首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The experimental data obtained in transit observations of the extrasolar planet HD 209458b and their comparison with theoretical inferences have led to the conclusions that HD 209458b (and other similar hot jupiters) is of a (mainly) hydrogen nature and that these objects probably possess strong magnetic fields. The results of the studies of HD 209458b and prospects for searches for the transits of other extrasolar planets are considered in detail.  相似文献   

2.
We have calculated the orbital parameters for 90 stars in Chen et al. and updated the kinematic data for stars in Edvardsson et al. by using the accurate Hipparcos parallaxes and proper motions, and recalculated the \\\\\\\\\\\\-element abundances in Edvardsson et al. in a way consistent with Chen et al. The two sets of data are combined in a study of stellar populations and characteristics of F & G stars in the solar neighborhood. We confirm the result of Chen et al. that a distinguishable group of stars may belong to the thick disk rather than the thin disk. The ages for the stars are determined using the theoretical isochrones of VandenBerg et al. The age-metallicity relation is investigated for different subgroups according to distance from the sun and galactic orbital parameters. It is found that a mixing of stars with different orbital parameters significantly affect the age-metallicity relation for the disk. Stars with orbits confined to the solar circle all have metallicities [Fe/H] > -0.3 irresp  相似文献   

3.
HD 10697 is a nearby main-sequence star around which a planet candidate has recently been discovered by means of radial velocity measurements (Vogt et al.). The stellar orbit has a period of about 3 yr, the secondary minimum mass is 6.35 Jupiter masses (MJ), and the minimum semimajor axis is 0.36 mas. Using the Hipparcos data of HD 10697 together with the spectroscopic elements of Vogt et al., we found a semimajor axis of 2.1+/-0.7 mas, implying a mass of 38+/-13 MJ for the unseen companion. We therefore suggest that the secondary of HD 10697 is probably a brown dwarf, orbiting around its parent star at a distance of 2 AU.  相似文献   

4.
Three transit events of HAT-P-8 were observed by using the 1 m telescope of Yunnan Observatory and the 2.4 m telescope of Lijiang Astronomical Station in 2009 and 2012, respectively. The observational data are reduced with the coarse de-correlation and SysRem algorithms in order to improve the signal to noise ratio of the transit signals. The MCMC (Markov Chain Monte Carlo) technique is applied to analyzing the three transit light curves simultaneously, then the new parameters of the HAT-P-8 system are derived. The new value of the radius of HAT-P-8b is smaller than that given by Latham et al., while it is consistent with the value derived recently by Mancini et al. By linear ?tting on the 23 high-precision mid-transit times, the orbital period of HAT-P-8b is re?ned as P =3.0763461±0.0000021 d, and from the (O − C) analysis no obvious TTV (Transit Timing Variation) signal has been detected.  相似文献   

5.
Dissociation and ionization of hydrogen molecules and ionization of hydrogen atoms due to extreme UV radiation from the parent star are accompanied by the formation of a concurrent photoelectron flux with excess kinetic energy. These dissociation and ionization processes are the main source of atomic and molecular ions in the thermospheres of extrasolar planets, such as the “hot Jupiter” HD 209458b. The ionization processes are the most important part of contemporary aeronomic models of planetary atmospheres in the Solar System and extrasolar systems (Johnson et al., 2008; Yelle et al., 2008). We estimate the contribution of the dissociation and ionization processes due to the stellar UV radiation and the concurrent photoelectron flux to the formation of extended ionospheres around extrasolar giant planets. As opposed to models of other researchers, we calculated the ionization rates due to the concurrent photo-electron flux for the first time. It is established that, in contrast to a widely used parametrization of the photoelectron contribution (Cecchi-Pestellini et al., 2006; 2009), the rate of secondary ionization due to the photoelectrons depends appreciably on the altitude, approaching the photoionization rate in the lower layers of the thermosphere. The calculated ionization rate in the thermosphere of the extrasolar giant planet (EGP) orbiting close to its parent star is a necessary link when modeling an aeronomic model and estimating the rate of the EGP atmospheric loss.  相似文献   

