首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
利用中国癌死亡率与土壤坏境中化学元素的相关性成果,研究了四川省癌死亡率与土壤环境中化学元素:As、Cd、Co、Cu、Hg、Mn、Ni、Pb、Se、V、Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、B、Al、Ga、In、Tl、Sc、Y、La、Ce、Pr、Nd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Th、U、Sn、Ti、Zr、Hf、Sb、Bi、Ta、Te、Mo、W、Br、I、Fe等52个元素含量的关系  相似文献   

2.
中国不同构造单元花岗岩类元素丰度及特征   总被引:6,自引:1,他引:6       下载免费PDF全文
:依据采自全国范围内750个有代表性的大中型花岗岩类岩体上的767件组合样的实测分析数据,本文计算并提出了天山-兴安造山系、中朝准地台、昆仑-祁连-秦岭造山系、滇藏造山系、扬子准地台、华南-右江造山带、喜马拉雅造山带等中国七大构造单元花岗岩类和不同构造单元碱长花岗岩、正长花岗岩、二长花岗岩中SiO2、Al2O3、Fe2O3、FeO、MgO、CaO、Na2O、K2O、H2O 、CO2、TFe2O3、Ag、As、Au、B、Ba、Be、Bi、Cd、Cl、Co、Cr、Cs、Cu、F、Ga、Ge、Hf、Hg、Li、Mn、Mo、Nb、Ni、P、Pb、Rb、S、Sb、Sc、Se、Sn、Sr、Ta、Th、Ti、Tl、U、V、W、Zn、Zr、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu和Y等近70种化学元素和成分的丰度,探讨了不同构造单元花岗岩类岩石的岩石化学特征和微量元素丰度的特征及其区域分布。  相似文献   

3.
Chemistry of Aerosols over Chukchi Sea and Bering Sea   总被引:2,自引:0,他引:2  
The contents of elements in aerosols sampled during the First Chinese Arctic Research Expedition (CHINARE-1) show great differences from one element to another. Na, K,Ca, Mg, A1, F, and Cl are the major components in the aerosols, whose contents are larger than 30 ng/m^3. The chemical elements whose contents vary between 0.1 - 30 ng/m^3 are Br,Sr, Cr, Ni, and Zn. The chemical elements whose contents are close to or slightly higher than 0.1 ng/m^3 are Rb, Ba, Zr, Th, and Pb. The contents of As, Sb, W, Mo, Au, La, Ce, Nd,Sin, Eu, Tb, Yb, Lu, Sc, Co, Hf, Ta, and Cd are less than 0.1 ng/m^3. The mass concentration data for the same element, as observed during CHINARE-1, are almost accordant, but much lower than what is observed in the China‘ s seas or the coasts of China. The enrichment factor and electron microscopic analyses and lead isotope tracing were used to distinguish their sources.Four groups of sources can be classified as follows: anthropogenic: As, Sb, W, F, Mo, Au,Cu, Pb, Cd, V; crustal: La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, Fe, Sc, Cr, Co, Ba, Zr, Hf,Ta, Cs, Mn, Th, U; oceanic:Na, K, Ca, and Mg; and mixing: Rb, Sr, Ca, and Mg.  相似文献   

4.
Major and trace element analyses have been obtained by wavelength dispersive X-ray fluorescence for the Geological Survey of Japan Igneous rock series and selected samples from the Sedimentary rock series reference samples. Additional trace element data for the Igneous rock series were obtained by instrumental neutron activation analysis. Samples were analyzed multiple times for 10 major elements (with loss-on-ignition) and the following trace elements; As, Ba, Ce, Co, Cr, Cs, Cu, Eu, Ga, Hf, La, Lu, Nb, Nd, Ni, Pb, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, U, V, W, Y, Yb, Zn and Zr.  相似文献   

