首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We present the first data on bulk‐rock major and trace element compositions for a suite of eclogite‐ and blueschist‐facies rocks from the Bantimala Complex, Indonesia, with the aim of better constraining the protolith origins and nature of the subducted crust. The eclogites can be classified into two groups: glaucophane‐rich eclogite and glaucophane‐free eclogite, whereas the blueschists are divided into albite–epidote glaucophanite and quartz–glaucophane schists. SiO2 contents of the eclogites are 43.3–49.6 wt%, with Na2O + K2O contents 3.7–4.7 wt%. The blueschists show a wider range of compositions, with SiO2 = 40.7–63.8 wt% and Na2O + K2O = 2.7–4.5 wt%. Trace element data suggest that the eclogite protoliths include both enriched and normal mid‐oceanic ridge basalt (E‐MORB and N‐MORB) and also gabbroic cumulates. The blueschists show more variation in protoliths, which include N‐MORB, Oceanic Island Basalt (OIB) and Island Arc Basalt (IAB). Plots of element concentrations against the immobile Zr show considerable mobility of large ion lithophiles but not of high field‐strength elements during high‐pressure metamorphism, and indicate that the high SiO2 content of some blueschists is probably due to metasomatism by a LILE‐rich siliceous aqueous fluid. Strong correlations between K, Rb, Ba and Cs suggests that enrichment of these elements occurred by a single process. All the protoliths were subducted, metamorphosed to blueschist/eclogite‐facies and subsequently exhumed. It is noteworthy that the samples deduced to have come from thicker‐crust environments (OIB, IAB) were subducted to shallower depths (blueschist‐facies) than MORB‐derived samples, all except one of which reached eclogite‐facies conditions. The geochemical data of this study demonstrate the variety of ocean floor types that were subducted under the southeast margin of Sundaland in the late Jurassic period.  相似文献   

2.
Wei  Lin  Masaki  Enami 《Island Arc》2006,15(4):483-502
Abstract Jadeite‐bearing eclogites and associated blueschists locally crop out in a greenschist facies area at Kuldkourla, near the Akeyazhi River in the western Chinese Tianshan region, northwestern China. Garnet in these metamorphic rocks shows prograde zoning with increasing Mg and decreasing Mn from the crystal center towards the rim, and is divided into Ca‐poor/Fe‐rich core and Ca‐rich/Fe‐poor mantle parts. The garnet cores include the assemblages of (i) jadeite/omphacite (Xjd = 0.34–0.96) + barroisite/taramite; and (ii) omphacite + barroisite/pargasite, with paragonite, epidote, rutile and quartz as major phases with rare albite. The garnet mantles rarely contain inclusions of omphacite, glaucophane, epidote, rutile and quartz. Major matrix phases of the pre‐exhumation stage are omphacite, glaucophane, paragonite, rutile and quartz. These mineral parageneses give pressure (P)‐temperature (T) conditions of 0.9 GPa/390°C?1.4 GPa/560°C for the stage of the garnet core formation, 1.8 GPa/520°C for the stage of the garnet mantle formation, and 2.2 GPa/495°C‐2.4 GPa/535°C for the peak eclogite facies assemblage in the matrix. The estimated P‐T conditions and continuous changes of mineral parageneses imply a counterclockwise P‐T path which is a combination of (i) an early prograde stage of high‐pressure/low‐temperature (HP/LT) blueschist facies and/or LP/LT eclogite facies; (ii) a later prograde stage involving compression with minimal heating; and (iii) a climax‐of‐subduction stage characterized by a slight decrease of temperature with increasing pressure. The negative dP/dT of the latest subduction stage is possibly a record of the following events after a continuous subduction and ridge approach: (i) material migration within the upper part of the subducting slab, which has an inverse thermal gradient caused by ductile flow and/or slab break during subduction; and/or (ii) temporary cooling of the wedge mantle–slab interface by continuous subduction of a relatively cold slab following subduction of a hotter ridge.  相似文献   

