首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
在有些沉积的硫化物矿床中,如含铜页岩中,金属富集具有Cu—Pb--Zn顺序(Weepohl)的层状分带性,有的地方矿化分带,正如Rentzsch所述,穿切了岩石氧化形成层。在这两种情况下,矿化分带顺序都相当于从更为氧化改变到更为还原条件。据Rentzsch(1974),矿物以次为:(1)赤铁矿(2)辉铜矿(3)斑铜矿—辉铜矿(4)斑铜矿(5)斑铜矿—黄铜矿(6)黄铜矿—黄铁矿(7)方铅矿—闪锌矿—黄铜矿(8)方铅矿—闪锌矿(9)黄铁矿。  相似文献   

2.
大兴安岭中段铜多金属矿床矿物微量元素研究   总被引:16,自引:4,他引:12  
盛继福  李岩  范书义 《矿床地质》1999,18(2):153-160
对大兴安岭中段铜多金属矿床硫化物矿同量元素研究表明,虽然该区矿床类型不同,但闪锌矿种属一致,多为铁闪锌矿和含铁闪锌矿,而方铅矿中Sb,Bi,Ag含量却明显不同;黄铜矿中的Co,Ni含量明显大于黄铁矿中的Co,Ni含量;各类型矿床中方铅矿,闪锌矿,黄铜矿,黄铁矿等硫化物中Ag普遍有较高的含量,反映了大兴安岭中段银处于高异常区,银,金,镉,铟往往具有综合利用价值。  相似文献   

3.
硫化物矿物对银的表面吸附作用及其成矿意义   总被引:4,自引:0,他引:4  
吴大清  彭金莲 《地球化学》1996,25(4):372-378
通过硫化物矿物对银离子的吸附实验研究表明,在50℃时,硫化物矿物对溶液中银离子的等温饱和吸附量大小顺序是:方铅矿>黄铜矿>辉锑矿>闪锌矿;当温度超过70℃时,这个顺序变为:辉锑矿>方铅矿>黄铜矿>闪锌矿。这与天然多金属矿床中硫化物矿物银的含量顺序是一致的。实验证明,硫化物具有把溶液中的银富集到固体(矿物中)达106量级以上的能力。这些结果极好地解释了多金属矿床中银在普通硫化物中含量大小的顺序及锑和银在矿床和矿物上密切共生的关系。  相似文献   

4.
在西格陵兰37亿年前上地壳岩带中的硫化物、硅酸盐和碳酸盐相含铁建造中,发现了伴有少量磁黄铁矿的铜硫化物。在氧化相含铁建造中,黄铁矿是仅有的硫化物,只有少量产出,在变质的玄武质凝灰岩中,发现过黄铜矿和磁黄铁矿薄层。变质达低级闪岩相,从而形成高温黄铜矿—方黄铜矿的结晶。随后的冷却,导致不混溶作用,使黄铜矿和方黄铜矿分离成片状,在一些地方与针状磁黄铁矿共同产出,方铅矿的铅同位素比值显示出硫化物和上地壳岩是同时代的产物。认为含铁建造和凝灰质闪岩中的硫化物属海底喷气成因。  相似文献   