5.
With the aim of better understanding geochemistry of coal, 71 Late Permian whole-seam coal channel samples from western Guizhou Province, Southwest China were studied and 57 elements in them were determined. The contents of Al, Ca, Co, Cr, Cu, Fe, Ga, Hf, K, Li, Mn, Mo, Nb, Ni, Sn, Ta, Ti, Th, U, V, Zr, and REEs in the Late Permian coals from western Guizhou Province are higher than the arithmetic means for the corresponding elements in the US coals, whereas As, Ba, Br, F, Hg, P, Se, and Tl are lower. Compared to common Chinese coals, the contents of Co, Cr, Cu, Ga, Hf, Li, Mn, Mo, Ni, Sc, Sn, Ti, U, V, Zn, and Zr in western Guizhou coals are higher, and As, F, Hg, Rb, Sb, Tl, and W are lower. Five groups of elements may be classified according to their mode of occurrence in coal: The first two, Group A, Tm–Yb–Lu–Y–Er–Ho–Dy–Tb–Ce–La–Nd–Pr–Gd–Sm, and Group B, As–Sr–K–Rb–Ba–F–Ash–Si–Sn–Ga–Hf–Al–Ta–Zr–Be–Th–Na, have high positive correlation coefficients with ash yield and they show mainly inorganic affinity. Some elements from Group B, such as Ba, Be, Ga, Hf, and Th, are also characterized by significant aluminosilicate affinity. In addition, arsenic also exhibits high sulfide affinity (rS–Fe>0.5). The elements, which have negative or lower positive correlation coefficients with ash yield (with exceptions of Bi, Cs, Nb, Mn, Se, and Ti), are grouped in other four associations: Group C, Cr–V–Mo–U–Cd–Tl; Group D, Hg–Li–Sc–Ti–Eu–Nb–Cs–W; Group E, Bi–Sb; and Group F, Co–Ni–Cu–Pb–Zn–Mg–Se–Ca–Mn–S–Fe. The correlation coefficients of some elements, including Co, Cr, Cu, Fe, Hg, Li, Mo, Ni, P, S, Sc, U, V, and Zn, with ash yield are below the statistically significant value. Only Cr and Cu are negatively correlated to ash yield (−0.07 and −0.01, respectively), showing intermediate (organic and inorganic) affinity. Manganese and Fe are characterized by carbonate affinity probably due to high content of epigenetic veined ankerite in some coals. Phosphorus has low correlation coefficients with any other elements and is not included in these six associations. There are five possible genetic types of enrichment of elements in coal from western Guizhou Province: source rock, volcanic ash, low-temperature hydrothermal fluid, groundwater, and magmatic hydrothermal inputs.  相似文献   

6.
On the basis of actual analytical data of 767 composited samples collected mainly from about 750 large to middle representative granitoid bodies all over China, the average chemical compositions and element abundances of about 70 chemical elements of SiO2, Al2O3, Fe2O3, FeO, MgO, CaO, Na2O, K2O, H2O+, CO2, TFe2O3, Ag, As, Au, B, Ba, Be, Bi, Cd, Cl, Co, Cr, Cs, Cu, F, Ga, Ge, Hf, Hg, Li, Mn, Mo, Nb, Ni, P, Pb, Rb, S, Sb, Sc, Se, Sn, Sr, Ta, Th, Ti, Tl, U, V, W, Zn, Zr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y in alkalifeldspar granite, syenogranite and adamellite in 7 geotectonic units in China such as Tianshan-Xing’an orogenic series, Sino-Korean metaplatform, Kunlun-Qilian-Qinling orogenic series, Yunnan-Tibet orogenic series, Yangtze metaplatform, South China-Youjiang orogenic zone and Himalayan orogenic belt, are calculated and presented in this paper. In addition, the characteristics of petrochemical parameters, trace element contents and rare earth element distributions of different rock types of the granitoids in different geotectonic units are also sufficiently discussed. Translated from Acta Geologica Sinica, 2007, 81(1): 47–59 [译自: 地质学报]  相似文献   