3.
Blueschist-bearing Osayama serpentinite melange develops beneath a peridotite body of the Oeyama ophiolite which occupies the highest position structurally in the central Chugoku Mountains. The blueschist-facies tectonic blocks within the serpentinite melange are divided into the lawsonite–pumpellyite grade, lower epidote grade and higher epidote grade by the mineral assemblages of basic schists. The higher epidote-grade block is a garnet–glaucophane schist including eclogite-facies relic minerals and retrogressive lawsonite–pumpellyite-grade minerals. Gabbroic blocks derived from the Oeyama ophiolite are also enclosed as tectonic blocks in the serpentinite matrix and have experienced a blueschist metamorphism together with the other blueschist blocks. The mineralogic and paragenetic features of the Osayama blueschists are compatible with a hypothesis that they were derived from a coherent blueschist-facies metamorphic sequence, formed in a subduction zone with a low geothermal gradient (~ 10°C/km). Phengite K–Ar ages of 16 pelitic and one basic schists yield 289–327 Ma and concentrate around 320 Ma regardless of protolith and metamorphic grade, suggesting quick exhumation of the schists at ca 320 Ma. These petrologic and geochronologic features suggest that the Osayama blueschists comprise a low-grade portion of the Carboniferous Renge metamorphic belt. The Osayama blueschists indicate that the 'cold' subduction type (Franciscan type) metamorphism to reach eclogite-facies and subsequent quick exhumation took place in the northwestern Pacific margin in Carboniferous time, like some other circum-Pacific orogenic belts (western USA and eastern Australia), where such subduction metamorphism already started as early as the Ordovician.  相似文献   

4.
5.
Two crossite concentrates and one blueschist whole rock were analyzed by the K/Ar method. These samples belong to the high/intermediate pressure Western Series of the Chilean metamorphic basement and, in this area, are intruded by a small monzonite body.Ages obtained were 211 m.y. and 329 m.y. for the mineral concentrates and 211 m.y. for the whole rock. Discussion based on crystal size as a factor for retention of40Ar during localized re-heating of the metamorphic rocks due to the monzonitic intrusion leads to the acceptance of 329 m.y. as the minimum age of crossite crystallization. This age agrees with the whole rock Rb/Sr limiting reference isochrons (273–342 m.y.) previously obtained for the metamorphic basement of Central Chile which did not include samples of the present area.This age provides the first evidence of a Paleozoic blueschist assemblage in the eastern Pacific border and would suggest the existence of a Late Paleozoic subduction zone along the western margin of South America.  相似文献   

