首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Upper Cenozoic Magmatic Arc in northern New Zealand was initiated when the Indian-Pacific plate boundary first spread through the North Island approximately 20 m.y. ago. Six geographically separated magmatic arcs are recognized in succession. The first (20-15 m.y.) was sited over a basement depression; lavas were basic to intermediate and largely submarine; mineralization was minor. Subsequent arcs were sited over basement horst and characterized by sub-aerial intermediate to acid magmas. After prolonged andesitic/dacitic activity (18-6 m.y.) with minor mineralization, prolific rhyolite/ignimbrite eruption began at about 6 m.y., with abundant mineralization. Behind-arc activity produced localized basalt fields in the north, and geographically restricted high-potash andesites in the south.The first four arcs in the series are aligned at about 70° to the active Tonga-Kermadec-Taupo arc. The migration and rotation of the older New Zealand arcs are ascribed to four processes taking place at the plate boundary. These are: (1) anti-clockwise bending of the crust of western North Island, obliquely to the movement of the underlying lithosphere of the Indian plate, beginning at about 3 m.y., accompanying (2) dextral transcurrent displacement of 230 km with respect to eastern North Island; taking place mostly from 3 to 0 m.y.; (3) steepening of the Benioff zone from an initial 18° dip at 20 m.y. to the present 55° to 60°; and (4) fracturing of the west-dipping lithospheric slab to give two parallel, low-potash andesitic arcs between 18 and 15 m.y.Eastern North Island is deduced to have been “floating” while Pacific plate lithosphere passed beneath it throughout the Upper Cenozoic; accordingly it is designated the Hawkes Bay Crustal Microplate.There is good agreement between major tectonic events in the South Pacific deduced by Molnar et al. from magnetic anomaly studies and major tectonic events on land. A tentative history of the Southwest Pacific is proposed for the last 40 m.y.  相似文献   

2.
The island chains of French Polynesia form subparallel line segments whose southeasterly extensions are perpendicular to the East Pacific Rise, the site of present sea-floor spreading in the eastern Pacific Ocean. Samples collected from island members of the Society and Austral Islands chains are used, together with previously reported age determinations for the Marquesas and Pitcairn-Gambier Islands, in a geochronological study of the southeastward migration of volcanism in each of those four lineaments. The suggestion from geomorphologic evidence that island ages increase to the northwest within each island chain, is confirmed by K---Ar whole-rock ages. The linear volcanism which built the islands of French Polynesia began in the Miocene and continues today.Rates of migration of volcanism are calculated from the nearly linear relationship between average island ages and distance from the southeast ends of the four island lineaments. The four rates are indistinguishable, within limits of detection, at 11 ± 1 cm/year. These rates are consistent with the model of rigid Pacific plate movement over four fixed sources of volcanism, be they dynamic as in the hot spot/plume models or passive as in models of propagating lithospheric fractures. If it is accepted that these volcanic sources trace the motion of the lithosphere over the mantle and thus define the “absolute” frame of reference for plate movement, Pacific plate motion may be fixed to the geometry and volcanic migration rates of French Polynesia. This allows calculation of the absolute motion of all other plates, providing an accurate relative motion model is known (Minster et al., 1974). Such a calculation predicts that Africa is virtually stationary and that the Mid-Atlantic Ridge and East Pacific Rise are moving slowly to the west.  相似文献   

3.
Tholeiitic basalts of the Napali Formation comprise the bulk of the Kauai shield volcano. Potassium-argon ages measured on 16 samples from three separate areas in this formation lie in the range 5.14 ± 0.20 to 3.81 ± 0.06 m.y. The scatter in the measured ages in each area is greater than that expected from experimental error alone, and variable loss of radiogenic argon is regarded as at least partly responsible. Nevertheless an interval of eruption in the order of 0.8 m.y. is deduced for the Napali Formation. The results from the Napali Formation taken together with K-Ar ages measured earlier on basalts of the Makaweli Formation, the youngest formation of the dome-building phase, yield a mean age of 4.43 ± 0.45 m.y. for the construction of the main subaerial shield volcano of Kauai.When this result from Kauai is combined with estimates of the average age for the shield-building volcanism in 16 other volcanoes in the Hawaiian island chain, extending over a distance of more than 2800 km, the data are found to conform to migration of the centre of volcanism from north-northwest to south-southeast at a uniform rate of 9.4 (±0.3) cm/yr over the last 28 m.y. Non-linear models of propagation of volcanism in the Hawaiian chain are quite unnecessary, especially when uncertainties in the data base are taken into account. These results are consistent with an origin of the Hawaiian volcanic chain by eruption from a magma source situated below the Pacific lithospheric plate, as proposed under hot spot or plume models. Depending upon choice of the pole for the Pacific plate, rates of rotation about the pole of 0.9° to 1.0°/m.y. are derived. By extrapolation of the Hawaiian Island chain data an age estimate of 37.8 m.y. is derived for the Hawaiian-Emperor Seamount intersection.  相似文献   