6.
We present here three transit observations of HAT-P-9b taken on 14 February 2010 and 05 April 2010 UT from the University of Arizona’s 1.55 m Kuiper telescope on Mt. Bigelow. Our two light curves were obtained in the Arizona-I filter for all our observations, and underwent the same reduction process. Both transits occurred approximately 24 min earlier than expected from the ephemeris of Shporer et al. (2009). However, due to the large time span between our observed transits and those of Shporer et al. (2009), a 6.5 s shift downwards in orbital period from the value of Shporer et al. (2009) is sufficient to explain all available transit data. We find a new period of 3.922814 ± 0.000002 days for HAT-P-9b, an order of magnitude more precise than previous measurements, with no evidence for significant nonlinearities in the transit period.  相似文献   

7.
The results of a study on the binary HIP 18856 and construction of its orbit are presented.New observational data were obtained at the BTA of SAO RAS in 2007-2019.Earlier,Cvetkovic et al.constructed the orbit for this system.However,it is based on six measurements,which cover a small part of the orbit.The positional parameters of the ESA astrometric satellite Hipparcos published speckle interferometric data(Mason et al.,Balega et al.,Horch et al.)and new ones were used in this study.Based on the new orbital parameters,the mass sum was calculated and the physical parameters of the components were found.The obtained orbital and fundamental parameters were compared with the data from the study by Cvetkovic et al..The comparison shows that the new orbital solution is better than the old one,since it fits new observational data accurately.Also based on a qualitative evaluation performed by Worley&Heintz,the new orbit was classified as"reliable",which means data cover more than half of the orbit with sufficient quantities of residuals of measurements.  相似文献   

8.
Time-series photometry of the Hipparcos variable stars HD 199434 and 21190 is reported. Both stars are pulsators of the δ Scuti type. Reclassifications of the MK types of the stars, based on new spectrograms, are given. HD 21190 is found to be F2III SrEuSi:, making it the most evolved Ap star known. Its Strömgren photometric indices support the peculiar spectral type. It is also one of the most evolved δ Scuti stars known. Its combined Ap– δ Scuti nature makes it an important test of models of pulsation in peculiar stars recently developed by Turcotte et al., although it is more extreme than any model they examined. Physical parameters of both stars are estimated from Strömgren and H β photometry, and Hipparcos absolute magnitudes. We attempt mode identifications based on amplitude ratios and phase differences from our photometry. The dominant pulsation of HD 21190 may be an overtone radial mode. The model fits for HD 199434 are even less satisfactory, but favour an ℓ=2 mode. Given the good quality and wavelength coverage of our data, the poor results from the application of the photometric theory of mode identification may call into question the use of that technique.  相似文献   

9.
Transiting exoplanetary systems are surpassingly important among the planetary systems since they provide the widest spectrum of information for both the planet and the host star. If a transiting planet is on an eccentric orbit, the duration of transits T D is sensitive to the orientation of the orbital ellipse relative to the line of sight. The precession of the orbit results in a systematic variation in both the duration of individual transit events and the observed period between successive transits,   P obs  . The periastron of the ellipse slowly precesses due to general relativity and possibly the presence of other planets in the system. This secular precession can be detected through the long-term change in   P obs  (transit timing variations, TTV) or in T D (transit duration variations, TDV). We estimate the corresponding precession measurement precision for repeated future observations of the known eccentric transiting exoplanetary systems (XO-3b, HD 147506b, GJ 436b and HD 17156b) using existing or planned space-borne instruments. The TDV measurement improves the precession detection sensitivity by orders of magnitude over the TTV measurement. We find that TDV measurements over a approximately 4 yr period can typically detect the precession rate to a precision well exceeding the level predicted by general relativity.  相似文献   

10.
The orbital elements of three red‐giant single‐lined spectroscopic binaries, HR 1304, HR 1908 and HD 126947, are presented. They are obtained from observations made with two photoelectric spectrometers of CORAVEL type, the first located at the Observatoire de Haute‐Provence and the second at the Cambridge Observatories. HR 1304 and HR 1908 are known to be chromospherically active stars and to have high spatial velocities; HD 126947 is an intrinsic variable newly detected by Hipparcos. The three systems have long orbital periods: 1.9, 3.2 and 7.7 yr for HR 1304, HR 1908 and HD 126947, respectively. From the orbital elements that we determined and other data available in the literature, we deduce some information about the unseen companions and their separations with respect to the primaries. Finally we discuss the rotation–revolution synchronism and conclude that one star, HR 1908, may have reached the state of pseudo‐synchronism, despite of its long orbital period. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Analytical formulae for the computation of the photometric elements of extra-solar planetary transits are presented. They were initially derived for the study of well-detached eclipsing binaries and are valid for any degree of limb darkening and type of transit as well as for eccentric orbits. The only assumption is that the projections of the star and the planet on the plane of the sky are well represented by circular discs. The procedure to get valid ranges for the involved parameters, as well as to make precise estimations of initial parameters, using the analytical nature of the equations is given together with some discussion on their practical application. Examples are shown for OGLE-TR-113, representative of a light curve obtained with ground-based telescopes, and HD 209458 with a precise light curve obtained with the Hubble Space Telescope.  相似文献   