6.
Epidote and/or chlorite are common minerals in the roots of the fossil geothermal system of Saint Martin (Lesser Antilles). They appear in four distinct assemblages: (1) epidote+actinolite+quartz±magnetite near the contact between the tuffaceous host rocks (andesitic modal composition) and the quartz-diorite intrusion of Philipsburg; (2) epidote+chlorite+quartz in host rocks as far as a lateral distance of about 3 km from the intrusion; (3) epidote+chlorite+haematite+quartz locally in iron and manganese rich host rocks; (4) chlorite±phengite±magnetite appearing as late sealing of porosity in fracture-controlled quartz veins with strongly phengitized wall rocks. All these assemblages constitute a large alteration grading from propylitic alteration to thermal metamorphism (actinolite-bearing assemblage).Detailed microprobe studies of epidotes replacing plagioclases and of chlorites replacing glass and mafic minerals reveal notable compositional variations which have been studied with respect to temperature paleogradients (estimated from fluid inclusions study), distance from the thermal source and fo2 conditions. The mean Ps+Pm [100 × (Fe3+ + Mn3+)/(Al3+ + Fe3+ + Mn3+)] of epidotes vary from 21 in the presence of magnetite near the intrusion to 32 in haematite-bearing iron and/or manganese volcanic and sedimentary formations. The intra-grain chemical scattering of epidotes increases with increasing distance of the pluton and decreasing temperature of crystallization. All the chlorites coexisting with epidote are Mg-rich (XFe<0.50). Their main compositional variation consists in a significant enrichment in magnesium (toward the chlinochlore end member) in presence of haematite. The intra-grain chemical scattering of chlorite (expressed by the aluminium content in the structural formula) increases with increasing distance of the pluton and decreasing temperature of crystallization. Chlorites associated with phengite and magnetite in vein alteration are Fe- and Al-rich. The Mössbauer spectra indicate that the Fe3+ content of chlorite varies between 25 and 32% of total Fe in the presence of epidote; the higher content being attained in the presence of haematite. The Fe3+ content of chlorite associated with magnetite and phengite is 16% of total Fe. The compositional variations of epidote and/or chlorite of the four distinct assemblages observed at Saint Martin result from the combined effects of fO2, temperature, and time of heating. The effect of fO2 is particularly perceptible in the control of the epidote Ps content, of the chlorite XFe ratio of Fe3+ distribution between coexisting epidotes and chlorites. Despite the fact that it may be partially canceled out by the effect of fO2, the variation of compositional ranges of both epidotes and chlorites, which increases toward the outer part of the geothermal system in response to the combination of decreasing temperatures and decreasing time of heating of the rocks, suggests that chemical equilibrium has not been attained in the assemblages bearing epidotes and chlorites.  相似文献   

7.
The Long Valley Exploratory Well, at the center of the Resurgent Dome of Long Valley caldera, penetrated pre-caldera basement rocks at a depth of 2101.72–2313.0 m, beneath the caldera-forming Bishop Tuff and post-caldera Early Rhyolite. The basement rocks contain prominent quartzites, with ubiquitous milky white quartz veins (with minor calcite and pyrite) and fractures of varied orientation and geometry. The other members of the basement sequence are very fine-grained quartz-rich graphitic pelites with calcite veins, spotted hornfels, and shallow intrusive rocks. Previous studies established the presence of a post-caldera, paleohydrothermal system (500–100 ka) to a depth of 2000 m that affected the Bishop Tuff and a recent (40 ka to present) hydrothermal system at shallow depth (<1 km). The deeper extent of these hydrothermal activities is established in this paper by a detailed oxygen isotope analysis of the drill core samples. 238 analyses of δ18O in 50 quartz veins within the 163.57 m depth interval of basement rocks reveal extreme heterogeneity in δ18O values (8–19.5‰). Majorities of the 84 bulk analyses of quartzites show variation of δ18O within a narrow range of 14–16‰. However, certain samples of these quartzites near the contacts with veins and fractures exhibit sharp drops in δ18O. The interbedded pelitic rocks and spotted hornfels have whole-rock δ18O ranging from 2.2 to 11.8‰. Clear, euhedral vuggy quartz that partially fills earlier open fractures in both the quartzites and quartz veins, has distinctive δ18O, ranging between −3.2 and +8.4‰. Low values of δ18O are also found in the hydrothermal minerals and whole rocks adjacent to the thin veins, clearly indicating infiltration of meteoric water. Three distinct observed patterns of fractionation in δ18O between veins and host quartzites are analyzed with the principles of mass balance, equilibrium oxygen isotope fractionation in closed system, and kinetically controlled oxygen isotope exchange in an open system. This analysis suggests that the early quartz veins formed due to a magmatic-hydrothermal activity with no influx of external water once the system comprising the sedimentary envelope and a magmatic-hydrothermal fluid phase became closed. Two-stage isotopic exchange processes caused fractionation in the δ values that originally formed arrays with slope 1 in a δvein quartz–δhost quartzite space. Another array in the same space, with near zero slope was also formed due to variation in temperature, initial isotopic compositions of the quartzite sequence and the fluid phase. Variation in temperature was mostly in the range of 300–400°C giving Δ (=δvein quartz–δhost quartzite)≈−2.8 to +2.8. The δ18O of the fluid could range from −5 to +10; however a narrower range of +5 to +10 can explain the data. This episode of hydrothermal activity could take place either as a single pulse or in multiple pulses but each as a closed system. A later, fracture-controlled, meteoric water (δ18O−0.46 to −12.13) flow and interaction (at 250°C) is interpreted from the analysis of δ18O values of the coexisting quartz and calcite pairs and existence of markedly 18O-depleted pelitic horizons interbedded with 18O-enriched quartzite layers. Thus, the interpreted earlier magmatic-hydrothermal activity was overprinted by a later meteoric-hydrothermal activity that resulted in steep arrays of δ18O values in the δvein quartz–δhost quartzite space. Calculations show that the likely life span of the post-caldera, hydrothermal activity in the depth range of 2.1–2.3 km beneath Long Valley was 0.08–0.12 Ma. Diffusive ±advective transport of oxygen isotopes from fracture-channelized meteoric water to nearly impermeable wall rocks caused a lowering of δ18O values in the quartz over short distances and in calcites over greater distances. Thus, the hydrothermal activity appears pervasive even though the meteoric water flow was primarily controlled by fractures.  相似文献   

