首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate of chemical weathering of rocks has been determined by using uranium as a natural isotopic tracer. The concentration of uranium and 234U/238U ratio in natural waters, rocks, and soils of the Preto river basin (Bahia State, Brazil) was measured by alpha-ray spectroscopy.The activity ratio U234/U238 measured in the various samples indicates the uranium fraction which is dissolved from rocks during the weathering process. The results obtained show that 1 m of rock needs 25,000 yr to be weathered in this region under present climatic conditions.  相似文献   

2.
An extensively modified combustion/iodometric titration method was used for the determination of sulfur in SY-2, a CANMET international rock reference material, in coarse-grained mantle rocks and glassy materials at the microgram level. Replicate analysis (n = 27) of SY-2 demonstrated the potential for this sample to be certified as a reference sample for S. Our mean sulfur concentration (122 ± 3 μg g-1) suggests that the recommended value (0.011% w/w) could underestimate the true value by 10%. The other results compare well with those generated by other more sophisticated techniques such as X-ray fluorescence spectrometry and electron probe microanalysis, whether S is dissolved in glassy materials or occurs as discrete sulfides.  相似文献   

3.
This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relative to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. This result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.  相似文献   

4.
Relationship of hydro-uranium anomalies (2-649 ppb) vis-à-vis underlying uranium ore body has been attempted based on seventy nine water samples collected from the exploratory boreholes on the northern periphery of Srisailam sub basin, Nalgonda district, A.P. Water table is hosted in the granitoid aquifer which underlies the cover rocks of Srisailam Formation. TDS (total dissolved salt) range from 123 to 1088 ppm (x? = 329 ppm) and analyzed >500 ppm in eight samples. Water samples show a strong positive correlation of TDS with Cl? (r=0.90), Na+ (r=0.82), Mg (r=0.80) and a moderate positive correlation with Sr (r=0.48) and Ca (r=0.70). Low value (<0.4) of Normalised Magnesium (NMg) indicates that host rock aquifer has not undergone chloritisation. Accumulate contour plan of uranium ore body shows NW-SE trend and coincides with the hydro-uranium contour. Correlation sections of ore body display true as well as false hydro-uranium anomalies in N-S and E-W profiles. Hydro-uranium anomalies owe their origin to uranium cations, dissolved from the mineralized horizon in to groundwater. Hydro-geochemical orientation survey carried out at Chitrial plateau may be applied regionally in the Srisailam sub basin as an effective tool to explore the concealed unconformity type uranium mineralization below Srisailam Formation.  相似文献   

5.
High-resolution γ-ray spectrometry was exploited to determine naturally occurring thorium (Th), uranium (U) and potassium (K) elemental concentrations in the whole area covered by the Troodos Ophiolite Complex of Cyprus. For that purpose, a total of 59 samples from surface soils and 10 from the main rock formations of the region of interest were analysed. Elemental concentrations were determined for Th (range from 2.5×10−3 to 2.0 ppm), U (from 8.1×10−4 to 0.6 ppm), and K (from 1.3×10−4% to 1.0%). The average values (A.M±S.D.) derived are (0.24±0.34) ppm, (0.10±0.10) ppm and (0.21±0.24)%, for Th, U, and K, respectively, in the soils, and (0.52±0.17) ppm, (0.17±0.11) ppm and (0.49±0.87)% in the rocks. From these values, a radioactivity (radioelement) loss of nearly 50% is estimated in the underlying surface soils due to leaching and eluviation during weathering of the rocks. The measured Th/U ratio exhibits values between 2 and 4, whereas the K/Th ratio is highly variable ranging between 1.5×103 and 3.0×104.  相似文献   