5.
吴胜华  孙冬阳  李军 《岩石学报》2020,36(1):245-256
华南包括两个世界级的W矿带,分别是南岭和江南造山带W成矿带。柿竹园W多金属矿床位于南岭地区,香炉山W矿床位于江南造山带东北部。两个矽卡岩W矿床都发育硫化物成矿阶段。但硫化物和成矿元素组成存在显著的差异。前者由含Pb、Zn、Ag硫化物和黝铜矿、银黝铜矿、含Ag斜方辉铅铋矿和铁硫锡铜矿硫盐组成;后者主要为磁黄铁矿。柿竹园远接触带Pb-Zn-Ag矿脉中硫化物(闪锌矿、黄铜矿、方铅矿和磁黄铁矿)较富集B、Mn、Cr、Sb、Sn和Hg,香炉山似层状矽卡岩和硫化物-白钨矿矿体中硫化物(磁黄铁矿、黄铜矿和闪锌矿)较富集W、Se和Bi。两个矿床中黄铜矿、闪锌矿和方铅矿较富集Ag,黄铜矿、闪锌矿富集In和Sn,闪锌矿还富集Cd。两个矿床中的硫化物微量元素分析表明与矽卡岩W矿成矿相关的硫化物可载有多种微量元素。这些元素参与到硫化物中程度由多种因素控制。具体如下,硫化物中B含量高低与成矿相关岩体中B含量相关;在相对高温和还原条件下,硫化物中W含量较高;闪锌矿中Mn和Cd与Zn发生取代作用; Cr可以一定程度进入到硫化物中,并受成矿流体中Cr含量影响; Se与S发生了一定程度的取代进入硫化物,并受流体中它的含量控制; Bi在闪锌矿与黄铜矿易形成固溶体;硫化物中Sb含量受初始流体中它的含量影响,方铅矿中易包裹一定的辉锑矿(Sb_2S_3)或含Sb的硫盐矿物; Ag是否形成独立的矿物相和进入哪些硫化物中,取决于流体中Ag的初始含量和硫化物的沉淀次序;硫化物中Hg的含量受温度影响。  相似文献   

6.
内蒙古拜仁达坝-维拉斯托银多金属矿床的矿相学特征   总被引:4,自引:2,他引:2  
拜仁达坝和维拉斯托是近年来在内蒙古东部地区发现的2个大型银多金属矿床。文章通过岩相学、BSE图像与电镜能谱等手段对其矿相学特征进行了系统研究。笔者结合矿床地质特征,厘清了2个矿区金属矿物的种类、产出状态及生成顺序,共确定3期4个阶段的矿化作用。第1期成矿作用主要形成胶状黄铁矿,代表低温热(水)的沉积环境。第2期成矿作用是一次中高温热液成矿作用,以高温矿物毒砂与锡石为标志,形成As-S金属硫化物矿化:黄铁矿+闪锌矿+方铅矿+磁黄铁矿+黄铜矿+毒砂+锡石,随后经历了强烈的构造破碎和强烈的糜棱岩化,形成了一系列具有脆性变形-角砾状和塑性变形-糜棱状结构构造特征的矿石类型。第3期成矿作用包括2个成矿阶段:第1阶段为中高温热液成矿阶段,形成一系列富S的金属矿化和Bi+Ag的金属硫化物:毒砂→黄铁矿→自然Bi+硫银铋矿→方铅矿+磁黄铁矿+闪锌矿+黄铜矿等;第2阶段为中-低温热液活动,形成一系列贫S富Sb+Ag的金属硫化物:磁黄铁矿+方铅矿+闪锌矿→纤硫锑铅矿+银黝铜矿→六方锑银矿+锑银矿→自然银。其中铅锌矿化与第2、3期成矿作用有关,而银矿化主要与第3期成矿作用的第4阶段有关。  相似文献   

7.
红透山块状硫化物矿石主要成分为黄铁矿、磁黄铁矿、黄铜矿、闪锌矿和石英、角闪石、黑云母等脉石矿物。切成长40mm 直径17mm 的矿石圆柱用20wt%NaCl 溶液浸泡260小时后装入长江500型活塞-圆筒式三轴应力试验机,在362℃414MPa 围压下加1342MPa 轴压,13小时后于空气中自然冷却。实验后试样长度压缩为32.3mm,算得应变速率为4.1×10~(-6)/s。实验产物中出现大量垂直应力轴的松弛裂缝。黄铁矿强烈脆性破裂,而磁黄铁矿、黄铜矿和闪锌矿以塑性变形为主,局部也发生脆性破裂。再活化黄铁矿、磁黄铁矿和黄铜矿分别充填同种矿物的碎粒间隙。再活化产物也呈细脉穿插脆性变形的黄铁矿碎斑,细脉中以黄铜矿为主,其次是磁黄铁矿,有时含极少量闪锌矿,在磁黄铁矿、黄铜矿和闪锌矿的塑性变形区内,以及变形的石英和其它脉石矿物中均无再活化硫化物产出。实验结果表明在构造应力作用下强干性矿物和地质体容易发生脆性变形,从而为再活化成矿流体的运移和析出矿质提供通道和空间,而韧性变形区较难提供流体通道和矿质沉淀空间。所以,再活化成矿作用容易发生在脆性变形区和韧-脆性转换部位。原生矿石中的黄铜矿在实验条件下比其它三种硫化物更容易再活化。脆性变形的黄铜矿和黄铁矿比起其它矿物来更容易接受含铜流体的叠加,因此地层中的含铜黄铁矿矿胚层最容易受叠加流体作用而形成层控富矿床。  相似文献   