8.
Nd and Sr isotope determinations on late Precambrian to early Palaeozoic igneous and sedimentary rocks from the Arabian Shield are used to investigate the proportion of reworked “older” crust, and the rate at which new crust was generated during the Pan African event. Eight Rb/Sr whole rock isochrons on igneous suites yield ages in the range 770?590 Ma and initial 87Sr/86Sr ratios of 0.7038?0.7023. These data confirm that magmatism in this area was largely restricted to the period 850-550 Ma, and the initial ratios are sufficiently low to preclude significant contributions from a long-lived upper crustal source. The initial 143Nd/144Nd ratios of a variety of lithologies, including several samples of possible “basement”, are all higher than the contemporaneous values for CHUR (εNd = +1.6 to +6.9), suggesting that many were derived directly from the upper mantle, and that any inferred crustal source regions for the remainder could not have separated from likely LREE-depleted mantle reservoirs before 1200 Ma. The Arabian Shield therefore provides an example of rapid crustal growth during the Late Proterozoic, and contrasts with the Damara intracratonic belt of Namibia where Nd and Sr isotopes provide strong evidence for extensive reworking of older continental crust during the same period.  相似文献   

9.
The Zargoli granite, which extends in a northeast–southwest direction, intrudes into the Eocene–Oligocene regional metamorphic flysch‐type sediments in the northwest of Zahedan. This pluton, based on modal and geochemical classification, is composed of biotite granite and biotite granodiorite, was contaminated by country rocks during its emplacement, and is slightly changed to more aluminous. The SiO2 content of these rocks range from 62.4 to 66 wt% with an alumina saturation index of Shand [molar Al2O3/(CaO + Na2O + K2O)] ~ 1.1. Most of its chemical variations could be explained by fractionation or heterogeneous distribution of biotite. The features of the rocks resemble those which are typical to post‐collisional granitoids. Chondrite‐normalized rare‐earth element patterns of these rocks are fractionated at (La/Lu)N = 2.25–11.82 with a pronounced negative Eu anomaly (Eu/Eu* = 3.25–5.26). Zircon saturation thermometry provides a good estimation of magma temperatures (767.4–789.3°C) for zircon crystallization. These characteristics together with the moderate Mg# [100Mg/(Mg + Fe)] values (44–55), Fe + Mg + Ti (millications) = 130–175, and Al–(Na + K + 2Ca) (millications) = 5–50 may suggest that these rocks have been derived from the dehydration partial melting of quartz–feldspathic meta‐igneous lower crust.  相似文献   