7.
The geochemistry of trace elements in the underground and open-pit mine of the Goze Delchev subbituminous coal deposit have been studied. The coals in both mines are highly enriched in W, Ge and Be, and at less extent in As, Mn and Y as compared with the world-wide Clarkes for subbituminous coals. Ni and Ti are also enhanced in the underground coals, and Zr, Cr and Mo in the open-pit mine coals.Characteristic for the trace element contents in the deposit is a regular variation with depth. The following patterns were distinguished for profile I: a — the element content decreases from the bottom to the top of the bed paralleling ash distribution (Fe, Co, As, Sb, V, Y, Mo, Cs, REE, Hf, Ta, Th, P and Au); b — Ge and W are enriched in the near-bottom and near-top coals; c — in the middle part of the bed the content of K and Rb is maximal, while that of U is slightly enriched; d — Ba content decreases from the top to the bottom of the bed. In profile II, W and Be contents decrease from the bottom to the top. The near-bottom, and especially the near-roof samples of profile IV are highly enriched in Ge, while for W the highest is the content of the near-bottom sample.Ge, Be, As, Mn, Cl and Br are mainly organically associated. The organic affiliation is still strong for Co, B, Sr, Ba, Sb, U, Th, Mo, La, Ce, Sm, Tb and Yb in the underground coals, and Fe, Co, Na, W, Sr, Y and Ag in the coals from the open-pit mine. K, Rb, Ti, Zr, Hf and Ta are of dominant inorganic affinity. The chalcophile and siderophile elements correlate positively with Fe and each other and may be bound partly with pyrite or other sulphides and iron containing minerals.Compared statistically by the t-criteria, the elements Na, Li, Cu, Zn, Pb, Cr, Ni, Co, Mo, Fe and Be are of higher content in the open-pit mine. Tungsten is the only element of higher concentration in the underground mine. The contents of Ge, As, Sr, V, Mn, Y, Zr and P are not statistically different in both mines.It was supposed that there were multiple sources of the trace elements in the deposit. The source of the highly enriched elements (W, Ge, Be, and As) most probably were the thermal waters in the source area. The contemporary mineral springs are of high content of these elements. Another source were the hosting Mesta volcanic rocks, which are enriched in Sb, Mo, Hf, U, Th, As, Li and Rb. Some of the volcanics were hydrothermally altered and enriched or depleted of many elements. Thus, the hydrothermal solutions were also suppliers of elements for the coals. It is obvious that the contents, distribution and paragenesis, of the trace elements in both Goze Delchev coals reflect the geochemical specialization of the source area, including rocks, paleo- and contemporary thermal waters.  相似文献   

8.
山西平朔安太堡露天矿9号煤层中的微量元素   总被引:12,自引:0,他引:12       下载免费PDF全文
庄新国  曾荣树 《地球科学》1998,23(6):583-588
使用ICP-AES方法对安太堡露天矿9号煤层中的微量元素进行了系统测定,检测出53种微量元素,将研究煤样的平均微量元素质量分数与世界范围微量元素平均质量分数相比较,煤样中Li,Ga,Sr,Zr,Nb,Sn和Ta具有较高的富集,而Cr,Co,Ni,Ge,Rb,Y,Cs和Ba具有较低的富集,研究资料表明不同微量元素在垂向剖面上其质量分数具有不同的分布特征。经相关分析表明:(1)与镜质组含量相关的元素有  相似文献   

9.
Drill core samples of three lignite seams from the central part of the Drama lignite deposit and their corresponding 1000°C ash samples were analyzed for their trace element contents by Instrumental Neutron Activation (INAA) and Inductively Coupled Plasma (ICP) analyses. Compared to crustal abundances, the lignite samples are enriched in As, Br, Mo and Sb, while Ba, Co, Cr, Cs, Eu, Hf, La, Lu, Rb, Sc, Sm, Tb, Yb, Zn, Zr and Au are depleted. While Br is negatively correlated with the ash content of the lignite samples, Ce, Co, Cr, La, Sc, Sm and Yb are positively correlated. Elements from the sorrounding rocks and mineralizations of the Drama Basin have influenced the inorganic constituents of the lignite.  相似文献   

