible for ore deposition and of fluids found in certain geothermal systems. Minor modification of published isotope geothermometers may be required.  相似文献   

14.
ZVI‐Clay is an emerging remediation approach that combines zero‐valent iron (ZVI)‐mediated degradation and in situ stabilization of chlorinated solvents. Through use of in situ soil mixing to deliver reagents, reagent‐contaminant contact issues associated with natural subsurface heterogeneity are overcome. This article describes implementation, treatment performance, and reaction kinetics during the first year after application of the ZVI‐Clay remediation approach at Marine Corps Base Camp Lejeune, North Carolina. Primary contaminants included trichloroethylene, 1,1,2,2‐tetrachloroethane, and related natural degradation products. For the field application, 22,900 m3 of soils were treated to an average depth of 7.6 m with 2% ZVI and 3% sodium bentonite (dry weight basis). Performance monitoring included analysis of soil and water samples. After 1 year, total concentrations of chlorinated volatile organic compounds (CVOCs) in soil samples were decreased by site‐wide average and median values of 97% and >99%, respectively. Total CVOC concentrations in groundwater were reduced by average and median values of 81% and >99%, respectively. In several of the soil and groundwater monitoring locations, reductions in total CVOC concentrations of greater than 99.9% were apparent. Further reduction in concentrations of chlorinated solvents is expected with time. Pre‐ and post‐mixing average hydraulic conductivity values were 1.7 × 10?5 and 5.2 × 10?8 m/s, respectively, indicating a reduction of about 2.5 orders of magnitude. By achieving simultaneous contaminant mass depletion and hydraulic conductivity reduction, contaminant flux reductions of several orders of magnitude are predicted.  相似文献   

15.
Samples of water from poor to very rich fens in the Schefferville region of subarctic Quebec revealed strong spatial and temporal variations in dissolved organic carbon (DOC), ranging from 2 to 40 mg 1?1. Concentrations of DOC tend to increase during the summer and decrease in the autumn, at most sites, which probably reflects increased plant tissue decomposition and higher rates of evapotranspiration. Principal components analysis revealed that DOC is strongly associated with Fe, NO?3-N and NO?2-N, but essentially independent of other chemical properties of the peat water, such as pH, Ca, Mg, K, P, and NH+4-N. Based on observed concentrations of DOC and estimates of summer runoff (June to September), export of DOC from four peatlands ranges from 1·1 to 4·9 gCm?2, with the lowest values for peatlands underlain by dolomite. Molecular weight fractionation of four samples revealed significant differences in the dissolved organic matter (DOM), with the largest fractions (GF/C to 10 000 nmw) being dominant in the more acid samples. The ratio of absorbance at 400 and 600 nm wavelengths (E4:E6) has been used as a simple indicator of differences in DOM type, ranging from 3 to 15. There is a strong seasonal pattern of increasing E4:E6 ratio during the summer at many sites, though this ratio is essentially independent of other chemical properties of peat waters.  相似文献   

16.
Groundwater is a major source of water supply for domestic and irrigation uses in semiarid, remote but rapidly developing Kilasaifullah district part of Zhob River Basin, located at Pakistan–Afghanistan Border. Zhob River is among few major rivers of perennial nature in Balochistan, which flows from WSW to ENE and falls in Gomal River, a tributary of Indus River. Keeping in view the important geopolitical position and rapid development of the region, this study is primarily focused on groundwater chemistry for contamination sources as well as agriculture development. Water samples from open and tube wells are analyzed and calculated for electrical conductivity (EC), total dissolved solids (TDS), turbidity, pH, K+, Na+, Ca2+, Mg2+, HCO, Cl?, NO, SO, PO, sodium percent (Na%), sodium adsorption ratio (SAR), Kelly's index (KI), and heavy metals (Fe, Cu, Cr, Zn, Pb, and Mn). On the basis of the chemical constituents two zones within the study area are identified and possible causes of the contaminants are pointed out. Two recharge areas were responsible for the different chemical results in groundwater, e.g., zone A was recharged from NNW saline geological formations (Nisai, Khojak, Multana, Bostan formations, and Muslim Bagh ophiolites), which are concentrated with high sodium and chloride. On the other hand Zone B was sourced from SSW from carbonate rich rocks (Alozai, Loralai, Parh formations, and Muslim Bagh ophiolites). The groundwater is classified as C2–S1, C3–S1, C3–S2, C4–S2 on the basis of EC and SAR values which indicate that most of the water of both zones can be used for irrigation safely except the samples plotted in C3–S2 and C4–S2 categories which could be dangerous for soil and crops. Groundwater samples are plotted in good to permissible limits with some samples excellent to good and few samples belong to doubtful category based on sodium percent. Groundwater of zone A is unsuitable for irrigation use due to higher values of KI (more than one) but water of zone B are good for irrigation based on KI. In general, water of both zones is suitable for irrigation but care should be taken during the selection of crops which are sensitive to alkalinity or sodium hazards particularly in zone A.  相似文献   