10.
Eclogites and omphacite-bearing blueschists have been newly found in the eastern segment of the southwest Tianshan orogenic belt,Xinjiang,northwest China.After detailed petrological study,three samples including one fresh eclogite TK003,one blueschist sample TK026-8 and one retrograded eclogite TK027,were selected for phase equilibrium modeling under NC(K)MnFMASHO(N2O-CaO-K2O-MnO-FeO-MgO-Al2O3-SiO2-H2O-O)system,by thermocalc 3.33 software.Composition analyses of garnets in these three samples show typical growth zoning with Xpy and Xgrs increasing,Xspss decreasing from core to rim.Pseudosection modeling of the garnet zonation reflects that the eclogites and blueschist experienced a similar P-T evolution trajectory,with a near iso-baric heating in the early stage,and reached eclogite facies metamorphic field with peak P-T regime of 480–515°C,2.00–2.30 GPa.Subsequently the rocks experienced an early iso-thermal decompression retrograde stage with P-T conditions of 515–519°C,1.78–1.93 GPa.Variations of mineralogy and modes of these rocks are probably due to different retrograde paths as a consequence of different bulk-rock composition,as well as a variation in fluid activity during exhumation.P-T calculation and a peak geothermal gradient of 6–7°C/km indicate HP rocks in the Kekesu Valley experienced cold subducted eclogite facies metamorphism.Thus a huge oceanic subduction eclogite facies metamorphic belt in southwest Tianshan has been recognized,extending from the Kekesu Valley in the east to the Muzhaerte Valley in the west for nearly200 km.However,UHP evidence has not been found in the Kekesu terrane,perhaps because the slab in east part of southwest Tianshan did not subduct into such a great depth.  相似文献   

11.
The fine mineral fractions < 2 μm extracted from pelitic sediments of the Eocambrian upper Damaran Mulden Group were subjected to a detailed isotopic study by the Rb-Sr and K-Ar methods in combination with a mineralogical analysis by X-ray diffractometry.The sediments contain two major parageneses of metamorphic origin which can be related to two separate low-grade regional metamorphic events of anchizonal intensity with temperatures between 250 and 300°C and pressures up to 2 kbar. These events are dated at about 535 m.y. and 455 m.y. respectively (with λ(87Rb) = 1.42 × 10?11 yr?1).Anomalously high K-Ar ages on samples from specific stratigraphic horizons can be related to open system behaviour and K migration during the formation of stilpnomelane from ferromagnesian illites.This study shows that age dating of sedimentary rocks subjected to low-grade regional metamorphism can only yield meaningful results if the interpretation of isotopic analyses is based on a clear understanding of the mineralogical processes that led to the formation of those parageneses which characterize the rock unit dated.  相似文献   

12.
Palaeomagnetic investigations have been carried out on 12 dykes of Late Precambrian age from the Varanger peninsula, north Norway. The dykes are separated into two groups, the Kongsfjord dykes and the Båtsfjord dykes. In the Kongsfjord dykes, titanomagnetite is almost entirely erased, as a result of an extreme degree of alteration. Pyrrhotite is the dominating magnetic mineral, and only three stable specimen directions can be defined. In the Båtsfjord dykes, however, the most important magnetic constituent is nearly pure magnetite, and a two-axis magnetization structure is revealed. The directions of the major component conform to a Fisherian distribution, and are assumed to represent the relative Late Precambrian field. Superimposed on this magnetization is a minor component which is assumed to be of Caledonian origin, probably Ordovician. This latter remanence is in accordance with other Middle Palaeozoic results obtained in Western Europe. The upper age limit of the Late Precambrian field is discussed, and it is proposed that the polar shift from the Late Precambrian position to the main Palaeozoic group may have occurred as late as Middle Ordovician.  相似文献   