10.
A test comparing concentrations of 57 chemical elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, I, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr) determined by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) in 294 samples of the same bottled water (predominantly mineral water) sold in the European Union in glass and PET bottles demonstrates significant (Wilcoxon rank sum test, α = 0.05) differences in median concentrations for Sb, Ce, Pb, Al, Zr, Ti, Th, La, Pr, Fe, Zn, Nd, Sn, Cr, Tb, Er, Gd, Bi, Sm, Y, Lu, Dy, Yb, Tm, Nb and Cu. Antimony has a 21× higher median value in bottled water when sold in PET bottles (0.33 vs. 0.016 μg/L). Glass contaminates the water with Ce (19× higher than in PET bottles), Pb (14×), Al (7×), Zr (7×), Ti, Th (5×), La (5×), Pr, Fe, Zn, Nd, Sn, Cr, Tb (2×), Er, Gd, Bi, Sm, Y, Lu, Yb, Tm, Nb and Cu (1.4×). Testing an additional 136 bottles of the same water sold in green and clear glass bottles demonstrates an important influence of colour, the water sold in green glass shows significantly higher concentrations in Cr (7.3×, 1.0 vs. 0.14 μg/L), Th (1.9×), La, Zr, Nd, Ce (1.6×), Pr, Nb, Ti, Fe (1.3×), Co (1.3×) and Er (1.1×).  相似文献   

11.
The fate of trace elements in a large coal-fired power plant   总被引:5,自引:1,他引:5  
 A quick approach is proposed to evaluate the environmental fate of trace elements in coal-fired power plants. It is based on the analysis of feed coal and solid combustion by-products, together with the leachates of the latter. The application of this method in a 1050 MW power plant from NE Spain shows that: (1) Ba, Ce, Co, Cs, Cu, Dy, Ga, Ge, La, Lu, Mn, Ni, Rb, Sr, Tb, Th, Y, Yb, Zn and Zr were retained in the solid wastes; (2) As, B, Be, Cd, Cr, Li, Mo, Pb, Sb, Sn, Ta, Tl, U, V and W were only partially retained in the solid wastes; and (3) Hg and Se were primarily emitted to the atmosphere. Received: 2 February 2000 · Accepted: 18 May 2000  相似文献   

12.
Instrumental neutron activation analytical data, for eighteen trace elements (Ba, Co, Cr, Cs, Hf, Rb), Sb, Sc, Ta, Th, La, Ce, Nd, Sm, Eu, Tb, Yb, Lu), Hd2O and Fe203 in eleven French geoche-mical reference samples are presented and discussed briefly.  相似文献   

13.
The epidioritc and quartzite of the Malin Head district, (Ireland) are considered by Holmes and Reynolds [7] to be metasomatically transformed into skarn-rocks and mica-schist respectively. The trace element contents of these rocks were investigated using semi-quantitative methods in order to study the behaviour of the different trace elements during the metasomatic changes which have taken place. The elements which have been determined are Rb, Ba, Ag and Pb; Sr, Y and La; Li, Cr, Ni, Co, V, Cu, Sc, Sn and Mo; Ga; Zr, Be, Tl, Ge and In. The trace elements follow the major elements for which they can substitute in favourable crystal lattices, the substitution being in accord with Goldschmidts rules. Rb, Ba and probably Pb and Ag follow and substitute for K; Sr and Y for Ca and probably K; Li, Cr, Ni, Co, V, Cu, Sc, Sn and Mo for Mg, Fe2 and Fe3; and Ga for Al.  相似文献   