17.
The occurrence of estrogens in the aquatic environment has become a major concern worldwide because of their strong endocrine disrupting potency. In this study, concentrations of four estrogenic compounds, estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), estriol (E3) were determined with liquid chromatography-tandem mass spectrometry analyses in surface water from South China Sea, and distributions and potential risks of their estrogenic activity were assessed. The estrogenic compounds E1, E2 and E3 were detected in most of the samples, with their concentrations up to 11.16, 3.71 and 21.63 ng L−1. However, EE2 was only detected in 3 samples. Causality analysis, EEQ values from chemical analysis identified E2 as the main responsible compounds. Based on the EEQ values in the surface water, high estrogenic risks were in the coastal water, and low estrogenic risks in the open sea.  相似文献   

18.
From July 2003 to July 2004, samples were collected on Chongming Island east tidal flat every two months. The research showed that the nitrous oxide (N2O) production rate was very low in the water, Chongming east tidal flat (CM) sediment was the N2O source of the water. Sediment N2O natural production rate was between -0.08 and 1.74 μmolN·m-2·h-1. N2O natural production rate was higher in the summer. The difference of the N2O natural production rate in the different tidal flats, the correlation between the N2O natural production rate and the denitrification rate, and those with the temperature and DO indicate that middle tidal flat sediment denitrification was the main process of the N2O production, while in the low tidal flat sediment, the production of the N2O came from several processes of the nitrogen cycling. Tidal flat sediment denitrification reaction was stronger in summer and winter but relatively lower in the late autumn and early spring. Seasonal change of the sediment denitrification rate was wide, from 1.12 to 33.34 μmolN·m-2·h-1. Temperature, DO and the coactions of them had the prominent effect on the tidal flat sediment denitrification.  相似文献   

19.
Assessing natural vs. anthropogenic sources of methane in drinking water aquifers is a critical issue in areas of shale oil and gas production. The objective of this study was to determine controls on methane occurrences in aquifers in the Eagle Ford Shale play footprint. A total of 110 water wells were tested for dissolved light alkanes, isotopes of methane, and major ions, mostly in the eastern section of the play. Multiple aquifers were sampled with approximately 47 samples from the Carrizo‐Wilcox Aquifer (250‐1200 m depth range) and Queen City‐Sparta Aquifer (150‐900 m depth range) and 63 samples from other shallow aquifers but mostly from the Catahoula Formation (depth <150 m). Besides three shallow wells with unambiguously microbial methane, only deeper wells show significant dissolved methane (22 samples >1 mg/L, 10 samples >10 mg/L). No dissolved methane samples exhibit thermogenic characteristics that would link them unequivocally to oil and gas sourced from the Eagle Ford Shale. In particular, the well water samples contain very little or no ethane and propane (C1/C2+C3 molar ratio >453), unlike what would be expected in an oil province, but they also display relatively heavier δ13Cmethane (>?55‰) and δDmethane (>?180‰). Samples from the deeper Carrizo and Queen City aquifers are consistent with microbial methane sourced from syndepositional organic matter mixed with thermogenic methane input, most likely originating from deeper oil reservoirs and migrating through fault zones. Active oxidation of methane pushes δ13Cmethane and δDmethane toward heavier values, whereas the thermogenic gas component is enriched with methane owing to a long migration path resulting in a higher C1/C2+C3 ratio than in the local reservoirs.  相似文献   

20.
In this study, remediation results of trace metals in natural water and treated water using three functionalized nanofiber mats of cellulose and chitosan are reported. The nanofiber materials, packed in mini-columns, were employed for the remediation of five toxic trace metals (Cd, Pb, Cu, Cr and Ni) from natural water samples. Trace metals in real water samples were undetectable as the concentrations were lower than the instrument’s detection limits of 0.27 × 10−3 (Cd) and 4.2 × 10−2 (Pb) μg mL−1, respectively. However, after percolation through the functionalised biosorbents in cartridges, detectability of the metal ions was enhanced. The starting volume of the natural water sample was 100 mL, which was passed through a column containing the nanofibers sorbent and the retained metals eluted with 5 mL of 2.0 M nitric acid. The eluate was analyzed for metals concentrations. An enrichment factor of 20 for the metals was realized as a result of the pre-concentration procedure applied to handle the determination of the metals at trace levels. The order of remediation of the studied metals using the nanofibers was as follows: chitosan/PAM-g-furan-2,5-dione < cellulose-g-furan-2,5-dione < cellulose-g-oxolane-2,5-dione. The modified biopolymer nanofibers were able to adsorb trace metals from the river water and treated water, thereby confirming their capability of water purification. These materials are proposed as useful tools and innovative approach for improving the quality of drinking for those consumers in small scale households.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号