13.
The Precambrian basement of the British region south of the Caledonian orogenic belt is only observed in a few small inliers; this paper reports a detailed paleomagnetic study of four of these inliers. The Stanner-Hanter amphibolitised gabbro-dolerite complex of uncertain age yields a mean direction of magnetisation D = 282°, I = 51° (15 sites,α95 = 11.4°) after AF and thermal cleaning. Uriconian lavas and tuffs (~700-600 m.y.) of the Pontesford and Wrekin inliers require both thermal and AF cleaning for complete analysis of NRM. The former region (Western Uriconian) yields a mean of D = 136°, I = ?25° (6 sites,α95 = 15.3°) and the latter region (Eastern Uriconian) a mean of D = 78°, I = 17° (9 sites, α95 = 12.8°); the Eastern Uriconian shows a marked improvement in precision after a two-stage fold test, and the palaeomagnetic data suggest that some apparent polar movement took place between eruption of the two sequences. The Uriconian rocks in both areas were intruded by dolerites which yield a mean direction of magnetisation D = 72°, I = 54° (11 sites,α95 = 13.2°).The collective data give palaeomagnetic poles related to Upper Proterozoic metamorphic episodes (Stanner-Hanter Complex and Rushton Schist) which are in close agreement with earlier studies of the Malvernian metamorphic rocks, and to the late Precambrian Uriconian volcanic/hypabyssal igneous episode. All of these magnetisations are probably confined to the interval 700-600 m.y., and are indicative of appreciable polar movement during this interval. The palaeomagnetic poles define an apparent polar wander path for this crustal block between Late Precambrian and Lower Cambrian times and show that cratonic Britain south of the Caledonian suture is unrelated to the Baltic Shield.  相似文献   

14.
Precambrian glaciations appear to be confined to two periods, one in the early Proterozoic between 2.5 and 2 Gyears BP (Before Present) and the other in the late Proterozoic between 1 and 0.57 Gyear BP. Possible reasons for these broad features of the Precambrian climate have been investigated using a simple model for the mean surface temperature of the Earth that partially compensates for the evolution of the Sun by variations in the atmospheric CO2 content caused by outgassing, the formation of continents and the weathering of the Earth’s land surface. It is shown that the model can explain the main changes in the Precambrian climate if the early Proterozoic glaciations were caused by a major episode of continental land building commencing about 3 Gyears BP while the late Proterozoic glaciations resulted from biologicallyenhanced weathering of the land surface due to the proliferation of life forms in the transition from the Proterozoic to the Phanerozoic that began about 1 Gyear BP.  相似文献   

15.
The Jurassic Shir‐Kuh granitoid batholith in Central Iran intrudes Lower Jurassic sandstones and shales. The batholith consists of three main facies: (i) a granodioritic facies to the north; (ii) a monzogranitic facies spread throughout the batholith; and (iii) a leucogranitic facies along the northwestern margin. The granodiorites are composed mainly of plagioclase, quartz, K‐feldspar, biotite, and some muscovite, garnet, cordierite, ilmenite, zircon, apatite, and monazite. This facies contains variable amounts of restite minerals which are mainly defined by calcic plagioclase cores and small aggregates of biotite. The monzogranites, with mineral assemblages similar to those in the granodiorites, range from relatively mafic (cordierite‐bearing) to felsic (muscovite‐rich) rocks. The leucogranites, exposed as small stock and dykes, consist mainly of quartz, K‐feldspar, and sodic plagioclase. The batholith is peraluminous, calc‐alkaline, and typical of S‐type, as indicated by Na2O content (2.74%), molecular Al2O3/(CaO + Na2O + K2O) (A/CNK) ratio (1.17), K2O/Na2O ratio (1.39), and isotopic data ([87Sr/86Sr]i = 0.715). The rocks are characterized by enrichment in large ion lithophile elements such as Rb, Th and K and depletion in high field strength elements such as Nb and Ti. Chondrite‐normalized rare earth element (REE) patterns are characterized by light rare earth element (LREE) enrichment, with values of (La/Yb)N between 4.5 and 19.53, unfractionated heavy rare earth element (HREE) with values of (Gd/Yb)N between 0.98 and 2.88, and a distinct negative Eu. The parental magma of the Shir‐Kuh Granite was derived from a plagioclase‐rich metasedimentary source (local anatexis of metagreywacke) in the crust, with heat input from mantle melt components. The separation of restite crystals from the primary melt followed by the fractional crystallization appears to have been an effective differentiation process in the batholith.  相似文献   