14.
流域上游基岩与下游冲积平原土壤化学组成的对比   总被引:2,自引:0,他引:2  
迟清华  马生明 《地质通报》2008,27(2):188-195
对海河水系流域、鄱阳湖水系流域上游的基岩与下游的冲积平原土壤之间化学组成的对比研究显示,下游冲积物土壤的化学组成明显地受源岩成分、形成过程和形成环境的影响。流域上游基岩的一些特征元素在冲积物土壤中被明显地继承,如海河流域基岩和土壤中的CO2、CaO、MgO、FeO、Sr,鄱阳湖流域基岩和土壤中的W、Sn、Bi、U、Th、Pb、Rb、Tl、As、Sb、Se、Hg、Nb、Ta、Hf、B、Be、Ge、Pt、Pd、Y。受形成过程和形成环境的影响,处于暖温带半湿润季风气候下的海河流域冲积平原土壤以极富集CO2、CaO、Na2O、Cl,显著富集MgO、FeO、Sr,富集P、S为特征;而处于亚热带湿润季风气候下的鄱阳湖流域冲积平原土壤则以显著富集Hg、Se和富集Al2O3、Fe2O3H2O^+、W、Sn、Bi、Mo、U、Th、Pb、Rb、Cs、Tl、Li、Be、B、Ga、Ge、Nb、Ta、Zr、Hf、As、Sb、Co、Cr、Ti、V、Zn、Pt、Pd、REE、Y为特征。无论是海河流域还是鄱阳湖流域的冲积平原土壤,均富集As、Sb、Hg、B、Cl、W、Sn、Bi、Pb、Se、Ge、Li、Cs、Cu、Au、Fe2O3、V、Cr、Ni、Zr、Hf、Y。  相似文献   

15.
Major and trace element composition of the Ordovician Obolus phosphorites and associated Dictyonema shales were determined by ICP-MS and chemical and microchemical elemental analyses. Relative to the phosphorites, the Dictyonema shales are substantially enriched in a variety of trace elements, except for As, Be, Co, Y, REE, Sr, and Pb. The Obolus phosphorites show enrichment of As, Bi, Hg, Mo, La, Y, Pb, and Sr and depletion of Ag, Ba, Be, Cd, Cr, Cu, Hf, Ni, Sc, Sn, U, V, Zn, and Zr relative to the world average phosphorite composition. The average trace element composition of the Dictyonema shales is close to the mean shale composition, except for higher contents of Mo, Hg, Pb, Se, Ta, Te, Th, V, and U and lower contents of Ba, Bi, Cd, Co, Re, Sr, and Zn. The results suggest that the change from phosphate sedimentation in aerated environments to anoxic carbonaceous sedimentation was accompanied by changes in the composition and concentration of trace elements in the sediment. Both facies show similar trends of trace element distribution indicative of the stability of the composition of seawater and terrigenous sediment input.  相似文献   

16.
作者用不同方法研究了粤北某铅锌矿区近矿灰岩风化土壤中铁锰氧化物对微量元素的富集作用。发现铁锰氧化物对Sb、Pb、Cd、Ni等元素具有强烈的吸附作用;对Zn、Cu等21种元素有程度不等的吸附;对Ti、Sr等12种元素不吸附。据此,作者认为在土壤地球化学找矿中,应着重在铁锰结核层和铁锰粘土层取样,或用编提取方法分析铁锰氧化物相的元素含量,强化异常,提高找矿效果。  相似文献   

