首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 374 毫秒
1.
We examine a possible manifestation of the electromagnetic activity of a magnetized, rotating neutron star in a binary system. Accreting matter from the companion is initially accumulated at the magnetosphere. When the accumulated mass is such that the inflow can start, together with the accretion flare there will be a burst due to the closure of electric currents. The luminosity associated to the latter effect may be as large as 1042 erg/s, if a neutron star possesses the following characteristics: massM =M , period of rotationP = 5 ms, magnetic fieldB 0 = 1012 G, and radiusr 0 = 106 cm. The electromagnetic activity might be relevant for understanding soft gamma ray repeaters.  相似文献   

2.
At an early stage in the lives of stars and galaxies when they are surrounded by discs, vorticity in the disc concentrates into a central vortex, thus converting a Keplerian velocity fieldu ø r –1/2 into an irrotational velocity fieldu ør –1, which implies inward transfer of angular momentum. Centrifugal forces due to spin-up of the inner region and gravity dominant in the outer region then squeeze gas at intermediate layers, increasing pressure gradient in the axial direction sufficiently to drive a wide-angle low-velocity bipolar outflow from the disc. A logarithmic singularity of vorticity at the axis implies strong centrifugal forces which expand plasma to radiusR where pressure gradient balances centrifugal force density of ions; the much weaker centrifugal force density of electrons cannot balance pressure gradient, so that electrons are driven inwards relative to ions until charge separation limits the relative displacement. Now the radial gradient ofu øcauses ions to rotate at a different rate to electrons, generating an azimuthal current densityj øwhich is the source of an axial magnetic fieldB zin the core of the central vortex. Centrifuging carries lines of B to the core wall, where they are wound into helical force-free configuration with B j. An annular channel of radiusR and thickness R into which parallel helical lines ofj andB are compressed constitutes a magnetic vortex tube (MVT). An MVT separates an inner high-velocity highly collimated outflow from the outer low-velocity wide-angle outflow, and is responsible for jets. Magnetic pinches in the MVT may constrict the core flow at HH objects.  相似文献   

3.
The electromagnetic field produced by a magnetic dipole moment, , which is rotating obliquely surrounded by a corotating plasma sphere, is investigated. This corotating-plasma approximation has the same order of accuracy as the force-free one but has somewhat different physical implications. In the former the effect of non-electromagnetic forces such as the inertial force are included, though in somewhat artificial manner, as a departure from the strict MHD condition and this fact seems to guarantee the existence of physical solutions.Analogous to the relativistic force-free equation, a set of two differential equations (the corotation equation) are derived for the scalar functions associated with the electric and magnetic fields. A self-consistent solution of these equations is given and it is shown that this solution has no singularity, in spite of apparent divergence in the formal solution, on the light cylinder. It is concluded from this solution that, even in the extreme case of the largest possible corotation-radius (i.e.b=r L , wherer L is the light radius), the existence of a corotating plasma does not alter the field structure drastically from the vacuum case. It is also suggested through this treatment that inclusion of the inertial term in generalized Ohm's law might be essential in considering the centrifugal-wind problem.  相似文献   

4.
In order to construct an axisymmetric model of magnetospheres with centrifugal wind, especially of the type II magnetosphere in Paper I (Shibata and Kaburaki, 1984), we present a numerical iterative scheme, in which a tenuous plasma with conspicuous trans-field motion are treated self-consistently with the electromagnetic field. Since the characteristic equations of the flow are solved, we are free from numerical diffusion terms obscuring the cause of the trans-field motion. The obtained properties of type II magnetosphere are as follows. (1) Plasma particles in fact flow out across the closed magnetic field lines. (2) The centrifugal force is exerted powerfully on the positive particles to form a disk-like structure, and the strong electric force makes the negative particles drift to the disk. (3) There appears the electric field parallel to the magnetic field,E , which is shown to be necessary for the steady wind to exist. Within the range of the model-parameters selected in this study we find two reasons for the appearance ofE : (1) plasma density decreases owing to the centrifugal acceleration, and it becomes insufficient to shieldE ; (2) the plasma with large inertia moves so as to reduce the charge separation, which would be necessary to shieldE .The notation and definitions are the same as in Paper I.  相似文献   