4.
—?The number and geometric distribution of putative mantle up-welling centers and the associated convection cell boundaries are determined from the lithospheric plate motions as given by the 14 Euler poles of the observational NUVEL model. For an assumed distribution of up-welling centers (called “cell-cores”) the corresponding cell boundaries are constructed by a Voronoi division of the spherical surface; the resulting polygons are called “Bénard cells.” By assuming the flow-kinematics within a cell, the viscous coupling between the flow and the plates is estimated, and the Euler poles for the plates are computed under the assumption of zero-net-torque. The positions of the cell-cores are optimized for the HS2-NUVEL1 Euler poles by a method of successive approximation (“subplex”); convergence to one of many local minima occurred typically after ~20,000 iterations. Cell-cores associated with the fourteen HS2-NUVEL1 Euler poles converge to a relatively small number of locations (8 to 10, depending on interpretation), irrespective of the number of convection cells submitted for optimized distribution (from 6 to 50). These locations are correlated with low seismic propagation velocities in tomography, uniformly occur within hotspot provinces, and may specifically be associated with the Hawaiian, Iceland, Reunion/Kerguelen (Indian Ocean), Easter Island, Melanesia/Society Islands (South Pacific), Azores/Cape Verde/Canary Islands, Tristan da Cunha (South Atlantic), Balleny Islands, and possibly Yellowstone hotspots. It is shown that arbitrary Euler poles cannot occur in association with mantle Bénard convection, irrespective of the number and the distribution of convection cells. Nevertheless, eight of the observational Euler poles – including the five that are accurately determined in HS2-NUVEL1 (Australia, Cocos, Juan de Fuca, Pacific, and Philippine) – are “Bénard-valid” (i.e., can be explained by our Bénard model). Five of the remaining six observational poles must be relocated within their error-ellipses to become Bénard-valid; the Eurasia pole alone appears to be in error by ~115°, and may actually lie near 40°N, 154°E. The collective results strongly suggest Bénard-like mantle convection cells, and that basal shear tractions are the primary factor in determining the directions of the plate motions as given by the Euler poles. The magnitudes of the computed Euler vectors show, however, that basal shear cannot be the exclusive driving force of plate tectonics, and suggest force contributions (of comparable magnitude for perhaps half of the plates) from the lithosphere itself, specifically subducting slab-pull and (continental) collision drag, which are provisionally evaluated. The relationship of the putative mantle Bénard polygons to dynamic chaos and turbulent flow is discussed.  相似文献   

5.
The major (M w = 8.8) Chilean earthquake of 27 February 2010 generated a trans-oceanic tsunami that was observed throughout the Pacific Ocean. Waves associated with this event had features similar to those of the 1960 tsunami generated in the same region by the Great (M w = 9.5) 1960 Chilean Earthquake. Both tsunamis were clearly observed on the coast of British Columbia. The 1960 tsunami was measured by 17 analog pen-and-paper tide gauges, while the 2010 tsunami was measured by 11 modern digital coastal tide gauges, four NEPTUNE-Canada bottom pressure recorders located offshore from southern Vancouver Island, and two nearby open-ocean DART stations. The 2010 records were augmented by data from seven NOAA tide gauges on the coast of Washington State. This study examines the principal characteristics of the waves from the 2010 event (height, period, duration, and arrival and travel times) and compares these properties for the west coast of Canada with corresponding properties of the 1960 tsunami. Results show that the 2010 waves were approximately 3.5 times smaller than the 1960 waves and reached the British Columbia coast 1 h earlier. The maximum 2010 wave heights were observed at Port Alberni (98.4 cm) and Winter Harbour (68.3 cm); the observed periods ranged from 12 min at Port Hardy to 110–120 min at Prince Rupert and Port Alberni and 150 min at Bamfield. The open-ocean records had maximum wave heights of 6–11 cm and typical periods of 7 and 15 min. Coastal and open-ocean tsunami records revealed persistent oscillations that “rang” for 3–4 days. Tsunami energy occupied a broad band of periods from 3 to 300 min. Estimation of the inverse celerity vectors from cross-correlation analysis of the deep-sea tsunami records shows that the tsunami waves underwent refraction as they approached the coast of Vancouver Island with the direction of the incoming waves changing from an initial direction of 340° True to a direction of 15° True for the second train of waves that arrived 7 h later after possible reflection from the Marquesas and Hawaiian islands.  相似文献   