17.
The clarkes of concentrations (Kc) of a wide range of trace elements (Li, Be, B, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, In, Sb, Cs, Ba, REE, Hf, Ta, Hg, Tl, Pb, Bi, Th, and U) were analyzed for fine-gained terrigenous rocks (mudstones, metapelites) from the reference Riphean sections of the Uchur-Maya region and the Yenisei Range. It was established that the shales and mudstones of the Uchur and Aimchan groups in the Riphean hypostratotype section are characterized by moderate (2.5 < Kc < 5) and intense (Kc > 5) geochemical specialization for Li, B, and Zn. At the same time, the similar rocks of the Lakhanda and Ui groups do not exhibit any distinct geochemical specialization, although they are notably enriched in HREE. The metapelites from the basal formations of the Riphean sedimentary successions in the Yenisei Range are distinctly specialized for B and slightly for Li, Rb, Be, Nb, Ta, Th, Ge, and Cd. In addition, moderate specialization for Cu is characteristic of the metapelites from the Korda and Lopatino formations; for Bi, Sb, Hg, and V, for their analogs from the Potoskui Formation; and, for Hg and Cs, for the similar rocks from the Lopatino Formation. The metapelites of the Lower Riphean Korda Formation from the central zone of the Yenisei Range have elevated contents of significantly more elements (Li, Be, Sc, V, Cr, Co, Ni, Zn, As, Rb, Y, Zr, Nb, Sb, Ag, In, Hf, Hg, and others) than their counterparts from its eastern near-platform part. The mudstones of the ore-bearing (Pb, Zn) Gorevo Formation are characterized by elevated concentrations of several ore elements such as Pb, Cd, As, Sb, and Bi. The elevated Kc values of the rare lithophile and of several ore elements in the metapelites of the Yenisei Range are determined by the high geochemical differentiation of the Early Precambrian blocks constituting the western margin of the Siberian Craton, which were eroded in the Riphean, and the syn-sedimentary riftogenic and intraplate magmatism. On the contrary, the fine-grained and terrigenous rocks from the basal part of the Riphean section in the Uchur-Maya region are compositionally closer to the immature Late Archean substrates or their Early Proterozoic analogs.  相似文献   

18.
The Shengli River–Changshe Mountain oil shale zone represents a potentially large marine oil shale resource in China. With the aim of better understanding the geochemistry of trace elements in marine oil shale and its combustion residues, 40 raw samples, 27 oil shale combustion residues and 29 selected minerals from Changliang Mountain oil shale are studied for geochemical analyses. The contents of Se, Cd, Mo, As, Cs, Pb, Sr and U in the oil shale samples are enriched from 1.47 to 33.91 times as compared with the Clarke values, whereas the concentrations of other elements are slightly higher/lower than the respective worldwide means. The most enriched elements in oil shale combustion residues are Se, Cd, Mo, As and U with enrichment values from 4.78 to 50.92. Trace elements with high volatile behaviour such as As, Co, Ni, Sc, Sn and V occur predominantly in organic matter and/or sulphides. Other non-volatile or slightly volatile trace elements (e.g., Be, Bi, Cs, Cu, Ga, Hf, Li, Nb, Rb, Ta, Th, W, Zr and REEs) may occur mainly in original and relatively refractory minerals in raw oil shale. The potentially hazardous trace elements in Changliang Mountain oil shale include As, Cd, Mo and Se. Arsenic and Se are controlled mainly by Fe-bearing minerals (probably pyrite) in Changliang Mountain oil shale. Cadmium is present mainly in dolomite, while Mo occurs mainly in organic matter.  相似文献   

19.
Extensive compositional heterogeneity is shown to affect at least twenty four of the doped trace elements in the NIST SRM 610-617 glasses.
Compositional profiling and mapping using laser ablation ICP-MS reveals that all NIST SRM 610-617 wafers examined here contain domains that are significantly depleted in Ag, As, Au, B, Bi, Cd, Cr, Cs, Mo, Pb, Re, (Rh), Sb, Se, Te, Tl and W, and antithetically enriched in Cu (and Pt), with large enrichments in Cd, Fe and Mn also being encountered in some cases. These domains are visible in doubly polished wafers by unaided visual inspection and by transmitted light and schlieren microscopy. They occur in close proximity to the wafer perimeters and also as stretched and complexly folded forms within wafer interiors. The chemical and optical properties of these heterogeneous domains are consistent with those of compositional cords, a phenomenon of glass manufacture where glass bulk composition and physical properties are modified by loss of volatile components from the molten glass surface. The NIST SRM 610-617 glasses may be considered reliable reference materials for microanalysis of only between one half and two thirds of the trace elements with which they were doped, including Be, Mg, Sr, Ba, Sc, Y, REE, V, Zr, Hf, Nb, Ta, Th, U, Ga, In, Sn, Co, Ni and Zn. These elements show no evidence of significant heterogeneity, indicating that the original glass constituents and possible residues remaining in the furnace from preceding glass batch fusions were well homogenised during manufacture.  相似文献   

