首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract Recent investigations reveal that the ultrahigh‐pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile‐brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile‐brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite‐plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite‐facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1 ± 0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K‐feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K‐feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh‐pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3–4 km/Ma from the mantle (about 80–100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20‐30km at 220 Ma), and at the rate of 1–2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma.  相似文献   

2.
The Qingchengzi orefield is a large polymetallic ore concentration area in the Liaodong peninsula,northeastern China,that includes twelve Pb-Zn deposits and five Au-Ag deposits along its periphery.The ore-forming age remains much disputed,which prevents the identification of the relationship between the mineralization and the associated magmatism.In this paper,we quantitatively present the feasibility of making ore mineral ~(40)Ar/~(39)Ar dating and report reliable ~(40)Ar/~(39)Ar ages of lamprophyre groundmass,K-feldspar and sphalerite from the Zhenzigou deposit.Direct and indirect methods are applied to constrain the timing of mineralization,which plays a vital role in discussing the contribution of multistage magmatism to ore formation.The low-potassium sphalerite yielded an inverse isochron age of 232.8±41.5 Ma,which features a relatively large uncertainty.Two lamprophyre groundmasses got reliable inverse isochron ages of 193.2±1.3 Ma and 152.3±1.5 Ma,respectively.K-feldspar yielded a precise inverse isochron age of 134.9±0.9 Ma.These four ages indicate that the mineralization is closely associated with Mesozoic magmatism.Consequently,regarding the cooling age of the earliest Mesozoic Shuangdinggou intrusion(224.2±1.2 Ma)as the initial time of mineralization,we can further constrain the age of the sphalerite to 224–191 Ma.These new and existing geochronological data,combined with the interaction cutting or symbiotic relationship between the lamprophyre veins and ore veins,suggest that the Pb-Zn-Au-Ag mineralization in the Qingchengzi orefield mainly occurred during three periods:the late Triassic(ca.224–193 Ma),the late Jurassic(ca.167–152 Ma)and the early Cretaceous(ca.138–134 Ma).This polymetallic deposits are shown to have been formed during multiple events coinciding with periods of the Mesozoic magmatic activity.In contrast,the Proterozoic magmatism and submarine exhalative and hydrothermal sedimentation in the Liaolaomo paleorift served mainly to transport and concentrate the ore-forming substances at the Liaohe Group with no associated Pb-Zn-Au-Ag mineralization.  相似文献   

3.
《Tectonophysics》1999,301(1-2):145-158
The Mersin ophiolite is located on the southern flank of the E–W-trending central Tauride belt in Turkey. It is one of the Late Cretaceous Neotethyan oceanic lithospheric remnants. The Mersin ophiolite formed in a suprasubduction zone tectonic setting in southern Turkey at the beginning of the Late Cretaceous. The Mersin ophiolite is one of the best examples in Turkey in order to study reconstruction of ophiolite emplacement along the Alpine–Himalayan orogenic belt. 40Ar/39Ar incremental-heating measurements were performed on seven obduction-related subophiolitic metamorphic rocks. Hornblende separates yielded isochron ages ranging from 96.0±0.7 Ma to 91.6±0.3 Ma (all errors ±1σ). Five of the seven hornblende age determinations are indistinguishable at the 95% confidence level and have a weighted mean age of 92.6±0.2 (2σ) Ma. We interpret these ages as the date of cooling below 500°C. Intraoceanic thrusting occurred (∼4 Ma) soon after formation of oceanic crust. The sole was crosscut by microgabbro–diabase dikes less than 3 m.y. later. The final obduction onto the Tauride platform occurred during the Late Cretaceous–Early Paleocene. Our new high-precision ages constrain intraoceanic thrusting for a single ophiolite (Mersin) in the Tauride belt.  相似文献   