6.
A detailed submersible investigation of a 20-km segment of the East Pacific Rise near 12°50′N between the Orozco and Clipperton fracture zones has resulted in the localization of 24 active hydrothermal vent fields and over 80 sites of sulfide accumulations. The active vents range from low-temperature vents characterized by exotic benthic communities to high-temperature “black smokers” and the deposition of polymetallic sulfides. The study is based upon a combination of fine scale topography obtained using the SEABEAM sonar system on N/O “Jean Charcot”, camera lowerings along the axis using the RAIE vehicle, and 32 dives by the submersible “Cyana” operating from N/O “Le Suroit”. The observations made between the Orozco and Clipperton fracture zones show topographic highs situated along the strike of the accreting plate segment separated by a small ridge offset at 11°49′N. This offset divides this portion of the ridge into two separate spreading segments each of which has a primary topographic high along strike. Secondary highs are associated with each segment of the ridge separated by either small offsets (or relay zones) or in some cases, zones where spreading centers overlap. Dives made on the tops of both primary highs (12°50′N and 11°30′N) confirm the presence inferred from previous surface work of high-temperature vent fields while one reconnaissance dive (14°20′N) near the Orozco fracture zone/ridge axis intersection reveals the absence of any hydrothermal activity in the present or recent past. The vast majority of vent fields investigated were found at the topographic high near 12°50′N, are associated with the most recent period of volcanism, and are confined to lava ponds situated within the axial graben.  相似文献   

7.
The parameters of split S waves from local weak earthquakes along eastern Hokkaido Island are studied over the period of 2003, including the strong Tokachi-oki September 26, 2003 earthquake (M = 8.0). Earthquake records of five stations belonging to the ISV seismological network were used. The studies of the split S wave parameters showed that they vary in space and time along Hokkaido Island. The zones of the Hidaka Mountains (ERM, MYR), Tokachi Plain (IWN, URH), and Kushiro Plain (AKK) are distinguished along Hokkaido. The anisotropy coefficients beneath the ERM, MYR, IWN, URH, and AKK stations attain 10.5, 10, 5, 3.5, and 6.5%, respectively. Beneath ERM, azimuths of the fast S wave (?) are predominantly in the N-S direction until July and in the E-W direction from July (parallel and normal to the Japan trench strike). By the time of the Tokachi-oki earthquake, the ? directions were oriented SE in agreement with the direction of the Pacific plate motion. The ? directions on the northern side of the Hidaka Range (MYR) are predominantly orthogonal to those beneath ERM, which can be evidence for differences in the direction of deformations on opposite sides of the range. Higher seismicity, the variation of S wave parameters, and a high anisotropy of the medium point to an intense development of deformation (dilatancy) processes in the area of the Hidaka Mountains. The fast wave azimuths beneath AKK are predominantly 50°–70°, and this orientation is consistent with the direction of migration of the Kurile arc front along the trench. Beneath IWN, the azimuths ? are oriented along the N-NE directions, and beneath URH, along the direction of the Pacific plate motion (100°–150°). Strengthening of mechanical properties of the medium and development and accumulation of shear deformations in a subhorizontal plane are supposed to take place in the Tokachi Plain area.  相似文献   

8.
The mean palaeomagnetic pole position obtained from Upper Cretaceous rocks in west Sicily is at 21°N, 100°E (A95 = 15°), and at 38°N, 67°E (A95 = 31°) obtained from Middle Jurassic rocks. These pole positions are completely different from comparable pole positions for southeast Sicily and Africa and imply a clockwise rotation of west Sicily since the Upper Cretaceous of about 90° relative to southeast Sicily and Africa and also a clockwise rotation of about 60° relative to “stable” Europe. The sense of rotation of west Sicily is opposite to any known rotation of other crustal blocks in the central Mediterranean.  相似文献   