8.
新疆哈密卡拉塔格块状硫化物矿床金银赋存状态研究   总被引:3,自引:0,他引:3  
新疆哈密红海黄土坡VMS矿床位于东天山卡拉塔格隆起带,是卡拉塔格矿集区内新发现的块状硫化物矿床。矿体产于卡拉塔格隆起带核部火山沉积岩建造中,具有典型的VMS型矿床“上层下脉”二元结构特征。该矿床中含金硫化物矿石主要有块状黄铁矿黄铜矿、块状黄铁矿黄铜矿闪锌矿、块状黄铁矿闪锌矿黄铜矿和块状闪锌矿。文中在对各类含金硫化物矿石进行详细的矿相学研究基础上,结合扫描电子显微镜与能谱仪联用技术(SEM/EDS),对硫化物样品中金、银的赋存状态进行研究。结果表明,4种块状硫化物中的主要矿物形成于多个期次,主要包括VMS成矿期(黄铁矿阶段、闪锌矿黄铜矿黝铜矿方铅矿阶段、石英重晶石阶段)、热液叠加期(石英黄铁矿黄铜矿闪锌矿方铅矿阶段)和表生期(铜蓝纤铁矿阶段)。矿区首次发现4颗金银金属互化物(银金矿、碲银矿),其较大的化学成分差异指示了热液环境由中酸性中性转变为更有利于Au、Ag迁移沉淀的偏碱性。后期的偏碱性热液对VMS成矿期形成矿物产生了交代作用,使得Au、Ag活化再富集。由于后期热液叠加改造,红海VMS型矿床中Au、Ag不仅赋存于VMS成矿期后期中低温闪锌矿黄铜矿阶段,也赋存于VMS成矿期早期中高温黄铁矿阶段,并贯穿整个热液叠加期。各含金矿物组合中除4颗金银金属互化物外Au多呈显微不可见状态,推测Au、Ag主要以原子或离子形式赋存于矿物晶格中或矿物空位处。  相似文献   

9.
肯德可克矿床是祁漫塔格成矿带最重要的铁多金属矿床之一。前人对肯德可克矿床的地质特征、地球化学特征、成矿年代与物质来源以及成因进行了研究,但对于成矿类型与成矿环境存在不同的认识。肯德可克矿床中的黄铁矿、黄铜矿、磁铁矿、磁黄铁矿、闪锌矿和方铅矿电子探针分析结果表明,黄铁矿与磁黄铁矿均富Co贫Ni,且磁黄铁矿以单斜磁黄铁矿为主;黄铜矿、闪锌矿与方铅矿硫含量较高,且早期磁铁矿较晚期磁铁矿更富集MnO、TiO2。综合各矿物标型特征认为,肯德可克矿床为具矽卡岩型和热液型特征的中低温矿床。  相似文献   

10.
利用显微镜与电子探针对西藏拉萨跃进沟铜多金属矿床矿石进行了观察与分析,查明了矿石中Cu,Pb,Zn,Au,Ag,Mo等成矿元素的赋存特征.研究结果表明,铜主要以黄铜矿的形式存在;锌主要以闪锌矿的形式存在;铅主要以方铅矿的形式存在;金主要以类质同象的形式赋存于黄铁矿、磁黄铁矿与闪锌矿中;银主要以类质同象的形式赋存于方铅矿中;钼主要以类质同象的形式赋存于黄铁矿、磁黄铁矿、黄铜矿与闪锌矿中.最后通过野外与室内矿物学研究结果,初步认为该矿床属典型的中-高温熟液型矿床.  相似文献   