5.
With a view to furthering the theory of the light changes of eclipsing variables, developed before systematically by Z. Kopal, this paper presents a number of new (and computable) expressions for the associated alpha-function n 0 ,(r1,r2,) (and also for its partial derivatives), where n 0 ,(r1,r2,) represents the fractional loss of light suffered by an eclipse of a circular disc of fractional radiusr 1 (and darkened at the limb to thenth degree) by an opaque disc of radiusr 2, with their centres separated by a fractional (projected) distance , provided that the transparency of the occulting disc increases with the angle of foreshortening in the same manner as the limb-darkening of the eclipsed star (that is, when the transparency functiong(, ) of the second aperture is given by Equation (4) below). Many of the explicit expressions derived here are valid for any type of eclipse, occultation or transit, regardless of whetherr 1>r 2 orr 1<r 2. and for any degreen of the adopted law of limb-darkening. It is also pointed out how some of the results obtained in this paper are related to the various representations given earlier in the literature for the case =0.  相似文献   

6.
Green's Theorem is developed for the spherically-symmetric steady-state cosmic-ray equation of transport in interplanetary space. By means of it the momentum distribution functionF o(r,p), (r=heliocentric distance,p=momentum) can be determined in a regionr arrbwhen a source is specified throughout the region and the momentum spectrum is specified on the boundaries atr a andr b . Evaluation requires a knowledge of the Green's function which corresponds to the solution for monoenergetic particles released at heliocentric radiusr o , Examples of Green's functions are given for the caser a =0,r b = and derived for the cases of finiter a andr b . The diffusion coefficient is assumed of the form = o(p)r b . The treatment systematizes the development of all analytic solutions for steady-state solar and galactic cosmic-ray propagation and previous solutions form a subset of the present solutions.  相似文献   

7.
The goal of this paper is to account for the complete observed rotation curves of disk galaxies without dark matter. To attain that goal, use is made of a conservation law from stability theory of linear waves, leading to a vector-based theory of gravitation. In the theory, galactic centers are sites of strong gravitational fields. The new theory predicts extra matter at the center of disk galaxies, which is well-known to be consistent with intergalactic dynamics. For given disk radiusr 0 and edge tangential speedv, the greater the deviation of a rotation curve from linear (solid disk rotation), the greater the mass of the galaxy as a multiple of Newtonian massr 0v2/G, up to a factor of about 1000. In an approximate calculation it turns out that disk density (r) (in kg m–2) is proportional to 1/r for typical rotation curves. Rotation is characterized by two constants which in turn are determined by the edge speed and mass distribution. Not just any curve shape can be so obtained; in fact, the theoretically possible curves correspond to observed curves.  相似文献   

8.
The structure of the corotating region, which forms an inner portion of a stellar magnetosphere, is reconsidered in a quasi-neutral case by taking into account the inertial effects of electrons as well as that of ions up to the first order in their mass ratio (δ=m?/m+). It is emphasized first that the magnetosphere is not globally equipotential even in the frame rotating with a central star (i.e. ?#0, where ? is the ‘non-Backus’ potential) due at least to the inertial effects of plasma particles. However, it is shown that the condition ?=0 is asymptotically recovered in the corotating region owing to the presence of the drift current which can be taken into account only when δ is not entirely neglected. This fact suggests that the deviation of the plasma motion in the outer magnetosphere from the corotation can be attributed to the non-zero ?. A globally self-consistent solution is obtained under this condition (?=0). In contrast with the solutions in the ‘force-free’ and the ‘mass-less-electron’ approximations, this solution has a disk structure in the corotation zone in which the plasma and the current density are concentrated to a thin disk near the magnetic equator. Owing to this sheet current in the disk the lines of force of the stellar magnetic field are modified to form a very elongated shape (the magnetodisk) if the plasma β-value is fairly large. Such a disk structure seems to be a common feature in the high β inner magnetospheres of various types of stars.  相似文献   