9.
The elastic thickness of the lithosphere in the Pacific Ocean   总被引:1,自引:0,他引:1  
In this study, we present determinations of the effective elastic thicknessTe of the oceanic lithosphere along Pacific chains or archipelagoes.Te is determined by computing the deflection of a continuous elastic plate under the load of volcanoes, and constrained by geoid heights provided by SEASAT. In the South Central Pacific, estimates of 14 km for the Marquesas and 6 km or less for the Pitcairn-Mururoa-Gloucester chain are in good agreement with a previous work in this region (Cook-Austral and Society chains). Around the Line Islands chain, SEASAT data reveal that the bathymetry is poorly known, preventing fine analysis. Meanwhile,Te looks globally very low ( 6 km), except for three volcanoes but these results may be unreliable. The Easter chain features lowTe values ( 6 km), with no noticeable variation along the chain. Higher values are found for a Samoan island, Manuae (24 km), and along the Hawaiian-Emperor seamounts chain (from 32 km at the eastern end of the chain to 21.5 km for the Hawaiian volcanoes, and from 25.5 to 15 km for the Emperor seamounts). The large number ofTe estimates obtained in this study points out a noticeable difference between North and South Pacific results. Those from the North Pacific agree with the general trend (increase with the square root of age plate at loading time), while those from the South Central Pacific are much lower, according to their plate age. These lowTe results from the South Pacific are only partly explained by taking account of thermal perturbations using the rejuvenation model. Therefore, these results then point out a regional difference in oceanic lithosphere.  相似文献   

10.
Seamount magnetic anomaly inversions as well as DSDP paleomagnetic and equatorial sediment facies data constrain a paleomagnetic pole for the Pacific plate of Late Eocene age. The location of the pole at 77.5°N, 21.2°E implies 12.5 ± 1.6° of apparent polar wander for the Pacific plate during the last 41 ± 5 m.y. The Late Eocene pole is significantly different from the Pacific Maastrichtian pole at the 95% confidence level and indicates 7.2° of apparent polar motion of the Pacific between 69 and 41 m.y. B.P. The data source locations for the Late Eocene pole are scattered over a large area of the North Pacific and thus the consistency of the data supports the hypothesis that the north central Pacific plate has been rigid since the Eocene. The agreement of the Late Eocene pole with the motion predicted for the Pacific from hotspot models suggests that relative motion between the spin axis and hotspots has been small since that time. Additionally, this finding dictates that the significant amounts of hotspot versus spin axis motion inferred by other authors to have occurred since the Cretaceous must have instead occurred at a faster rate and concluded before the Eocene.  相似文献   

11.
Pacific plate equatorial sediment facies provide estimates of the northward motion of the Pacific plate that are independent of paleomagnetic data and hotspot tracks. Analyses of equatorial sediment facies consistently indicate less northward motion than analyses of the dated volcanic edifices of the Hawaiian-Emperor chain. The discrepancy is largest 60–70 Ma B.P.; the 60- to 70-Ma equatorial sediment facies data agree with recent paleomagnetic results from deep-sea drilling on Suiko seamount [1] and from a northern Pacific piston core [2]. Equatorial sediment facies data and paleomagnetic data, combined with K-Ar age dates along the Emperor chain [3], indicate a position of the spin axis at 65 Ma B.P. of 82°N, 205°E in the reference frame in which the Pacific Ocean hotspots are fixed. This pole agrees well with the position of the spin axis in the reference frame in which the Atlantic Ocean hotspots and the Indian Ocean hotspots are fixed [4,5], supporting the joint hypotheses that (1) the Pacific Ocean hotspots are fixed with respect to the hotspots in other oceans, (2) the hotspots have shifted coherently with respect to the spin axis, and (3) the time average of the earth's magnetic field 65 Ma B.P. was an axial geocentric dipole. Global Neogene paleomagnetic data suggest that a shift of the mantle relative to the spin axis has been occurring during the Neogene in the same direction as the shift between 65 Ma B.P. and the present. All data are consistent with a model in which the hotspots (and by inference the mantle) have shifted with respect to the spin axis about a fixed Euler pole at a constant rate of rotation for the last 65 Ma.  相似文献   