20.
Seventeen trace elements (Ag, Au, Bi, Br, Cd, Cs, Ge, Ir, Ni, Rb, Re, Sb, Se, Te, Tl, U, Zn) were analyzed by radiochemical neutron activation and 13 other elements (Ce, Co, Cr, Eu, Fe, Hf, La, Lu, Na, Sc, Sm, Tb, Yb) by instrumental neutron activation in a total of 12 rocks from the layered anorthositic complex at Fiskenaesset, West Greenland and in the plagioclase-rich unbrecciated eucrite, Serra de Magé.Garnet anorthosite 84428, which has an unusually sodic plagioclase, is spectacularly enriched in Cs, K, Rb. Tl and, to a lesser degree, Te. This appears to be the result of later metasomatism and not a reflection of fractionation trends within the anorthositic complex. For the remaining Fiskenaesset rocks, a factor analysis yields 5 principal factors for linear data for 22 elements and 6 factors for data transformed (log, 3√, √) to give approximately normal distributions. Linear correlations are controlled by high values, whereas the logarithmic transform increases the influence of the lowest values. Enrichment of several elements in chromitite 132022 underlies linear Factor 1. Six of these elements Co, Cr, Fe, Ir, Ni, Zn and possibly Re are probably hosted by chromite. In other zones of the intrusion, different fractionation trends may be more important, since in the transformed analysis these elements divide between Factor 1 (Co, Zn, Ni, Fe) and Factor 4 (Ir, Cr and also Au). Linear Factor 2 reflects the strong mutual correlation between Tl, Rb and An, the anorthite content of plagioclase. Transformed Factor 3 emphasizes the anticorrelation of Na and Sm with An. The positive correlations of Cs, U and Ge (linear Factor 3; transformed Factor 2) are largely due to their concentration in later crystallizates, but enrichment in lower zone gabbros of high An content perhaps indicates concentration in minor or accessory cumulate minerals. Flat chondrite-normalized rare earth element patterns in several anorthosites (except for a small positive Eu anomaly) suggests that the Fiskenaesset magma was relatively unfractionated.Factor 4 (linear) and Factor 5 (transformed) reflects the geochemical coherence of Se and Te. The sympathetic enrichment of Sb and Cd in 3 rocks, resulting in Factor 5 (linear) and Factor 6 (transformed) may be due to the lack of a suitable Zn sulfide host for Cd.In 3 rocks of true anorthosite composition, 8 volatile elements show rather constant abundance when normalized to Cl chondrites (mean 4.2 ± 0.4% Cl), possibly suggesting that volatile-rich material was accreted late in the Earth's formation, perhaps after core segregation. These anorthosites are higher than lunar anorthosite 15415 by a factor of 58 ± 9 in volatile elements. Siderophile and chalcophile elements are much more variable in Cl-normalized abundances in both lunar and terrestrial anorthosites, but surprisingly give somewhat similar Earth/Moon abundance ratios.Volatile elements in terrestrial oceanic basalts and lunar mare basalts are not as uniformly abundant as in anorthosites. but nevertheless yield a similar Earth/Moon ratio of 44 ± 8.Volatile elements in Serra de Magé are more abundant than in lunar anorthosites, but lower than in terrestrial equivalents, averaging (3.6 ± 0.8) × 10?3C1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号