4.
K–Ar and 40Ar/39Ar ages have been measured on nine mafic volcanic rocks younger than 1 myr from the Snake River Plain (Idaho), Mount Adams (Washington), and Crater Lake (Oregon). The K–Ar ages were calculated from Ar measurements made by isotope dilution and K2O measurements by flame photometry. The 40Ar/39Ar ages are incremental-heating experiments using a low-blank resistance-heated furnace. The results indicate that high-quality ages can be measured on young, mafic volcanic rocks using either the K–Ar or the 40Ar/39Ar technique. The precision of an 40Ar/39Ar plateau age generally is better than the precision of a K–Ar age because the plateau age is calculated by pooling the ages of several gas increments. The precision of a plateau age generally is better than the precision of an isotope correlation (isochron) age for the same sample. For one sample the intercept of the isochron yielded an 40Ar/36Ar value significantly different from the atmospheric value of 295.5. Recalculation of increment ages using the isochron intercept for the composition of nonradiogenic Ar in the sample resulted in much better agreement of ages for this sample. The results of this study also indicate that, given suitable material and modern equipment, precise K–Ar and 40Ar/39Ar ages can be measured on volcanic rocks as young as the latest Pleistocene, and perhaps even the Holocene.  相似文献   

5.
Four slate samples from subduction complex rocks exposed on the south coast of New South Wales, south of Batemans Bay, were analysed by K–Ar and 40Ar/39Ar step‐heating methods. One sample contains relatively abundant detrital muscovite flakes that are locally oblique to the regional cleavage in the rock, whereas the remaining samples appear to contain sparse detrital muscovite. Separates of detrital muscovite yielded plateau ages of 505 ± 3 Ma and 513 ± 3 Ma indicating that inheritance has not been eliminated by metamorphism and recrystallisation. Step‐heating analyses of whole‐rock chips from all four slate samples produced discordant apparent age spectra with ‘saddle shapes’ following young apparent ages at the lowest temperature increments. Elevated apparent ages associated with the highest temperature steps are attributed to the presence of variable quantities of detrital muscovite (<1–5%). Two whole‐rock slate samples yielded similar 40Ar/39Ar integrated ages of ca 455 Ma, which are some 15–30 million years older than K–Ar ages for the same samples. These discrepancies suggest that the slates have also been affected by recoil loss/redistribution of 39Ar, leading to anomalously old 40Ar/39Ar ages. Two other samples, from slaty tectonic mélange and intensely cleaved slate, yielded average 40Ar/39Ar integrated ages of ca 424 Ma, which are closer to associated mean K–Ar ages of 423 ± 4 Ma and 409 ± 16 Ma, respectively. Taking into account the potential influences of recoil loss/redistribution of 39Ar and inheritance, the results from the latter samples suggest a maximum age of ca 440 Ma for deformation/metamorphism. The current results indicate that recoil and inheritance problems may also have affected whole‐rock 40Ar/39Ar data reported from other regions of the Lachlan Fold Belt. Therefore, until these effects are adequately quantified, models for the evolution of the Lachlan Fold Belt, that are based on such whole‐rock 40Ar/39Ar data, should be treated with caution.  相似文献   

6.
The hypothesis that the Permo–Triassic boundary (PTB) mass extinctions were caused by flood basalt volcanism in Russia (Siberian Traps) and/or China (the Emeishan Traps) is investigated from the point of view of time of occurrence (40Ar/39Ar ages). Numerous published ages in the literature are rejected as good estimates of the time of crystallization. The filters applied in this respect are (a) statistical reliability of plateau/isochron sections of stepheating data and (b) the alteration state of the material that was dated. Alteration appears to be ubiquitous, unsurprising since most of the material dated was used without acid leaching – a procedure that is effective in yielding fresh(er) samples. Of ∼70 ages in the literature for the main pulse of Siberian Trap volcanism, less than ten prove to be reliable ages. Similar techniques applied to 40Ar/39Ar for the Emeishan Traps, leaves only a single reliable age for the magmatic episode. These ages are compared to both published and new 40Ar/39Ar ages for the PTB as based on analysis of minerals from critical ash beds in China. There is good overlap in the ages (PTB – 250.0 ± 0.1 Ma, Siberian Trap lavas – 250.1 ± 0.4 Ma), lending credence to a genetic link between the formation of the Siberian Traps and the faunal extinction event at the PTB. A similar link for the formation of the Viluy Traps (Russia) and the Late Devonian extinction event is investigated; only a single reliable 40Ar/39Ar age is available for the Viluy Traps, and falls close to the interpolated age for the Frasnian–Fammenian boundary. The use of the unspiked K–Ar technique to yield accurate ages for such (altered) samples is questioned.A review of U–Pb data pertinent to these problems suggests a close temporal link between the formation of the Siberian Traps and the PTB. Comparison of U–Pb and 40Ar/39Ar ages for the PTB, raises questions about the accuracy of high precision sanidine ages, possibly resulting from very slow leakage of 40Ar1 from this mineral.  相似文献   