12.
Several long-range explosion seismology experiments have been conducted in the northwestern Pacific basin, where one of the oldest oceanic lithospheres is postulated to exist. The experiments were conducted from 1974 to 1980. Highly sensitive ocean-bottom seismographs which had been developed for longshot experiments were used. The lengths of the profiles ranged from 1000 to 1800 km, and the directions were chosen to provide wide azimuthal coverage. One of the aims of this series of experiments was to test the existence of velocity anisotropy on a large, regional scale.The results show that the oceanic lithosphere has anisotropy wherein the velocity changes by 4–7%. The anisotropy extends from a depth of at least 40 to 140 km beneath the sea bottom; however, the magnitude of the anisotropy may vary with depth. The azimuth of the maximum velocity is 150–160° clockwise from north, and coincides with the “fossil” direction of spreading of the Pacific plate, whereas it differs from the present direction of plate motion by ~ 30°. The azimuth does not seem to depend on depth. In the direction of maximum velocity, the lithosphere is basically two-layered: 8.0–8.2 and 8.6 km s?1. The depth of the interface is 50–60 km beneath the sea floor.  相似文献   

13.
The Hikurangi Margin is a region of oblique subduction with northwest-dipping intermediate depth seismicity extending southwest from the Kermadec system to about 42°S. The current episode of subduction is at least 16–20 Ma old. The plate convergence rate varies along the margin from about 60 mm/a at the south end of the Kermadec Trench to about 45 mm/a at 42°S. The age of the Pacific lithosphere adjacent to the Hikurangi Trench is not known.The margin divides at about latitude 39°S into two quite dissimilar parts. The northern part has experienced andesitic volcanism for about 18 Ma, and back-arc extension in the last 4 Ma that has produced a back-arc basin onshore with high heaflow, thin crust and low upper-mantle seismic velocities. The extension appears to have arisen from a seawards migration of the Hikurangi Trench north of 39°S. Here the plate interface is thought to be currently uncoupled, as geodetic data indicate extension of the fore-arc basin, and historic earthquakes have not exceededM s=7.South of 39°S there is no volcanism and a back-arc basin has been produced by downward flexure of the lithosphere due to strong coupling with the subducting plate. Heatflow in the basin is normal. Evidence for strong coupling comes from historic earthquakes of up to aboutM s=8 and high rates of uplift on the southeast coast of the North Island.The reason for this division of the margin is not known but may be related to an inferred increase, from northeast to southwest, in the buoyancy of the Pacific lithosphere.  相似文献   

14.
This paper discusses the technique for assessing the state of atmospheric acoustic channels (AACs) for the long-distance propagation of microbaroms. We calculated two possible microbarom propagation paths to station “Badary” from the sources located in (1) the North Atlantic at an azimuth of 320° and (2) the Northwestern Pacific at an azimuth of 60°. We investigate the spatio-temporal structure of the AAC. The experimental data are compared with modeling results.  相似文献   

15.
Seismotectonic regionalization of the Kamchatka subduction zone was carried out by retrospective analysis of the temporal sequence and locations of earthquake occurrence and an examination of relationships between the earthquake hypocenters and morphostructures in the continental slope of eastern Kamchatka. Ten segments separated with earthquake-generating strike-slip faults have been identified in the overthrusting (overhanging) margin of the Sea-of-Okhotsk plate in the zone where the Pacific and the Sea-of-Okhotsk plates interact orthogonally. Two to three earthquake-generating thrust blocks have been identified within these segments. This type of subduction is consistent with the keyboard-block model of L.I. Lobkovskii and B.V. Baranov. We put forward a model involving segmentation and generation of thrust blocks due to nonuniform coupling between the subducted Pacific plate and the overhanging Sea-of-Okhotsk plate. According to this model, both segmentation and the formation of thrust blocks are caused by nonuniform plate coupling due to unevenness in the relief of the plunging plate. The thrusts have relief expression as underwater highs and terraces, which indicate that a tsunami-generating earthquake can occur at this location. The highest rate of occurrence for magnitude 7 or greater earthquakes is found at the sharp bend of the Pacific plate, where the subduction angle is 10°–12° instead of 50°–51°, corresponding to a frontal (tectonic) arc, which can be traced by a positive free-air gravity anomaly and by an isostatic anomaly.  相似文献   