6.
Analysis of radioactive (210Pb) and stable lead isotopes in near-surface samples has been tested as a method of uranium exploration in the Pine Creek Geosyncline, Northern Territory, Australia. The lead isotopes were extracted from the samples by a mild leaching agent and were measured by alpha spectrometry for 210Pb and by mass spectrometry for stable lead isotopes. The results are compared with those obtained by conventional methods utilizing measurements of radioactivity and radon (Track Etch) in situ and 226Ra, 228Ra and U contents of soils. The major problems addressed were whether the lead isotopic methods are more sensitive than the conventional methods and whether they can discriminate “real” anomalies from the common barren anomalies found in black soils and swamps which contain radium in excess of the uranium present.Four test areas, representing a range of exploration problems, were chosen in the vicinity of the Koongarra uranium deposits and 25 samples from each area were analyzed. Most samples have more 226Ra than uranium. Radium analyses of several water samples show the source of this radium to be non-uraniferous rocks within the Kombolgie sandstone. The results for soil 226Ra, radon, scintillometry and 219Pb were generally closely correlated, and as a result, the 210Pb method was not considered to have any advantages over the conventional methods.At the Koongarra X prospect, which has a weak surface expression, the ratio gave the strongest indication of the underlying uranium mineralization with an anomaly to background ratio of 12.5. However, this ratio is correlated with uranium content and does not offer any particular advantages over uranium analyses alone. More subtle indications of uranium mineralization were found by relating the radiogenic lead (206Pb) and the thorium-derived lead (208Pb) to the common lead content (204Pb). A plot of versus (horizontal axis) is linear for country rock samples, irrespective of the amount of more recently introduced 226Ra. Samples above uranium mineralization lie off this trend, along a line of near-zero slope. By the use of this plot, indications were found of the Koongarra No. 2 orebody, which is concealed by about 40 m of barren overburden; none of the other techniques detected this mineralization.  相似文献   

7.
A reconnaissance exploration survey over 14 000 km2 of Precambrian terrain in South Greenland using stream-sediment and stream-water samples delineated a central uranium district of 2000 km2 with enhanced uranium levels and smaller anomalous zones in the south of the field area.The area is underlain by Archean and Proterozoic gneisses, granites and metasediments all of which have been intruded by late Proterozoic alkaline intrusions (Gardar Province). The terrain is mountainous and the streams are either steep torrents or impeded drainages typical of glaciated terrains with boggy organic rich sediments.The central uranium district was defined by a high uranium background in both stream sediments (5–20 ppm) and stream waters (0.5–1.0 ppb) and a markedly higher frequency of very anomalous values in the order of 50–100's ppm in the stream sediments and 1–10 ppb in the stream waters. An areal correlation of uranium, in this district, with high pH and conductivity in the stream water in addition to a higher organic content noted in the stream sediment raised the question of a possible enhancement of uranium values due to secondary environmental effects. On the other hand, an areal correlation of uranium with niobium and other trace elements characteristically associated with alkaline rocks, and the geographic proximity of this uraniferous district to the alkaline intrusions suggested a genetic relationship between uranium mineralization and the alkaline igneous activity.Limited follow-up work located 8 pitchblende occurrences in this extensive district. The pitchblende is in veins which contain quartz, calcite, iron oxide, fluorite and minor sulphides. The isotopic (U-Pb) age of the pitchblende, which ranges from 1180-1090 Ma, corresponds to the late stages of Gardar alkaline igneous activity. It is concluded, therefore, that the reconnaissance geochemistry reflects a district-wide hydrothermal event related to the late volatile differentiates derived from the highly fractionated alkaline magma. A combination of primary and secondary features have complemented each other in enhancing the geochemical reconnaissance data and emphasized its importance but has not materially altered the interpretation.The south of the field area also has a relatively high uranium background in both the sample media with some discrete anomalous zones, usually with a slightly lower order of magnitude than the central area, but still with a distinct contrast of 5–10 times. Fine-grained uraninite has been found in the area occurring as disseminated grains in pegmatitic elements as in the central district. Isotopic ratios (U-Pb) suggest an age of 1728 ± 30 Ma which probably reflects the long cooling of the granite.It is concluded that the geochemical reconnaissance data delineated two uranium metallogenic districts characterized by distinctly different types of uranium mineralization. It is suggested that South Greenland may be part of a much wider uranium geochemical province which includes parts of Labrador. To the present plate-tectonic models, which suggest such a connection (Le Pichon et al., 1977), must be added the comparable reconnaissance geochemical results (G.S.C. Open Files nos. 748 and 749), and the similar 1730 Ma age of the Kitts uranium mineral occurrence in Labrador (Gandhi, S.S , 1978) to that of the uraninite found in the south of the field area in Greenland.  相似文献   