11.
煤矸石—水相互作用的溶解动力学及其环境地球化学效应研究党志(中国科学院地球化学研究所,贵阳550002)关键词水—岩作用煤矸石地球化学动力学采煤矿区复垦环境效应收稿日期:1997-3-10作者简介:党志男1962年生博士生环境地球化学煤矸石以其量多、...  相似文献   

12.
China has accumulated massive fine grained copper mine tailings stocks because of the past mining activities in this area. The tailings contain a variety of heavy metals, and the mass percent of Cu, which is one of the main contaminants in tailings, is up to 0.2601% (analysis by XRF). The Cu can pollute soil and groundwater by rain leaching in the form of Cu(Ⅱ), furthermore ,the fine grained copper-ore-tailings can contaminant larger area by wind for its small granularity ( < 74 μm). The main cause of weathering of mine tailings is due to oxidative dissolution of sulfides. Microorganisms, such as Acidithiobacillus ferrooxidans, play an important role in weathering. These bacteria attach to exposed to mineral surfaces by excreting extracellular polymers and oxidize the sulfide mineral. Some of these bacteria also oxidize Fe2+ to Fe3+ which can chemically oxidize sulfide minerals. These reactions produce voluminous quantities of acid mine drainage and heavy metals which are harmful to the environment and human healthy. This study aims at finding the weathering effects of A. ferrooxidans to Cu(II) pollution of fine grained copper mine tailings, and our experiment applied indigenous A. ferrooxidans FJ-01 to leach the tailings. The optimum test parameters were obtained using shaking flask experiment and SEM observation under the following experimental conditions: 39 days residence time, pulp density 1%-15% (1%, 5% and 15%), 30℃, 120 rpm, pH between 1-3 and redox potential between 400-650 mV. The test results show that the leaching rate of Cu reached 43.1% when the pulp density was 1% after 33 days and kept invariant till the end of the test. In addition, the leaching rate of Cu will decrease as the increase of pulp density, and the maximum rate of 15% pulp density was only 12.5%. From the SEM, it can be seen that the fine grain of tailings flocculated to conglobation under the action of bacterial leaching.  相似文献   

13.
Despite its importance within environmental management strategies, little concern is shown to sulfide oxidation and/or hardpan formation at neutral pH where dry condition prevails. Two gold mine tailings in Egypt, El Sid and Barramiya, were studied for their geochemical/mineralogical properties, and climate influence on hardpan formation. The tailings are characterised by homogeneous silt-sized sediments (>42%), have high carbonate, predominantly as calcite for El Sid and dolomite-ankerite for Barramiya, and low-sulfide contents, chiefly as pyrite, galena and sphalerite for El Sid, and arsenopyrite–pyrite for Barramiya. El Sid is characterised by high average concentrations of Pb (2,758 mg/Kg) and Zn (2,314 mg/Kg), its lower part dominated by mafics, overlaid by granitoids. Barramiya has higher As (average 2,836 mg/Kg) content and represents a mixture of mica-schists/mafics-ultramafics. During field investigations, no hardpans were identified, only bassanite and gypsum were found at the surface of El Sid tailings, forming thin layers and desiccation crack fillings. Column experiments showed a thin crust consisting of gypsum, halite and sodium sulfate formed at the top of the column of El Sid tailings after 2 weeks, this was not recognized in the column from Barramiya. The homogenous thickened tailings deposition in both areas did not favour hardpan formation, since the critical amounts of reacting sulfides were never achieved in individual lamina, due to missing mineral/grain size fractionation. The high-temperature/low-water availability, characteristic for desert climate regions did not allow significant sulfides oxidation. Therefore, both tailings will suffer from continuous erosion and spreading out of contaminants to the environment for a prolonged period of time by sporadic flash floods.  相似文献   