7.
The Punta del Cobre belt is located 15?km south of Copiapó, northern Chile. It comprises several Cu(-Fe)-Au deposits in the Punta del Cobre and Ladrillos districts, east of the Copiapó river, and the Ojancos Nuevo district, with the new Candelaria mine, and Las Pintadas district, west of the river. The mineralization in the Punta del Cobre belt is characterized by a simple hypogene mineral assemblage of chalcopyrite, pyrite, magnetite, and hematite. Average ore grades are 1.1 to 2% Cu, 0.2 to 0.6?g/t Au, and 2 to 8?g/t Ag. Massive magnetite occurs as veins and irregularly shaped bodies. The ore is spatially associated with alkali metasomatism and in particular with potassic alteration. The Cu(-Fe)-Au deposits are hosted mainly in volcanic rocks of the Punta del Cobre Formation (pre-upper Valanginian) that underlie Neocomian limestones of the Chañarcillo Group. This region experienced backarc basin formation in the Neocomian, uplift and granitoid intrusions in the middle Cretaceous, and eastward migration of the magmatic front of about 30?km between middle Cretaceous and Paleocene. To determine the timing of ore deposition and to reconstruct parts of the thermal history of the Punta del Cobre district, in the eastern part of the belt, we have obtained 40Ar/39Ar incremental-heating and Rb-Sr analyses of mineral and whole-rock samples. An 40Ar/39Ar incremental-heating experiment on hydrothermal biotite, formed synchronous with the Cu(-Fe)-Au mineralization, yielded an inverse isochron age of 114.9?±?1.0 Ma (all errors reported at ±2σ), consistent with a Rb-Sr isochron of 116.8?±?2.7 Ma calculated from 7 whole-rock samples. These data are interpreted to represent the age of potassic alteration that accompanies mineralization. Ore formation temperatures of 400?°C to 500?°C were previously estimated based on paragenetic relationships. Shearing at the Candelaria deposit occurred after ore deposition and before the main stage of batholith emplacement. Published K-Ar ages for the middle Cretaceous batholith near the Punta del Cobre belt range from 119 to 97?Ma. Our data suggest that the mineralization is related to the earlier stages of batholith emplacement. The biotite age spectrum indicates that the Punta del Cobre district was not affected by temperatures above ~300?°C–350?°C, the closure temperature for argon in biotite, during the contact metamorphic overprint produced by later emplaced batholithic intrusions. Whole-rock 40Ar/39Ar ages are considerably younger; incremental-heating experiments yielded an inverse isochron age of 90.7?±?1.2?Ma and weighted mean plateau ages of 89.8?±?0.6?Ma and 89.5?±?0.6?Ma. These samples are dominantly K-feldspar, for which we assume an argon closure temperature of ~150?°C, thus they give the age of cooling below ~150?°C–200?°C.  相似文献   