8.
Naturally-occurring radionuclides (uranium, radium, and radon), major dissolved constituents, and trace elements were investigated in fresh groundwater in 117 wells in fractured crystalline rocks from the Piedmont region (North Carolina, USA). Chemical variations show a general transition between two water types: (1) slightly acidic (pH 5.0–6.0), oxic, low-total dissolved solids (TDS) waters, and (2) near neutral, oxic to anoxic, higher-TDS waters. The uranium, radium, and radon levels in groundwater associated with granite (Rolesville Granite) are systematically higher than other rock types (gneiss, metasedimentary, and metavolcanic rocks). Water chemistry plays a secondary role on radium and radon distributions as the 222Rn/226Ra activity ratio is correlated with redox-sensitive solutes such as dissolved oxygen and Mn concentrations, as well as overall dissolved solids content including major divalent cations and Ba. Since 224Ra/228Ra activity ratios in groundwater are close to 1, we suggest that mobilization of Ra and Rn is controlled by alpha recoil processes from parent nuclides on fracture surfaces, ruling out Ra sources from mineral dissolution or significant long-distance Ra transport. Alpha recoil is balanced by Ra adsorption that is influenced by redox conditions and/or ion concentrations, resulting in an approximately one order of magnitude decrease (~ 20,000 to ~ 2000) in the apparent Ra distribution coefficient between oxygen-saturated and anoxic conditions and also across the range of dissolved ion concentrations (up to ~ 7 mM). Thus, the U and Th content of rocks is the primary control on observed Ra and Rn activities in groundwater in fractured crystalline rocks, and in addition, linked dissolved solids concentrations and redox conditions impart a secondary control.  相似文献   

9.
江西相山铀矿田科学深钻3号孔在深部-700 m发现大量铅锌多金属矿化脉,垂向上呈"上铀下多金属"的分布特征。本文选取深部多金属矿脉主成矿阶段(S3)自形闪锌矿样品6件和不同阶段的毒砂、黄铁矿、方铅矿、方解石等样品12件,以及围岩全岩样品17件,进行了Rb、Sr同位素组成研究。结果表明:(1)由闪锌矿Rb-Sr等时线法确定的相山铀矿田深部多金属矿化形成于121. 0±3. 5Ma,与围岩火山岩存在较大时差,可能与晚于围岩的深部次火山有关。根据穿插关系,多金属矿化略晚于碱性交代铀矿化,但明显早于酸性交代铀矿化;(2)多金属矿化脉体中金属矿物的Rb和Sr含量分别介于0. 041×10~(-6)~1. 38×10-6和2. 35×10-6~23. 11×10-6之间,Sr同位素初始比值(87Sr/86Sr)i变化较大,介于0. 706114~0. 718814之间,平均值为0. 713579,暗示相山铀矿田深部多金属矿化的成矿物质主要来源于地壳。初始流体Sr同位素值(0. 718665)明显高于成矿时赋矿围岩(流纹英安岩为0. 714581,碎斑流纹岩为0. 714417)的Sr同位素组成,表明多金属成矿流体和物质并非来自围岩火山岩;(3)由早到晚阶段的(87Sr/86Sr)i呈明显降低的演化趋势,表明成矿流体演化过程中受到大气降水的不断稀释作用。相山矿田的铀矿和深部多金属矿化同形成于华南中生代板内伸展构造背景。  相似文献   

10.
The region of Amarante (Northern Portugal) is composed of Hercynian tardi-tectonics granites and Paleozoic metasediments. Petrographic observations and SEM studies show that uranium is mainly contained within the rock in heavy accessory minerals such as apatite, zircon, monazite, uraninite, thorite and thorianite. The geological, geochemical and radiological data obtained suggest that the radon concentrations in dwellings of the studied area are mainly related with the uranium content of the rocks. Indeed, the highest contents were observed in granite AT2 of Padronelo (18.2 ppm) and the granite AT1 of Telões (10.3 ppm), with metasediments showing much lower uranium contents of 1.6 ppm; radon concentrations were evaluated in dwellings, using CR-39 passive detectors, and the results obtained in winter conditions suggest that the most productive geological units are the granites AT2 and AT1, with geometric means of 430 and 220 Bq/m3, respectively, while the metasediments show the lowest value of 85 Bq/m3. Some moderate radiometric anomalies, where uranium contents can double typical background values, were found in relation with specific fault systems of the region affecting granitic rocks, thus increasing radon risk; this is an indication of uranium mobility, likely resulting from the leaching of primary mineral supports as uraninite. Groundwater radionuclide contents show a wide range of results, with the highest activities related with granitic lithologies: 2,295 Bq/l for radon, 0.83 Bq/l for gross α and 0.71 Bq/l for gross β, presenting metasediments much lower values, in good agreement with other results obtained. Absorbed dose measured with gamma spectrometers in direct contact with the rocks is directly related with the uranium contents of the rocks, and thus works as a fast proxy for radon risk. It is concluded that radon risk is moderate to high in the granitic areas of the Amarante region and low in the metasediments of the same region.  相似文献   