16.
Monoclinic pyrrhotite (Fe7S8) is widely claimed to carry magnetizations acquired during early diagenesis in anoxic sedimentary environments. In contrast, geochemical literature indicates that pyrrhotite formation is extremely slow below 180 °C, which makes it a highly unlikely carrier of early diagenetic remanences in sediments. This view is confirmed by the occurrence of late diagenetic Fe7S8 in ancient sediments and the general lack of Fe7S8 in modern sediments. Horng et al. [C.S. Horng, M. Torii, K.S. Shea, S.J. Kao, Inconsistent magnetic polarities between greigite- and pyrrhotite/magnetite-bearing marine sediments from the Tsailiao-chi section, southwestern Taiwan, Earth Planet. Sci. Lett. 164 (1998) 467–481.] documented the presence of Fe7S8 that carries a magnetic signal indistinguishable from that of detrital magnetite in Pleistocene marine sediments from Taiwan. We tested the possibility that the Fe7S8 could have a detrital origin by conducting a source-to-sink study and found Fe7S8 in metamorphic rocks of the Taiwan Central Range and in material eroded from these rocks in the transportation pathway and in the depositional sink. This confirms that the Fe7S8 has a detrital origin. Rapid transportation from source to sink (e.g., by typhoon-associated flood events) probably assists preservation of the Fe7S8, which might otherwise oxidize during transportation. The widespread occurrence of exhumed metamorphic rocks in orogenic belts around the world makes them a likely source of Fe7S8 in marginal sedimentary basins. Detrital Fe7S8 should therefore be more routinely considered to be responsible for paleomagnetic records when it is present in sediments with partial metamorphic provenance.  相似文献   

17.
A latite dome in northwest Arizona contains a rare occurrence of primary SO4-rich scapolite phenocrysts. The total phenocryst assemblage consists of plagioclase (An20?An33), hornblende, biotite, and scapolite (Me68). Microphenocrysts include allanite and oxidized low-Ti magnetite. Electron microprobe analyses show that the scapolite contains about 1.74 wt.% S, which indicates an atomic S/(S + C) of 0.58. Although scapolite occurs in xenoliths in volcanic rocks and diatremes, as well as a metamorphic mineral in granulites, its occurrence as a primary igneous mineral is extremely rare.Ca-rich scapolite has been crystallized experimentally by others from melts with a wide range of SiO2, CaO, and Na2O contents, at temperatures above 825°C and pressures ranging from 3 to 15 kbar. Comparison of scapolite from this latite with synthetic scapolite crystallized from nepheline syenite melt suggests that the Arizona phenocrysts crystallized under conditions of 850 to 900°C, 3–6 kbar total pressure, and unusually high ?CO2 and ?SO2. The rarity of scapolite as a phenocryst mineral suggests that high partial pressures of CO2 and SO2 are rare in the magmatic environment.  相似文献   