8.
《Chemical Geology》2002,182(2-4):583-603
New K/Ar ages based on 40Ar/39Ar incremental heating of <2- and 2–20-μm size fractions of the well-characterized, carbonate-bearing Heinrich layers of core V28-82 in the eastern North Atlantic are 846–1049 Ma, overlapping with conventional K/Ar ages from the same Heinrich layers on the Dreizack seamounts of 844–1074 Ma. This agreement suggests the equivalence of the methods in fine-grained terrigenous sediments. Additionally, Heinrich layer H2 yielded a 40Ar/39Ar-based K/Ar age of 970±4 from Orphan Knoll in the southern Labrador Sea, within the range found in eastern North Atlantic Heinrich layers. Thus, the K/Ar data are robust in their indication of a dominant Labrador Sea ice-rafted source to even the finest sediment fraction in the eastern North Atlantic during the massive detrital carbonate-bearing Heinrich events of the last glacial cycle (H1, H2, H4, H5). Close correspondence of the radiogenic argon concentration (40Ar*) from the de-carbonated <63-μm fractions from V28-82 with the <2- and 2–16-μm fractions from the Driezack seamounts demonstrates that this measurement is a rapid and reliable method for correlating these layers within their belt of distribution.A 40Ar/39Ar-based K/Ar age of 433±5 million years for H11 in V28-82 is within the range of published data from background sediments in the eastern North Atlantic, and is consistent with published results across this interval in the Driezack seamounts. In contrast, the 40Ar/39Ar-based K/Ar age of H11 in the western Atlantic core EW9303-JPC37 is 614±5 million years. A brick red sample from approximately the interval of H3 of core EW9303-GGC40 yielded a 40Ar/39Ar-based K/Ar age of 567±1 million years, comparable to the published range of 523–543 Ma from the 2–16-μm fractions from that interval on the Dreizack seamounts. Both JPC37 and GGC40 are located in the path of the North Atlantic Drift. The older ages from western samples of H3 and H11 may result from dilution of a Hudson Strait source or an elevated age from southeastern Laurentide sources.  相似文献   

9.
40Ar/39Ar age spectra and 40Ar/36Ar vs 39Ar/36Ar isochrons were determined by incremental heating for 11 terrestrial rocks and minerals whose geology indicates that they represent essentially undisturbed systems. The samples include muscovite, biotite, hornblende, sanidine, plagioclase, dacite, diabase and basalt and range in age from 40 to 1700 m.y. For each sample, the 40Ar/39Ar ratios, corrected for atmospheric and neutron-generated argon isotopes, are the same for most of the gas fractions released and the age spectra, which show pronounced plateaus, thus are consistent with models previously proposed for undisturbed samples. Plateau ages and isochron ages calculated using plateau age fractions are concordant and appear to be meaningful estimates of the crystallization and cooling ages of these samples. Seemingly anomalous age spectrum points can be attributed entirely to small amounts of previously unrecognized argon loss and to gas fractions that contain too small (less than 2 per cent) a proportion of the 39Ar released to be geologically significant. The use of a quantitative abscissa for age spectrum diagrams is recommended so that the size of each gas fraction is readily apparent. Increments containing less than about 4–5 per cent of the total 39Ar released should be interpreted cautiously. Both the age spectrum and isochron methods of data reduction for incremental heating experiments are worthwhile, as each gives slightly different but complementary information about the sample from the same basic data. Use of a least-squares fit that allows for correlated errors is recommended for 40Ar/36Ar vs 39Ar/36Ar isochrons. The results indicate that the 40Ar/39Ar incremental heating technique can be used to distinguish disturbed from undisturbed rock and mineral systems and will be a valuable geochronological tool in geologically complex terranes.  相似文献   

10.
West of the Main Uralian fault, the main suture in the southern Urals, 40Ar/39Ar apparent ages of amphibole, muscovite and potassium feldspar are interpreted as cooling ages. A fast exhumation of the metamorphic complex of Kurtinsky during Upper Carboniferous time is indicated by the small age difference (15 Ma) between cogenetic amphibole and muscovite. Differentiated movement in the footwall of the Main Uralian fault along strike is indicated by the age difference of 70 Ma between the metamorphic complexes of Kurtinsky (north) and Maksyutov (south). No Upper Paleozoic (Uralian) medium- to high-temperature event is recorded in 40Ar/39Ar data from the metamorphic complex of Beloretzk (MCB). An amphibole age of 718±5 Ma and the occurrence of mafic intrusions might signal the break-up of Rodinia and therefore indicate the rifting period followed by the separate movement of the "Beloretzk terrane". Muscovite ages of approximately 550±5 Ma, the unique pre-Ordovician tectonometamorphic evolution of the MCB and the Late Vendian sedimentary history of the western Bashkirian Megaanticlinorium (BMA) imply the existence of a Neoproterozoic orogeny at the eastern margin of Baltica. This orogeny might have been initiated by the accretion of the "Beloretzk terrane". The metamorphic grade of the overlain Silurian shales and the K/Ar microcline ages from the "Beloretzk terrane" give evidence for a new thermal event at approximately 370 Ma. A microcline age of 530–550 Ma obtained for the Vendian conglomerate in the western BMA suggests that a maximum temperature of approximately 200°C was reached in Cambrian or Vendian times. An orthoclase age (590–630 Ma) of the Vendian Zigan flysch deposits might be inherited from the eastern source area, the Cadomian orogen. An orthoclase age (910–950 Ma) from the Riphean Zilmerdak conglomerate coincides with a documented decrease in the subsidence rate of the Upper Riphean basin.  相似文献   