9.
With the available data in planets, stars and galaxies, it is studied the functions of angular momentaJ(M) and amounts of actionA c(M) (associated to the non rotational terms in the kinetic energy). The results indicate that independently of how are these functionsJ(M),A c(M) their ratioA c/J remains a near invariant. It is independent also from the type of angular momenta: intrinsic spins of the bodies or the total angular (orbital) momenta of the bodies forming a system; for instance, the Solar System and the planets.The relationA c(M) for the Solar System are analogous to these in the FGK stars of the main sequence, and the relationJ(M) (also for the Solar System) is analogous to the lower possible limit for binary stars.The different types of binary stars from the short period, detached systems to contactary systems, gives a range of functionsJ(M),A c(M) that are the same that one can expect in stars with planetary systems. According to the detection limits given for planetary companions by Campbell, Walker and Yang (1988) (masses of less than 9 Jupiter masses and orbital periods of less than 50 years) we calculate the limits forJ(M) andA c(M) This gives a lower limitA c/J 1 associated to stars with planetary systems as 61 Cygni and to short period detached binaries. The upper limitA c/J 16 correspond to planetary systems as the ours and probably to cataclysmic binaries. There are reasons to suspect that systems as the ours and in range 4 A c/J 16 (with a lower limit analogous to contactary binaries as Algols and W Ursa Majoris) must be the most common type of planetary systems. The analogies with the functionsJ(M)A c(M) for galaxies suggest cosmogonical conditions in the stellar formation.Independently of this, one can have boundary conditions for the Jacobi problem when applied to a collapsing cloud. Namely, from the initial stage (a molecular cloud) to the final stage (a formed stellar system: binary or planetary) the angular momenta and amounts of action decayed to 10~4 the initial values, but in such a form thatA c(t)/J(t) remains a near invariant.  相似文献   

10.
In this paper we transform the wave equation governing gravitational perturbations of a Schwarzschild black hole from its standard Schrödinger or Regge-Wheeler form to a Klein-Gordon type wave equation. This latter form reveals immediately that incoming waves with frequencies () cml , a critical frequency, are completely reflected (transmitted). This process is entirely due to the radial variation of the cut-off frequency inherent in the dispersive nature of the wave propagation properties of gravitational perturbations of the Schwarzschild metric. Moreover, those high-frequency waves ( cml) which penetrate through the region near the Schwarzschild radiusr sare, on crossing this event horizon, attenuated by a factor exp (–r s/c), thereby dumping most of their energy and momentum into the black hole. It is shown that in the vicinity ofr sthe metric is locally unstable. This feature and the wave absorption process indicate that the neighbourhood aroundr sis dynamically active, and, as well as acting like a Hawking-type particle creator, will behave as a wave emitter in order to relax the stresses on the metric.  相似文献   

11.
It is currently believed that it is impossible to construct a radiative sunspot model in magnetohydrostatic equilibrium unless magnetic fields below the surface are excessively large (> 100 kG). This belief is based on results obtained using the mixing length theory of convection. We wish to point out that by using a different theory of convection, due to Öpik (1950), it is possible to compute a radiative sunspot model in which the field becomes no greater than 9000 G. By applying two boundary conditions, (i) depth of spot equals depth of convection zone, (ii) magnetic field has zero gradient at the base of the spot, we show that a radiative spot has a unique effective temperature for a given Wilson depression, . For = 650 km, we find T e = 3800K ; for = 150 km, T e = 3950K. According to our model, spots having T e cooler than these values should not exist.  相似文献   

12.
The effect of southward or northward changes in the interplanetary magnetic field is examined statistically in the nightside magnetosphere over the range of 6.6 to 80R E from the Earth. After southward changes, the deformation of the magnetosphere toward a greater antisunward extension of field lines occurs at 6.6R E with 10 min delay and spreads down the tail to 80R E in 30 min. Around the onset of the field-line collapse that occurs 1–2 hr later, the southwarddirected field is observed briefly in the distant tail. The effect of northward changes could not be recognized in the lobe region of the tail.  相似文献   