16.
Fifty-two new K-Ar dates for Upper Cenozoic volcanic rocks from north Chile and southwest Bolivia are presented, together with a compilation of previously available dates from this region. These dates are combined with calculations of volumes of lava and ignimbrite for a segment of the volcanic province (19°30′S to 22°30′S) to identify fluctuations in the level of volcanic activity during the last 24 Ma. Histograms of volumes against time have been plotted for each half-degree quadrant. In the southern half of the study area, there were peaks of activity in the periods 12 to 9 Ma and 6 to 3 Ma. In the northern half, a large proportion of the material was erupted in the period 6 to 0 Ma. This regional variation suggests that localized factors may govern the rate of volcanic output and complicates attempts at correlation with “pulses” of volcanic activity recognized elsewhere in the Pacific region. There is no conclusive evidence for volcanic episodes synchronous over such wide areas. A simple correlation between changes in spreading behaviour and changes in levels of volcanic activity is unlikely, in view of the complexity of the interactions at destructive plate margins. The rate of continental crust accretion from volcanic processes must be much less than that due to intrusive processes to account for the thickening of the Andean crust since the Jurassic.  相似文献   

17.
Between 67 and ~40 Ma ago a northwest-southeast-trending fracture system over 8000 km long split the Pacific plate and accumulated at least 1700 km of dextral offset between the east and west portions. This system, here named the Emperor fracture zone (EFZ) system, consisted of several segments, one along the present trace of the Emperor trough and another along the Line Islands, joined by short spreading ridges. The EFZ terminated at its northern end against the Kula-Pacific ridge, and at its southern end in a ridge-transform system, called the Emperor spreading system, which extended to the west, north of Australia.The finite angular velocity vector describing the relative motion between the East and West Pacific plates is ~0.6°/Ma about a pole at 36°N, 70°W. This vector, added to the known Early Tertiary motion of the Pacific plate with respect to the global hotspot reference frame, accounts in large part for the NNW trend of the Emperor seamount chain relative to the WNW Hawaiian trend, without violation of the integrity of the Antarctic plate. The Meiji-Emperor and Emperor-Hawaiian bends date, respectively, the initiation (~67 Ma ago) and cessation (~40 Ma ago) of seafloor spreading on the Emperor spreading system.The postulated Early Tertiary relative motion along the EFZ between the East and West Pacific plates explains (1) the present misalignment of the two sets of magnetic bights of the Pacific, (2) the abrupt truncation of eastern Pacific bathymetric lineaments against the Emperor trough and Line Islands, (3) the contrast in paleolatitude between the eastern and western Pacific as indicated by paleomagnetic and sedimentologic studies, and (4) the anomalous gravity signature of the central Hawaiian ridge that indicates that the ridge loaded thin hot lithosphere.  相似文献   

18.
The sulphur isotope composition of 16 pyrite and chalcopyrite samples from recent sulphide deposits (“Cyana”—project RITA) and active sulphide mineralisation (“Alvin”—project RISE) associated with hydrothermal sources at 380±30°C on the East Pacific Rise at latitude 21°N have been measured. The34S/32S ratios are relatively uniform and essentially identical for both sites: δ34S=+1.4to3.0%. (CDT), mean +2.1‰. The sulphides were analysed after the majority of the very numerous micro-inclusions of anhydrite had been removed.Two independent physico-chemical analyses of the data demonstrate that about 90% of the sulphur was leached from the basaltic host rocks by the circulating seawater-hydrothermal fluids.  相似文献   

19.
The relationship between group velocities of Rayleigh waves and the ocean-bottom age in the Pacific is examined. The Pacific basin is divided into four regions by isochrons determined from geomagnetic lineations. A significant change in group velocities of Rayleigh waves is obtained for these four regions by the use of the least-squares method from data for 27 paths in a period range 40–90 s. The present result and other geophysical observations strongly suggest the “thickening of the oceanic plate”, and are well explained by a simple plate-thickness/age relationl(km) = 7.49 t (m.y.)1/2 inferred from the “mantle gravity anomaly”.  相似文献   

20.
Aftershocks of the 2011 Tohoku-Oki great earthquake have a wide range of focal depths and fault plane mechanisms. We constrain the focal depths and focal mechanisms of 69 aftershocks with M w > 5.4 by modeling the waveforms of teleseismic P and its trailing near-surface reflections pP and sP. We find that the “thrust events” are within 10 km from the plate interface. The dip angles of these thrust events increase with depth from ~5° to ~25°. The “non-thrust events” vary from 60 km above to 40 km below the plate interface. Normal and strike-slip events within the overriding plate point to redistribution of stress following the primary great earthquake; however, due to the spatially variable stress change in the Tohoku-Oki earthquake, an understanding of how the mainshock affected the stresses that led to the aftershocks requires accurate knowledge of the aftershock location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号