11.
The 40Ar/39Ar stepwise crushing technique is applied for the first time to date garnet from ultra-high-pressure metamorphic (UHPM) eclogites. Three garnet samples from the Bixiling eclogites analyzed by 40Ar/39Ar stepwise crushing yield regular, predictable age spectra, and a clear separation between excess 40Ar and concordant plateau and isochron ages. All three age spectra begin with high apparent ages followed by step by step decreasing ages, and finally age plateaux with apparent ages in the range from 427 ± 20 to 444 ± 10 Ma. The data points constituting the age plateaux yield excellent isochrons with radiogenic intercept ages ranging from 448 ± 34 to 459 ± 58 Ma, corresponding to initial 40Ar/36Ar ratios from 292.1 ± 4.5 to 294.5 ± 6.7, statistically indistinguishable from the modern air. The high initial ages are interpreted to derive from secondary fluid inclusions containing excess 40Ar, whereas the plateau ages are attributed to gas from small primary fluid inclusions without significant excess 40Ar. The plateau ages are interpreted to approximate the time of garnet growth during initial UHPM metamorphism. Phengite analyzed by laser stepwise heating yielded a complicated two-saddle age spectrum with a scattered isochron corresponding to age of 463 ± 116 Ma and initial 40Ar/36Ar ratio of 1843 ± 1740 indicative of the presence of extraneous 40Ar within phengite. These concordant isochron ages measured on minerals diagnostic of eclogite grade metamorphism strongly suggest that Dabie UHPM eclogites were first formed in the early Paleozoic, during the same event that caused the Qinling-Northern Qaidam Basin-Altyn Tagh eclogites.  相似文献   

12.
The epithermal El Peñon gold–silver deposit consists of quartz–adularia veins emplaced within a late Upper Paleocene rhyolitic dome complex, located in the Paleocene–Lower Eocene Au–Ag belt of northern Chile. Detailed K–Ar and 40Ar/39Ar geochronology on volcano–plutonic rocks and hydrothermal minerals were carried out to constrain magmatic and hydrothermal events. The Paleocene to Lower Eocene magmatism in the El Peñon area is confined to a rhomb-shaped basin, which was controlled by N–S trending normal faults and both NE- and NW-trending transtensional fault systems. The earliest products of the basin-filling sequences comprise of Middle to Upper Paleocene (~59–55 Ma) welded rhyolitic ignimbrites and andesitic to dacitic lavas, with occasional dacitic dome complexes. Later, rhyolitic and dacitic dome complexes (~55–52 Ma) represent the waning stages of volcanism during the latest Upper Paleocene and the earliest Eocene. Lower Eocene porphyry intrusives (~48–43 Ma) mark the end of the magmatism in the basin and a change to a compressive tectonomagmatic regime. 40Ar/39Ar geochronology of hydrothermal adularia from the El Peñon deposit yields ages between 51.0±0.6 and 53.1±0.5 Ma. These results suggest that mineralization occurred slightly after the emplacement of the El Peñon rhyolitic dome at 54.5±0.6 Ma (40Ar/39Ar age) and was closely tied to later dacitic–rhyodacitic bodies of 52 to 53 Ma (K–Ar ages), probably as short-lived pulses related to single volcanic events.  相似文献   