14.
T. Praharaj  D. Fortin   《Applied Geochemistry》2008,23(12):3728-3740
Several studies have shown that SO4-reducing bacteria (SRB) are active in acidic sulfide-rich mine tailings and sediments impacted by mining activities. SRB activity in acidic tailings has been shown to vary with seasons as a result of fluctuating in situ physico-chemical conditions. Iron-reducing bacteria (FeRB) also play an important role in Fe cycling in sediments impacted by mining activities, but their activity in mine tailings is poorly understood, despite the fact that geochemical evidence indicates that they might be active. The present study was undertaken to assess the seasonal changes in SRB and FeRB abundance and activity in alkaline Pb–Zn mine tailings (Calumet tailings) located near Ottawa, ON, Canada. Results showed that FeRB and SRB populations were present throughout the year at two different sampling sites at the Calumet tailings, but SO4 reduction rates (SRR) were lower in the spring than in the summer, indicating that SRB activity was affected by organic C availability and/or temperature. Surface agricultural runoff at one site provided ample nutrients and organic C to the tailings, but SRB activity remained lower than the site not impacted by nutrient runoff, suggesting that the type of organic C was different between the two sites and that less labile organic substrates were available to SRB in the organic-rich site. High SRB activity in the site containing low organic C inhibited the abundance of FeRB, and possibly their activity, as a result of abiotic reduction of Fe(III)-rich minerals by biogenic sulfides, which lowered the pool of final electron acceptors. The abiotic reduction pathway was consistent with the porewater data which showed that sulfide was consumed and SO4 produced, along with Fe(II). These results show a strong interdependence between SRB and FeRB activity, as observed in other environments, such as saltmarsh sediments. Low temperature did not appear to hinder FeRB abundance in alkaline tailings. Finally, despite evidence that SRB populations were active at both sites, the |S isotopic composition of the AVS and CRS fractions were not representative of biogenic sulfides, indicating that the overall S-isotope signature of mine tailings is more representative of abiotic sulfides originating from the ore body.  相似文献   

15.
金属矿山生产产生大量的尾矿,不但危害周围生态环境,而且对资源造成极大浪费。金川镍矿尾矿砂Ni、Cu和Co的平均含量分别达到0.21%、0.19%和0.01%,是够得上二次开发利用的宝贵资源。文中对金川镍矿尾矿砂矿物组成特征及酸溶特性进行了详细的研究,目的是为工业化高效回收尾矿砂中Ni、Cu和Co等有价金属提供科学依据与技术支撑。矿物学研究表明,金川镍矿尾矿砂主要由蛇纹石、绿泥石、橄榄石、辉石、透闪石、磁铁矿、白云石及少量磁黄铁矿、镍黄铁矿和黄铜矿等组成。经多年露天堆存,金川镍矿老尾矿库尾矿砂已发生不同程度的氧化作用。尾矿库3 m以上为强烈氧化带,金属硫化物矿物颗粒边缘、裂缝处基本都有强烈的氧化作用发生。碳酸盐等易溶矿物被大量消耗。硫酸溶解实验表明,金川镍矿老尾矿库尾矿砂中有价金属Cu、Ni和Co的平均浸出率分别可达88.6%、75.3% 和70.8%。尾矿砂中Cu、Ni和Co有价金属的浸出效果不但清楚直观地反映了尾矿库中尾矿砂的氧化程度,而且表明金属硫化物尾矿砂的风化作用,极大地促进了硫化物矿物中有价金属的酸溶浸出。  相似文献   