12.
We summarize results from deep spectroscopic observations of the HD 209458 planetary system, carried out with the Hubble Space Telescope—Cosmic Origins Spectrograph. Orbitally resolved observations are used to show that hot gas emission lines, arising only in the stellar atmosphere, are not variable, while lower ionizations species found in the upper atmosphere of the hot Jupiter HD 209458b absorb stellar photons during transit. For both C II and Si III, we find mean transit attenuation of ~8%. The firm detection of silicon is in direct conflict with previous low-resolution studies, which we attribute to long-term variability in the system. We also use these observations to search for auroral emission from the planet, detecting a statistically significant emission feature at 1582 Å that is consistent with H2 photoexcited by stellar O I photons.  相似文献   

13.
The recent discovery that the close-in extrasolar giant planet HD 209458b transits its star has provided a first-of-its-kind measurement of the planet's radius and mass. In addition, there is a provocative detection of the light reflected off of the giant planet tau Bootis b. Including the effects of stellar irradiation, we estimate the general behavior of radius/age trajectories for such planets and interpret the large measured radii of HD 209458b and tau Boo b in that context. We find that HD 209458b must be a hydrogen-rich gas giant. Furthermore, the large radius of a close-in gas giant is not due to the thermal expansion of its atmosphere but to the high residual entropy that remains throughout its bulk by dint of its early proximity to a luminous primary. The large stellar flux does not inflate the planet but retards its otherwise inexorable contraction from a more extended configuration at birth. This implies either that such a planet was formed near its current orbital distance or that it migrated in from larger distances (>/=0.5 AU), no later than a few times 107 yr of birth.  相似文献   

14.
In this paper, we consider the physical properties and characteristic features of extrasolar planets and planetary systems, those, for which the passage of low-orbit giant planets across the stellar disk (transits) are observed. The paper is mostly a review. The peculiarities of the search for transits are briefly considered. The main attention in this paper is given to the difference in the physical properties of low-orbit giant planets. A comparison of the data obtained during the transits of “hot Jupiters” points to the probable existence of several distinct subtypes of low-orbit extrasolar planets. “Hot Jupiters” of low density (HD 209458b), “hot Jupiters” with massive cores composed of heavy elements (HD 149026b), and “very hot Jupiters” (HD 189733b) are bodies that probably fall into different categories of exoplanets. Dissipation of the atmospheres of low-orbit giant planets estimated from the experimental data is compared with the calculated Jeans atmospheric losses. For “hot Jupiters”, the expected Jeans mass losses due to atmospheric escape on a cosmogonic time scale hardly exceed a few percent. Low-orbit giant planets should have a strong magnetic field. Since the orbital velocity of “hot Jupiters” is close to the magnetosonic velocity (or can even exceed it), the moving planet should actively interact with the “stellar wind” plasma. The possession of a magnetic field by extrasolar planets and the effects of their interaction with plasma can be used to search for extrasolar planets.  相似文献   

15.
Of the known transiting extrasolar planets, a few have been detected through photometric follow-up observations of radial velocity planets. Perhaps the best known of these is the transiting exoplanet HD 209458b. For hot Jupiters (periods less than ∼5 d), the a priori information that 10 per cent of these planets will transit their parent star due to the geometric transit probability leads to an estimate of the expected transit yields from radial velocity surveys. The radial velocity information can be used to construct an effective photometric follow-up strategy which will provide optimal detection of possible transits. Since the planet-harbouring stars are already known in this case, one is only limited by the photometric precision achievable by the chosen telescope/instrument. The radial velocity modelling code presented here automatically produces a transit ephemeris for each planet data set fitted by the program. Since the transit duration is brief compared with the fitted period, we calculate the maximum window for obtaining photometric transit observations after the radial velocity data have been obtained, generalizing for eccentric orbits. We discuss a typically employed survey strategy which may contribute to a possible radial velocity bias against detection of the very hot Jupiters which have dominated the transit discoveries. Finally, we describe how these methods can be applied to current and future radial velocity surveys.  相似文献   