13.
The Tengchong-Lianghe tin district in northwestern Yunnan, China, is an important tin mineralization area in the Sanjiang Tethyan Metallogenic Domain. There are three N–S trending granite belts in the Tengchong-Lianghe area, with emplacement ages ranging from Early Cretaceous to Late Cretaceous and Early Cenozoic. Tin mineralization is spatially associated with these granitic rocks. However, the petrogenetic link between the tin deposits and the host granites is not clear because of the lack of age data for the tin mineralization. We investigate the possibility of direct dating of cassiterite from three typical tin deposits in the Tengchong-Lianghe tin district, using laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). In situ LA-MC-ICP-MS dating of seven cassiterite samples from the Lailishan (LLS-1 and LLS-2), Xiaolonghe (XLH, WDS, DSP, and HJS), and Tieyaoshan (TYS) tin deposits yielded well-defined 206Pb/207Pb–238U/207Pb isochron ages. To assess the accuracy of the in situ U/Pb dating of cassiterite, 40Ar/39Ar dating of coexisting muscovite (in samples LLS-1, DSP, and TYS) was also performed. The cassiterite in situ U/Pb ages (47.4?±?2.0, 71.9?±?2.3, and 119.3?±?1.7 Ma, respectively) are in excellent agreement with the coexisting muscovite 40Ar/39Ar ages (48.4?±?0.3, 71.9?±?1.4, and 122.4?±?0.7 Ma, respectively). The U/Pb ages of cassiterite combined with the 40Ar/39Ar ages of muscovite indicate that there are three tin mineralization events in this district: the Lailishan tin deposit at 47.4?±?2.0 to 52?±?2.7 Ma, the Xiaolonghe tin deposit at 71.6?±?2.4 to 3.9?±?2.0 Ma, and the Tieyaoshan tin deposit at 119.3?±?1.7 to 122.5?±?0.7 Ma. These ages are highly consistent with the zircon U/Pb ages of the host granites. It is su.ggested that the Cretaceous tin mineralization might have taken place in a subduction environment, while the Early Tertiary tin metallogenesis was in a postcollisional geodynamic setting.  相似文献   

14.
Mantle xenoliths provide direct information about lithospheric evolution and asthenosphere–lithosphere interaction, and therefore precise dating of the host basalts which carried the xenoliths is important. Here we report 40Ar/39Ar geochronology of phlogopite separates from five spinel lherzolite xenoliths collected from the North China Craton (Hannuoba of Hebei Province, Sanyitang of Inner Mongolia Autonomous Region and Hebi of Henan Province), as well as the groundmass of the host basalts. Argon extraction was performed by conventional step heating technique and ultra-violet laser ablation microprobe (UVLAMP) technique. 40Ar/39Ar incremental heating results on groundmass yielded geologically meaningless ages. However, conventional step heating on phlogopites produced Miocene cooling ages, identical to the eruption ages obtained from the K–Ar dating methods of the Hannuoba and Sanyitang basalts. Adopting procedures to exclude potential influence of excess radiogenic Ar from a deep fluid source on a phlogopite separate from lherzolite yielded results with a good agreement of ages suggesting that the argon isotopes are distributed homogenously in this mineral, with no influence of excess argon. Phlogopites from Hebi yield ages between 6.43 and 6.44 Ma which are slightly older than those obtained from K–Ar method on whole-rocks. The discrepancy in the K–Ar ages obtained from the altered whole-rock samples suggests partial loss of 40Ar. As a consequence, phlogopite Ar–Ar ages are considered more accurate than that of the whole-rocks. These results suggest that 40Ar/39Ar chronology of phlogopite provides reliable and precise 40Ar/39Ar ages of host basalts.  相似文献   

15.
Zircon UPb dating by SIMS of the Mont-Louis granite yields an age of 305±5 Ma, intrepreted to reflect the igneous emplacement age of the massif. It is in agreement with the Hercynian syntectonic character of Pyrenees granite. 40Ar/39Ar on hornblende, biotite and K-feldspar permit, to estimate the massif cooling. A rapid temperature decrease (≈30 °C/Ma) is revealed from Westphalian to Late Stephanian, coeval with the emplacement of a laccolithe in the upper crust. Then, the cooling rate decreases to ≈1 °C/Ma. This would be consistent with a long time residence for the pluton from the Late Palaeozoic to the Early Cainozoic at 6–8 km depth. To cite this article: O. Maurel et al., C. R. Geoscience 336 (2004).  相似文献   