16.
Weathering of Hitura (W Finland) nickel sulphide mine tailings and release of heavy metals into pore water was studied with mineralogical (optical and electron microscopy, X-ray diffraction) and geochemical methods (selective extractions). Tailings were composed largely of serpentine, micas and amphiboles with only minor carbonates and sulphides. Sulphides, especially pyrrhotite, have oxidized intensively in the shallow tailings in 10–15 years, but a majority of the tailings have remained unchanged. Oxidation has resulted in depletion of carbonates, slightly decreased pH, and heavy metal (Ni, Zn) release in pore water as well as in the precipitation of secondary Fe precipitates. Nevertheless, in the middle of the tailings area, where the oxidation front moves primarily downward, released heavy metals have been adsorbed and immobilized with these precipitates deeper in the oxidation zone. In contrast to what was seen in pore water pH, but in accordance with static tests of the previous studies, the neutralisation potential ratio (NPR) calculated based on the mineralogical composition and the total sulphur content suggested that tailings are ‘not potentially acid mine drainage (AMD) generating’. However, the calculated buffering capacity of the tailings resulted largely from the abundant serpentine because of the low carbonate content. Despite its slow weathering rate, serpentine may buffer the acidity to some extent through ion exchange processes in fine ground tailings. Nevertheless, in practice, acid production capacity of the tailings depends primarily on the balance between Ca–Mg carbonates and iron sulphides. NPR calculation based on carbonate and sulphur contents suggested, that the Hitura tailings are ‘likely AMD generating’. The study shows that sulphide oxidation can be significant in mobilisation of heavy metals even in apparently non-acid producing, low sulphide tailings. Therefore, prevention of oxygen diffusion into tailings is also essential in this type of sulphide tailings.  相似文献   

17.
Redistribution of potentially harmful metals and As was studied based on selective extractions in two active sulphide mine tailings impoundments in Finland. The Hitura tailings area contains residue from Ni ore processing, while the Luikonlahti site includes tailings from the processing of Cu–Co–Zn–Ni and talc ores. To characterize the element solid-phase speciation with respect to sulphide oxidation intensity and the water saturation level of the tailings, drill cores were collected from border zones and mid-impoundment locations. The mobility and solid-phase fractionation of Ni, Cu, Co, Zn, Cr, Fe, Ca, Al, As, and S were analysed using a 5-step non-sequential (parallel) selective extraction procedure. The results indicated that metal redistribution and sulphide oxidation intensity were largely controlled by the disposal history and strategy of the tailings (sorting, exposure of sulphides due to delayed burial), impoundment structure and water table, and reactivity of the tailings. Metal redistribution suggested sulphide weathering in the tailings surface, but also in unsaturated proximal areas beside the earthen dams, and in water-saturated bottom layers, where O2-rich infiltration is possible. Sulphide oxidation released trace metals from sulphide minerals at both locations. In the Hitura tailings, with sufficient buffering capacity, pH remained neutral and the mobilized metals were retained by secondary Fe precipitates deeper in the oxidized zone. In contrast, sulphide oxidation-induced acidity and rise in the water table after oxidation apparently remobilized the previously retained metals in Luikonlahti. In general, continuous disposal of tailings decreased the sulphide oxidation intensity in active tailings, unless there was a delay in burial and the reactive tailings were unsaturated after deposition.  相似文献   

18.
Establishing a shallow water cover over tailings deposited in a designated storage facility is one option to limit oxygen diffusion and retard oxidation of sulfides which have the potential to form acid mine drainage (AMD). The Old Tailings Dam (OTD) located at the Savage River mine, western Tasmania contains 38 million tonnes of pyritic tailings deposited from 1967 to 1982, and is actively generating AMD. The OTD was constructed on a natural gradient, resulting in sub-aerial exposure of the southern area, with the northern area under a natural water cover. This physical contrast allowed for the examination of tailings mineralogy and geochemistry as a function of water cover depth across the OTD. Tailings samples (n = 144, depth: ≤ 1.5 m) were collected and subjected to a range of geochemical and mineralogical evaluations. Tailings from the southern and northern extents of the OTD showed similar AMD potential based on geochemical (NAG pH range: 2.1 to 4.2) and bulk mineralogical parameters, particularly at depth. However, sulfide alteration index (SAI) assessments highlighted the microscale contrast in oxidation. In the sub-aerial zone pyrite grains are moderately oxidized to a depth of 0.3 m (maximum SAI of 6/10), under both gravel fill and oxidized covers, with secondary minerals (e.g., ferrihydrite and goethite) developed along rims and fractures. Beneath this, mildly oxidized pyrite is seen in fresh tailings (SAI = 2.9/10 to 5.8/10). In the sub-aqueous zone, the degree of pyrite oxidation demonstrates a direct relationship with cover depth, with unoxidized, potentially reactive tailings identified from 2.5 m, directly beneath an organic-rich sediment layer (SAI = 0 to 1/10). These findings are broadly similar to other tailings storage facilities e.g., Fox Lake, Sherritt-Gordon ZnCu mine, Canada and Stekenjokk mine, Sweden where water covers up to 2 m have successfully reduced AMD. Whilst geotechnical properties of the OTD restrict the extension of the water cover, pyrite is enriched in cobalt (up to 2.6 wt%) indicating reprocessing of tailings as an alternative management option. Through adoption of an integrated mineralogical and geochemical characterization approach for tailings assessment robust management strategies after mine closure can be developed.  相似文献   