11.
The reported source rocks for the abundant petroleum in the Tarim Basin, China range from Cambrian to Lower Ordovician and/or Upper Ordovician in age. However, the difference between the two groups of source rocks is not well characterized. In this study, pyrite was removed from eleven mature to over mature kerogen samples from source rocks using the method of CrCl2 reduction and grinding. The kerogen and coexisting pyrite samples were then analyzed for δ34S values. Results show that the kerogen samples from the Cambrian have δ34S values between +10.4‰ and +19.4‰. The values are significantly higher than those from the Lower Ordovician kerogen (δ34S of between +6.7‰ and +8.7‰), which in turn are generally higher than from the Upper Ordovician kerogen samples (δ34S of between ?15.3 and +6.8‰). The associated pyrite shows a similar trend but with much lower δ34S values. This stratigraphically controlled sulfur isotope variation parallels the evolving contemporary marine sulfate and dated oil δ34S values from other basins, suggesting that seawater sulfate and source rock age have an important influence on kerogen and pyrite δ34S values. The relatively high δ34S values in the Cambrian to Lower Ordovician source rocks are associated with abundant aryl isoprenoids, gammacerane and C35 homohopanes in the extractable organic matter, indicating that these source rocks were deposited in a bottom water euxinic environment with water stratification. Compared with the Upper Ordovician, the Cambrian to Lower Ordovician source rocks show abundance in C28 20R sterane, C23 tricyclic terpanes, 4,23,24-trimethyl triaromatic dinosteroids and depletion in C24 tetracyclic terpane, C29 hopane. Thus, δ34S values and biomarkers of source rock organic matter can be used for distinguishing the Cambrian and Upper Ordovician source rocks in the Tarim Basin.  相似文献   

12.
Over the years a large number of rock samples were collected by the explorationists of Atomic Minerals Directorate for Exploration and Research (AMD), Department of Atomic Energy from Sambalpur district, Orissa, India. The variation of uranium enrichment with various types of rock in these samples was studied with an aim to help quick reviewing of toposheets in case of newly taken up areas, for uranium exploration. The radioelements U, Th and K determined for these samples are plotted in ternary diagrams for classifying them as being uraniferous or thoriferous with respect to various type of rocks, keeping the total natural content of radioelements (expressed by eUP3O8) as a parameter. In this study it is seen that samples of quartzofeldspathic breccia type are enriched in uranium irrespective of their further sub classification and eU3O8 content. Granites are enriched in thorium when eU3O8 < 100 ppm and are enriched in uranium when eU3O8 > 100 ppm. A database prepared for this purpose may be useful for reviewing toposheets in future  相似文献   