16.
Linking ages to metamorphic stages in rocks that have experienced low‐ to medium‐grade metamorphism can be particularly tricky due to the rarity of index minerals and the preservation of mineral or compositional relicts. The timing of metamorphism and the Mesozoic exhumation of the metasedimentary units and crystalline basement that form the internal part of the Longmen Shan (eastern Tibet, Sichuan, China), are, for these reasons, still largely unconstrained, but crucial for understanding the regional tectonic evolution of eastern Tibet. In situ core‐rim 40Ar/39Ar biotite and U–Th/Pb allanite data show that amphibolite facies conditions (~10–11 kbar, 530°C to 6–7 kbar, 580°C) were reached at 210–180 Ma and that biotite records crystallization, rather than cooling, ages. These conditions are mainly recorded in the metasedimentary cover. The 40Ar/39Ar ages obtained from matrix muscovite that partially re‐equilibrated during the post peak‐P metamorphic history comprise a mixture of ages between that of early prograde muscovite relicts and the timing of late muscovite recrystallization at c. 140–120 Ma. This event marks a previously poorly documented greenschist facies metamorphic overprint. This latest stage is also recorded in the crystalline basement, and defines the timing of the greenschist overprint (7 ± 1 kbar, 370 ± 35°C). Numerical models of Ar diffusion show that the difference between 40Ar/39Ar biotite and muscovite ages cannot be explained by a slow and protracted cooling in an open system. The model and petrological results rather suggest that biotite and muscovite experienced different Ar retention and resetting histories. The Ar record in mica of the studied low‐ to medium‐grade rocks seems to be mainly controlled by dissolution–reprecipitation processes rather than by diffusive loss, and by different microstructural positions in the sample. Together, our data show that the metasedimentary cover was thickened and cooled independently from the basement prior to c. 140 Ma (with a relatively fast cooling at 4.5 ± 0.5°C/Ma between 185 and 140 Ma). Since the Lower Cretaceous, the metasedimentary cover and the crystalline basement experienced a coherent history during which both were partially exhumed. The Mesozoic history of the Eastern border of the Tibetan plateau is therefore complex and polyphase, and the basement was actively involved at least since the Early Cretaceous, changing our perspective on the contribution of the Cenozoic geology.  相似文献   

17.
There is a large ductile shear zone, 2 km wide and more than 3SO km long, in the South Qilian Mountains, western China. It is composed of volcanic, granitic and calcareous mylonites. The microstructures of the ductile shear zone show nearly E-W extending subvertical foliation, horizontal and oblique stretching lineations, shearing sense from sinis-tral to oblique sinistral strike-slip from east to west, "A" type folds and abundant granitic veins. Measured lattice preferred orientations (LPOs) of the mylonitic and recrystallized quartz of the granitic mylonite in the west segment suggest a strong LPO characterized by the dominant slip systems {1010} formed at high temperature (>650℃). K-feldspar of the mylonite shows an 39Ar/40Ar high-temperature plateau age of 243.3±1.3 Ma, and biotite, 250.5±0.5 Ma, which represent the formation age of the ductile shear zone. The 39Ar/40Ar plateau ages of 169.7±0.3 Ma and 160.6±0.1 Ma and the 39Ar/40Ar isochron ages of 166.99±2.37 Ma and 160.6±0.1 Ma of biot  相似文献   

18.
The KAr isochron method is an attempt to obtain the initial age or reset age and the extraneous argon isotopic ratio of a suite of cogenetic samples of different K-contents. Some samples contain excess argon-40 and others lose argon-40. The resultant ages on single samples are not significant geologically. We have discussed the principles of three types of isochrons commonly used, the 40Ar vs 40K isochron, the 40Ar/36Ar vs 40K/30Ar isochron, and the 40Ar/36Ar vs 39Ar/36Ar isochron, and evaluated the first two types for ten different hypothetical cases. If a straight line is obtained in the 40Ar vs 40K isochron, a positive intercept indicates an approximately constant amount of excess argon, whereas a negative intercept indicates argon loss. A curved line or scattering of points indicates that the basic assumptions are not valid for the set of samples under consideration. The 40Ar/36Ar vs 40K/36Ar isochron method is valid, rigorously, only when all samples of the system under consideration have the same non-radiogenic argon isotope composition. This requires that either no excess argon is present in the system, or else each analysis contains the same proportion of excess and atmospheric argon. If these conditions do not hold, approximately, invalid ages and invalid intercepts are obtained. Any KAr isochron needs to be used with caution.  相似文献   