16.
17.
The discovery of a planetary companion to the intermediate-mass late-type giant star HD173416 from precise Doppler surveys of G and K giants at Xingiong station and Okayama Astrophysical Observatory (OAO) is presented in this letter. The planet has a minimum mass of 2.7 MJ an eccentricity of 0.21, a semimajor axis of 1.16 AU and an orbital period of 324 days.  相似文献   

18.
HD 6226 is a bright binary Be star at visual magnitude 6.81 (Hipparcos database). The emission and absorption phases occur in cycles, which are probably not periodic. The suspected period of about 630 days (derived from photometric measurements) is not confirmed by our spectroscopic survey. The latest emission phase developed in the beginning of 2003, then the emission strength systematically decreased and disappeared between July 21, 2003 and August 4, 2003. The last (absorption) spectrum was exposed on August 25, 2003. Unexpected very strong emission appeared in a spectrum exposed on October 28, 2003. A short-term photometric brightening followed this “outburst”. Long-term spectroscopic RV studies revealed a 2.615 d period modulated by a 29.7 d period (in the He I 6678 line), which perhaps may be interpreted as orbital period of a binary. Nevertheless, the physical nature of the dominant short 2.615 d period is not yet clear. The last detected emission episode has changed considerably our view of the interesting object HD 6226. We hope this study will reveal more details of the physical properties of the Be phenomenon.  相似文献   

19.
The ionization and dissociation of molecular hydrogen by the ultraviolet (UV) radiation of the parent star lead to the formation of hydrogen atoms with an excess of kinetic energy and, thus, are an important source of suprathermal hydrogen atoms in the upper atmosphere of exoplanet HD 209458b. Contemporary aeronomical models did not investigate these processes because they assumed the fast local thermalization of the hot atoms of hydrogen by elastic collisions. However, the kinetics and transfer of these atoms were not calculated in detail, because they require the solving of the Boltzmann equation for a nonthermal atom population. This work estimates the effect of the UV radiation of the parent star and the accompanying photocleacton flux on the production of the suprathermal fraction of atomic hydrogen in the H2 → H transition region. We also consider the formation of the escaping flux of Hatoms created by this effect in the upper atmosphere of HD 209458b. We calculate the production rate and energy spectrum of the hydrogen atoms with excess kinetic energy during the dissociation of H2. Using the numerical stochastic model created by Shematovich (2004) for a hot planetary corona, we investigate the molecular-scale kinetics and transfer of suprathermal hydrogen atoms in the upper atmosphere and the emergent flux of atoms evaporating from the atmosphere. The latter is estimated as 3.4 × 1012 cm−2 s−1 for a moderate stellar activity level of UV radiation, which leads to a planetary atmosphere evaporation rate of 3.4 × 109 g s−1 due to the process of the dissociation of H2. This estimate is close to the observational value of ∼1010 g s−1 for the rate of atmospheric loss of HD 209458b.  相似文献   

20.
We present results from a search for additional transiting planets in 24 systems already known to contain a transiting planet. We model the transits due to the known planet in each system and subtract these models from light curves obtained with the SuperWASP (Wide Angle Search for Planets) survey instruments. These residual light curves are then searched for evidence of additional periodic transit events. Although we do not find any evidence for additional planets in any of the planetary systems studied, we are able to characterize our ability to find such planets by means of Monte Carlo simulations. Artificially generated transit signals corresponding to planets with a range of sizes and orbital periods were injected into the SuperWASP photometry and the resulting light curves searched for planets. As a result, the detection efficiency as a function of both the radius and orbital period of any second planet is calculated. We determine that there is a good (>50 per cent) chance of detecting additional, Saturn-sized planets in   P ∼  10 d orbits around planet-hosting stars that have several seasons of SuperWASP photometry. Additionally, we confirm previous evidence of the rotational stellar variability of WASP-10, and refine the period of rotation. We find that the period of the rotation is  11.91 ± 0.05  d, and the false alarm probability for this period is extremely low  (∼10−13)  .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号