13.
Up until now, it has been assumed that oil in the Palaeozoic reservoirs of the Tazhong Uplift was derived from Upper Ordovician source rocks. Oils recently produced from the Middle and Lower Cambrian in wells ZS1 and ZS5 provide clues concerning the source rocks of the oils in the Tazhong Uplift, Tarim Basin, China. For this study, molecular composition, bulk and individual n-alkane δ13C and individual alkyl-dibenzothiophene δ34S values were determined for the potential source rocks and for oils from Cambrian and Ordovician reservoirs to determine the sources of the oils and to address whether δ13C and δ34S values can be used effectively for oil–source rock correlation purposes. The ZS1 and ZS5 Cambrian oils, and six other oils from Ordovician reservoirs, were not significantly altered by TSR. The ZS1 oils and most of the other oils, have a “V” shape in the distribution of C27–C29 steranes, bulk and individual n-alkane δ13C values predominantly between −31‰ to −35‰ VPDB, and bulk and individual alkyldibenzothiophene δ34S values between 15‰ to 23‰ VCDT. These characteristics are similar to those for some Cambrian source rocks with kerogen δ13C values between −34.1‰ and −35.3‰ and δ34S values between 10.4‰ and 21.6‰. The oil produced from the Lower Ordovician in well YM2 has similar features to the ZS1 Cambrian oils. These new lines of evidence indicate that most of the oils in the Tazhong Uplift, contrary to previous interpretations, were probably derived from the Cambrian source rocks, and not from the Upper Ordovician. Conversely, the δ13C and δ34S values of ZS1C Cambrian oils have been shown to shift to more positive values due to thermochemical sulfate reduction (TSR). Thus, δ13C and δ34S values can be used as effective tools to demonstrate oil–source rock correlation, but only because there has been little or no TSR in this part of the section.  相似文献   

14.
The aim of this paper was to evaluate the chemical weathering rate at Alto Sorocaba basin, São Paulo State, Brazil, as it is an important parameter on geomorphological characterization of continents. Several tools may be used for such evaluation, and this work compares the results obtained from analytical data involving the uranium concentration, the 234U/238U activity ratio and the major cation concentration for samples of waters, soils, and rocks from that basin. The use of the natural uranium as a tracer in weathering rate rocks studies is advantageous since this element is virtually absent in rainwater and also allows obtaining the dissolution rocks coefficient by the 234U/238U activity ratio. The Alto Sorocaba basin has serious environmental problems in terms of the quality of the rainwater and river waters, and, consequently, the geochemical balance using the main cations presented some difficulties. However, measuring of the weathering rate utilizing the U-isotopes method corresponded to 14 μm/year that allows estimating a time of 72,000 years to weather 1 m of rock at Sorocaba River upstream from Itupararanga Reservoir, under the present climatic conditions.  相似文献   

15.
The isotopic (U-Pb, 238U-235U, 234U-238U) and chemical study of whole-rock samples and finegrained fractions of rocks in a vertical section of the terrigenous sequence at the Dybryn uranium deposit in the Khiagda ore field shows that a wide U-Pb isotopic age range (26.9-6.5 Ma) is caused by oxidation and disturbance of the U-Pb isotopic system in combination with protracted uranium ore deposition. The oxidation of rocks resulted in the loss of uranium relative to lead and eventually to an overestimated 206Pb/238U age at sites with a low U content. The 238U/235U ratios in the studied samples are within the range of 137.74–137.88. Samples with a high uranium content are characterized by a decreasing 238U/235U ratio with a decrease in 207Pb/235U and 206Pb/238U ages. A nonequilibrium 234U/238U ratio in most studied samples furnishes evidence for young (<1.5 Ma) transformation of the Miocene uranium ore, which is responsible for uranium migration and its redeposition.  相似文献   

16.
研究目的】思茅盆地赋存有中国唯一的前第四纪固体钾盐矿床,该矿床的成因一直存在争议。客观地认识矿床成因、合理地构建矿床成因模式,不仅是钾盐矿床学研究中亟需解决的基础科学问题,而且关乎盆地内钾盐资源勘查方向的选择。【研究方法】本项研究以思茅盆地L-2井和MZK-3井的盐岩、盐岩上覆和下伏碎屑岩、盐岩中的碎屑岩为主要研究对象,重点分析其锶同位素地球化学特征。【研究结果】结果表明:(1)L-2井全岩样品87Sr/86Sr值为0.708220~0.727458,平均值为0.712776;盐岩水不溶物87Sr/86Sr值为0.711342~0.741999,平均值为0.716574;(2)MZK-3井盐岩上覆碎屑岩层87Sr/86Sr值为0.713318~0.723147,平均值为0.717255;盐岩下伏碎屑岩层87Sr/86Sr值为0.712470~0.738988,平均值为0.719307;(3)碎屑岩样品经过87Rb校正恢复至初始沉积状态的87Sr/86Sr值为0.710880~0.727678,平均值为0.712828;(4)盐岩样品87Sr/86Sr值全部明显小于大陆地表风化系统的平均值,有个别样品87Sr/86Sr值大于现代海水。【结论】基于思茅盆地基础地质和钾盐矿床地质已有的研究成果,结合盐岩和碎屑岩锶同位素地球化学特征,可以得出:思茅盆地含钾盐岩与碎屑岩处于不同的锶同位素平衡体系;含钾盐岩的物源主体为海水,成盐过程中陆源淡水的补给可使87Sr/86Sr值增大;碎屑岩沉积于陆相环境,在与固态盐岩或盐岩水溶液接触之前已处于早成岩阶段A亚期;钾盐的成矿模式为勐野井组沉积期深层源盐通过走滑拉分形成的断层迁移至地表,在由高处向汇水盆地迁移过程中捕获了处于早成岩阶段A亚期的碎屑颗粒,形成了现今的含泥砾盐岩;部分含泥砾盐岩在迁移进入汇水盆地之后,经历了溶解-重结晶的过程,形成了盆地内成分较纯的盐岩;后续沉积的碎屑颗粒形成了防止盐岩溶蚀破坏的保护层;新生代的喜山运动使早期形成的钾盐矿床发生调整改造。  相似文献   