19.
Yu Wang 《地学学报》2006,18(6):423-431
In eastern China, the Dabie Shan–Su–Lu orogenic belt has been separated by the Tan–Lu sinistral strike–slip fault. Mylonites are exposed along the strike–slip fault system in the southern segment, and along the eastern margin of the Dabie Shan orogenic belt. The country rocks of the mylonites are retrograde UHP eclogites, gneissic granites, muscovite granites and gneisses. The ductile strike–slip shear zone trends 30–40°N (NE30–40°‐trending) and exhibits stretching lineations and nearly vertical, SE‐dipping foliations. Most of the zircon grains separated from mylonites have a weighted average radiometric age of 233 ± 6–225 ± 6 Myr. These data constrain the onset of the Tan–Lu sinistral strike–slip movement and imply that the Tan–Lu sinistral strike–slip motion developed after retrograde UHP metamorphism. The related phengite within the eclogite rocks on the western side of the Tan–Lu fault, with 40Ar/39Ar plateau ages of c. 182–190 Myr, is also deformed and aligned parallel to the almost NE trending stretching lineations. Non‐metamorphosed granites exhibit sinistral strike–slip shearing and indicate that the Tan–Lu fault initially developed after 182–190 Myr. Muscovite collected from the mylonite yields 40Ar/39Ar plateau ages of 162 ± 1–156 ± 2 Myr. The zircon SHRIMP age data, the muscovite 40Ar/39Ar plateau ages, together with structural and petrological field information support the interpretation that the Tan–Lu strike–slip fault was not related to the Yangtze–north China plates collision, but corresponded to the formation of a NE‐trending tectonic framework in eastern China starting c. 165–160 Ma.  相似文献   

20.
Noblesse multi-collector noble gas mass spectrometer is specially designed for multi-collection of Ar isotopes with different beam sizes, especially for small ion beams, precisely, and hence is perfectly suitable for 40Ar/39Ar geochronology. We have analyzed widely used sanidine, muscovite, and biotite standards with recommended ages of ~ 1.2–133 Ma, with the aim to assess the reliability of Noblesse for 40Ar/39Ar dating. An ESI MIR10 30W CO2 laser was used for total fusion or incremental heating samples. Extracted gases were routinely purified by four SAES NP10 getters (one at ~ 400 °C and others at room temperature). A GP50 getter and a metal cold finger cooled by liquid N (? 196 °C) were also attached for additional purification if necessary. The Ar isotopes were then measured by Noblesse using Faraday or multiplier according to the signal intensities. Over a period of 1.5 months 337 air calibrations produced a weighted mean 40Ar/36Ar of 296.50 ± 0.08 (2σ, MSWD = 4.77). Fish Canyon sanidine is used to calculate J-values, which show good linear relationship with position in irradiation. The age of four mineral standards (Alder Creek sanidine, Brione muscovite, Yabachi sanidine, and Fangshan biotite) are within error of the accepted ages. Five Alder Creek sanidine aliquots yielded an age range of 1.174–1.181 ± 0.013 Ma (2σ) which broadly overlaps the established age of the standard and the uncertainty approaches those of the foremost Ar/Ar laboratories in the world. The weighted mean ages of four Brione muscovite aliquots (18.75 ± 0.16 Ma, 2σ), five Yabachi sanidine aliquots (29.50 ± 0.19 Ma, 2σ), and three Fangshan biotite aliquots (133.0 ± 0.76 Ma, 2σ) are consistent with the recommended values of these standards, and the uncertainties are typical of modern Ar/Ar laboratories world-wide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号