18.
Abstract Rb–Sr and Sm–Nd isochron ages were determined for whole rocks and mineral separates of hornblende‐gabbros and related metadiabases and quartz‐diorite from Shodoshima, Awashima and Kajishima islands in the Ryoke plutono‐metamorphic belt of the Setouchi area, Southwest Japan. The Rb–Sr and Sm–Nd whole‐rock‐mineral isochron ages for six samples range from 75 to 110 Ma and 200–220 Ma, respectively. The former ages are comparable with the Rb–Sr whole‐rock isochron ages reported from neighboring Ryoke granitic rocks and are thus due to thermal metamorphism caused by the granitic intrusions. On the contrary, the older ages suggest the time of formation of the gabbroic and related rocks. The initial 87Sr/86Sr and 143Nd/144Nd ratios of the gabbroic rocks (0.7070–0.7078 and 0.51217–0.51231 at 210 Ma, respectively) are comparable with those of neighboring late Cretaceous granites and lower crustal granulite xenoliths from Cenozoic andesites in this region. Because the gabbroic rocks are considered to be fragments of the lower crustal materials interlayered in the granulitic lower crust, their isotopic signature has been inherited from an enriched mantle source or, less likely, acquired through interaction with the lower crustal materials. The Sr and Nd isotopic and petrologic evidence leads to a plausible conclusion that the gabbroic rocks have formed as cumulates from hydrous mafic magmas of light rare earth element‐rich (Sm/Nd < 0.233) and enriched isotopic (?Sr > 0 and ?Nd < 0) signature, which possibly generated around 220–200 Ma by partial melting of an upper mantle. We further conclude that they are fragments of refractory material from the lower crust caught up as xenoblocks by granitic magmas, the latter having been generated by partial melting of granulitic lower crustal material around 100 Ma.  相似文献   

19.
The Hongzhen metamorphic core complex is situated in the Yangtze plate to the east of the Dabie oro- genic belt. Its ductile detachment zone in the foot wall overprints on the metamorphic complex of the Proterozoic Dongling Group. The present profile of the ductile shear zone with consistent SW-dipping mineral elongation lineation shows antiform and reversed S-shape from northeast to southwest respectively. Exposure structures, microstructures and quartz C-axis fabric all indicate top-to-SW movement for the ductile shear zone. Recrystallisation types of quartz and feldspar in the mylonites demonstrate that the shear zone was developed under the amphibolite facies condition and at mid-crust levels. The metamorphic core complex formed in the Early Cretaceous with a muscovite plateau age of 124.8±1.2 Ma. Regional NE-SW extension along a SW-dipping, gentle detachment zone was responsible for formation of the core complex. Intrusion of the Hongzhen granite with a biotite plateau age of 124.8±1.2 Ma rendered the ductile shear zone curved, uplifted and final localization of the core complex. The Hongzhen metamorphic core complex suggests that the Early Cretaceous magma- tism in this region took place under the condition of regional extension and the eastern Yangtze plate also experienced lithospheric thinning.  相似文献   

20.
GHODRAT TORABI 《Island Arc》2012,21(3):215-229
Late Permian trondhjemites in the Anarak area occur as stocks and dykes, which cross cut the Anarak ophiolite and its overlying metasedimentary rocks, and are exposed along the northern Anarak east–west main faults. These leucocratic intrusive bodies have enclaves of all ophiolitic units and metamorphic rocks. They are composed of amphibole, plagioclase (oligoclase), quartz, zircon and muscovite. Secondary minerals are chlorite (pycnochlorite), epidote, albite, magnetite and calcite. Whole‐rock major‐ and trace‐element analyses reveal that they are characterized by high SiO 2 (67.8–71.0 wt%), Al 2 O 3 (14.9–17.1 wt%) and Na 2 O (5.3–8.6 wt%), low K 2 O (0.1–1.5 wt%; average: 0.8 wt%), low Rb/Sr ratio (0.01–0.40; average: 0.09), low Y (3–6 ppm), negative Ti, Nb and Ta anomalies, slightly negative or positive Eu anomaly, LREE enrichment and fractionated HREE. These rocks present 2 to 40 times enrichment in inclined chondrite‐normalized REE patterns. Geochemical characteristics of the Anarak trondhjemites all reflect melting of a mafic protolith at more than 10 kbar. The field evidence and whole‐rock chemistry reveal that these rocks have been crystallized from magmas derived from melting of subducted Anarak oceanic crust. This study reveals that melting of garnet amphibolite was an important element of continent formation in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号