17.
中国西北地区北部主要盆地蚀源区包括银额盆地周缘、北山盆地群周缘、三塘湖盆地周缘、准噶尔盆地周缘,主体位于中亚构造域中西部南缘(部)或与之毗邻区。通过对研究区1 416件中性、酸性及碱性岩浆岩样品的年龄和铀含量数据进行分区统计处理,计算其在地史上的铀迁移量和古铀含量,结果显示,研究区岩浆活动主要发生在早石炭世-早三叠世(349~248 Ma),其次在中奥陶世-早泥盆世(470~396 Ma)。这分别与古亚洲洋开始俯冲消减(O2S1)和最终关闭、中亚-蒙古碰撞褶皱带形成(C-T1)的大地构造演化阶段及重大事件相对应。各区富铀岩石主要形成于早石炭世-早三叠世(334~250 Ma),其与晚古生代岩浆活动具有时间上的一致性。在地域上, 两者有从西向东时代变新的趋势。这亦与古亚洲洋关闭、中亚构造域形成西早东晚的演化特征相一致。各蚀源区岩石的铀含量不尽相同,综合对比和评价表明:北山柳园区、准噶尔盆地东北缘阿勒泰-蕴都地区和东南部清河地区岩石铀含量与宗乃山区铀含量相当或更富;准噶尔盆地东北缘卡拉麦里区岩石铀含量偏富;银额盆地南缘雅布赖山、巴彦诺日公及庆格勒地区及其北部的沙拉扎山区,北山盐滩及马鬃山区,三塘湖盆地周缘,以及准噶尔盆地东北缘的阿勒泰西北区和西缘的北部区铀含量中等;其他地区铀含量相对较贫。研究区现今富铀蚀源区的大部地区,在晚三叠世开始隆升,此后进一步发展,为邻近中新生代盆地提供了丰富的沉积物和铀物质,成为相邻中新生代陆相盆地砂岩型、煤岩型及泥岩型铀矿床的主要成矿物质来源;盆内深部烃源岩层富含铀元素,可降低烃源岩的生烃门限温度并增加烃源岩生烃总量,具有重要的地质、成矿意义。  相似文献   

18.
3701铀矿床成因的同位素地球化学研究   总被引:1,自引:0,他引:1  
3701铀矿床赋存于L花岗岩体外接触带泥盆系灰岩中.成矿时代属燕山晚期及喜山期.根据铀-铅同位素体系演化特征以及硫、氧、碳同位素组成资料表明,该矿床的成矿物质是多源的,它们来自成矿围岩及花岗岩;矿液水主要来自大气降水.成矿过程经历了围岩成岩阶段铀的预富集、花岗岩侵入时地层中铀的活化转移和增值,围岩吸咐从花岗岩中淋出的铀.以及与燕山期、喜山期构造运动有关的热水溶液改造成矿作用.因此,它属多源、热液改造的层控铀矿床.  相似文献   