19.
Tailings generated during processing of sulfide ores represent a substantial risk to water resources. The oxidation of sulfide minerals within tailings deposits can generate low-quality water containing elevated concentrations of SO4, Fe, and associated metal(loid)s. Acid generated during the oxidation of pyrite [FeS2], pyrrhotite [Fe(1−x)S] and other sulfide minerals is neutralized to varying degrees by the dissolution of carbonate, (oxy)hydroxide, and silicate minerals. The extent of acid neutralization and, therefore, pore-water pH is a principal control on the mobility of sulfide-oxidation products within tailings deposits. Metals including Fe(III), Cu, Zn, and Ni often occur at high concentrations and exhibit greater mobility at low pH characteristic of acid mine drainage (AMD). In contrast, (hydr)oxyanion-forming elements including As, Sb, Se, and Mo commonly exhibit greater mobility at circumneutral pH associated with neutral mine drainage (NMD). These differences in mobility largely result from the pH-dependence of mineral precipitation–dissolution and sorption–desorption reactions. Cemented layers of secondary (oxy)hydroxide and (hydroxy)sulfate minerals, referred to as hardpans, may promote attenuation of sulfide-mineral oxidation products within and below the oxidation zone. Hardpans may also limit oxygen ingress and pore-water migration within sulfide tailings deposits. Reduction–oxidation (redox) processes are another important control on metal(loid) mobility within sulfide tailings deposits. Reductive dissolution or transformation of secondary (oxy)hydroxide phases can enhance Fe, Mn, and As mobility within sulfide tailings. Production of H2S via microbial sulfate reduction may promote attenuation of sulfide-oxidation products, including Fe, Zn, Ni, and Tl, via metal-sulfide precipitation. Understanding the dynamics of these interrelated geochemical and mineralogical processes is critical for anticipating and managing water quality associated with sulfide mine tailings.  相似文献   

20.
The fate of the arsenic (As) under neutral hydrogeochemical conditions in the mining ecosystem has attracted increasing concern, as the ecological restoration of As provides a possibility for safe use of mine water. However, successful cases are still inadequately reported worldwide. Therefore, to investigate the As-behavior in the mine tailings ecosystem, a study of the Wanniangou tailings pond (regional largest V-Ti-Fe mine tailings pond, Sichuan province, China) and the downstream (Rehe River) was conducted. It involves hydro-geochemistry, mineralogy, biogeochemistry, and the Geographically Weighted Regression model (GWR). The results reveal that: (1) the pH range of the mine water is 6.32 to 7.21. The chemical weathering of tailings resulted in an abnormal As concentration in water (e.g., transport pipe wastewater 76.5 μg L−1, the outlet of tailings pond 28.4 μg L−1), and it declines to the national water quality guideline (<10 μg L−1) after 2.59 km from the pond outlet. (2) Although sulfide oxidation boosts As migration in the tailings, As ecological refixation is promoted by tailings particle percolation, river sediment absorption, and aquatic plant uptake. The As refixation behaviors vary spatially, corresponding with the diversity of precipitation and absorption. Besides, Manganese (oxides or/and hydroxides) is conducive to As coprecipitation in the neutral hydrogeochemical environment. (3) The site selection of the V-Ti-Fe mine tailings pond with a downstream longer than 3 km creates a toxic metals self-restoration buffer zone, which could relieve the contamination probability and make the mining wastewater re-utilization feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号