19.
The behavior of uranium during interaction of subsurface water with crystalline rocks and uranium ores is considered in connection with the problem of safe underground insulation of spent nuclear fuel (SNF). Since subsurface water interacts with crystalline rocks formed at a high temperature, the mineral composition of these rocks and uranium species therein are thermodynamically unstable. Therefore, reactions directed toward the establishment of equilibrium proceed in the water-rock system. At great depths that are characterized by hindered water exchange, where subsurface water acquires near-neutral and reducing properties, the interaction is extremely sluggish and is expressed in the formation of micro- and nanoparticles of secondary minerals. Under such conditions, the slow diffusion redistribution of uranium with enrichment in absorbed forms relative to all other uranium species is realized as well. The products of secondary alteration of Fe- and Ti-bearing minerals serve as the main sorbents of uranium. The rate of alteration of minerals and conversion of uranium species into absorbed forms is slow, and the results of these processes are insignificant, so that the rocks and uranium species therein may be regarded as unaltered. Under reducing conditions, subsurface water is always saturated with uranium. Whether water interacts with rock or uranium ore, the equilibrium uranium concentration in water is only ≤10?8 mol/l. Uraninite ore under such conditions always remains stable irrespective of its age. The stability conditions of uranium ore are quite suitable for safe insulation of SNF, which consists of 95% uraninite (UO2) and is a confinement matrix for all other radionuclides. The disposal of SNF in massifs of crystalline rocks at depths below 500 m, where reducing conditions are predominant, is a reliable guarantee of high SNF stability. Under oxidizing conditions of the upper hydrodynamic zone, the rate of interaction of rocks with subsurface water increases by orders of magnitude and subsurface water is commonly undersaturated with uranium. Uranium absorbed by secondary minerals, particularly by iron hydroxides and leucoxene, is its single stable species under oxidizing conditions. The impact of oxygen-bearing water leads to destruction of uranium ore. This process is realized simultaneously at different hypsometric levels even if the permeability of the medium is variable in both the lateral and vertical directions. As a result, intervals containing uranyl minerals and relics of primary uranium ore are combined in ore-bearing zones with intervals of completely dissolved uranium minerals. A wide halo of elevated uranium contents caused by sorption is always retained at the location of uranium ore entirely destroyed by weathering. Uranium ore commonly finds itself in the aeration zone due to technogenic subsidence of the groundwater table caused by open-pit mining or pumping out of water from underground mines. The capillary and film waters that interact with rocks and ores in this zone are supplemented by free water filtering along fractures when rain falls or snow is thawing. The interaction of uranium ore with capillary water results in oxidation of uraninite, accompanied by loosening of the mineral surface, formation of microfractures, and an increase in solubility with enrichment of capillary water in uranium up to 10?4 mol/l. Secondary U(VI) minerals, first of all, uranyl hydroxides and silicates, replace uraninite, and uranium undergoes local diffusion redistribution with its sorption by secondary minerals of host rocks. The influx of free water facilitates the complete dissolution of primary and secondary uranium minerals, the removal of uranium at the sites of groundwater discharge, and its redeposition under reducing conditions at a greater depth. It is evident that the conditions of the upper hydrodynamic zone and the aeration zone are unfit for long-term insulation of SNF and high-level wastes because, after the failure of containers, the leakage of radionuclides into the environment becomes inevitable.  相似文献   

20.
Trace amounts of three halogens (chlorine, bromine and iodine) in seventeen U.S. Geological Survey (USGS) geochemical reference materials were determined by radiochemical neutron activation analysis (RNAA). The materials analysed were AGV‐2 (andesite), BCR‐2, BHVO‐2 and BIR‐1a (basalts), CLB‐1 (coal), COQ‐1 (carbonatite), DGPM‐1 (disseminated gold ore), DNC‐1a (dolerite), DTS‐2b (dunite), GSP‐2 (granodiorite), Nod‐A‐1 and Nod‐P‐1 (manganese nodules), QLO‐1a (quartz latite), SBC‐1 (marine shale), SDC‐1 (mica schist), SGR‐1b (shale rock) and W‐2a (diabase). The chlorine, bromine and iodine contents were determined to be 5.64 mg kg?1 (BIR‐1a) to 4410 mg kg?1 (Nod‐A‐1), 0.039 mg kg?1 (BIR‐1a) to 52.1 mg kg?1 (CLB‐1), and 0.041 mg kg?1 (BIR‐1a) to 599 mg kg?1 (CLB‐1), respectively. The RNAA data of the three halogens were compared with the corresponding data in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号