13.
A theory of pulsar radio emission generation, in which the observed waves are produced directly by the maser-type plasma instabilities on the anomalous cyclotron-Cherenkov resonance and the Cherenkov-drift resonance , is capable of explaining the main observational characteristics of pulsar radio emission. The instabilities are due to the interaction of the fast particles of the primary beam and from the tail of the distribution with the normal modes of a strongly magnetized one-dimensional electron-positron plasma. The waves emitted at these resonances are vacuum-like electromagnetic waves that may leave the magnetosphere directly. The cyclotron-Cherenkov instability is responsible for core emission pattern and the Cherenkov-drift instability produces conal emission. The conditions for the development of the cyclotron-Cherenkov instability are satisfied for the both typical and millisecond pulsars provided that the streaming energy of the bulk plasma is not very high γ p = 5 ÷ 10. In a typical pulsar the cyclotron-Cherenkov and Cherenkov-drift resonances occur in the outer parts of magnetosphere at r res ≈ 109cm. This theory can account for various aspects of pulsar phenomenology including the morphology of the pulses, their polarization properties and spectral behavior. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
We assume that typical interplanetary grains are fragile, aggregates of the Brownlee type, and discuss the physical and dynamical processes associated with their entry into the Jovian magnetosphere. Limiting ourselves to the equatorial plane of the planet, we show that grains traversing the outer edge of the co-rotating magnetodisc (r35R J ) are rapidly charged up to large negative potentials on both the day and the night sides. A parent grain of radiusR g 20 is electrostatically disrupted when it attains a potential of about –220 V. While the eventual potential achieved by the smallest fragments (R g 0.1 ) are controlled by the rapid field emission of electrons, those of the larger fragments (R g 1 ) are set by the plasma and photoemission currents.All the negatively charged fragments are strongly attracted towards the planet by the (radial) corotational electric field and some are stably trapped. We suggest that the sudden enhancement by about 2 orders of magnitude of the interplanetary dust flux measured by Pioneer 10, at about 30R J from Jupiter result from the combination of these two effects.The different brightness asymmetries between the leading and the trailing sides of the outer and inner Galilean satellites appear to be a natural consequence of the way the trajectories of these charged dust grains intersect these satellite surfaces. Finally, the similarity in the brightness asymmetries between the Jovian and Saturnian satellites, and our belief that they have a similar cause, leads us to the expectation that Saturn's magnetic momentM and spin , are parallel as in the case of Jupiter, with the limit of plasma co-rotation lying between the satellites Rhea and Iapetus.  相似文献   

15.
A two-stage model of the propagation of 1–50 MeV solar-flare cosmic rays is presented. The first stage consists of a thin spherical shell of radius r a near the Sun which feeds particles into interplanetary space (the second stage) where they propagate along the Archimedean mean interplanetary magnetic field under the influences of anisotropic diffusion, convection, and energy changes. To calculate the time dependence at a fixed point in space, account is taken of the corotation of flux tubes past the observer.It is shown that the well-known east-west effect of the time-to-maximum cannot be obtained if the injection from the first stage is impulsive and thus a time and longitude dependent release for the second stage is essential. This is achieved by treating the first stage as a thin, spherical, diffusing shell of radius r a with diffusion coefficient s, from which particles leak into interplanetary space at a rate determined by the leakage coefficient .With this model we are able to reproduce simultaneously four principal features of solar events observed at r = 1 AU: (i) the east-west effect, i.e. the time-to-maximum as a function of flare longitude; (ii) the three phases of the anisotropy vector variation; (iii) the time-to-convective-phase as a function of flare longitude; and (iv) the longitudinal distribution of the differential intensity. Our best estimates of the parameters of the near-Sun propagation are that 0.01 hr–1 s/r a 2 0.02 hr–1 and 1/15 hr–1 1/10 hr–1. For the interplanetary propagation we estimate /V - 1.2AU with , the effective cosmic-ray diffusion coefficient and V, the solar-wind speed.  相似文献   

16.
Observation of the adiabatic behaviour of energetic particle pitch-angle distributions in the magnetosphere (Lyons, 1977, and others) in the past indicated the development of pronounced minima or drift-loss cones on the pitch-angle distributions centred at 90° in connection with storm-time changes in magnetospheric convection and magnetic field. Using a model of a drift-modified loss-cone distribution (MLCD) of the butterfly type, the linear stability of electromagnetic whistler or ion-cyclotron waves propagating parallel to the magnetic field has been investigated. The instability is shown to be quenched at high frequencies < m =A/(A+1), whereA is the thermal anisotropy. This quenching becomes stronger the higher are the respective parallel hot particle thermal velocityA h and cold plasma densityn c . Particles around pitch-angles 90° are identified as generating electromagnetic cyclotron waves near the marginally stable frequency m . It is concluded that the absence of electromagnetic VLF and ELF noise during times when MLCD develops is the result of the shift of the unstable spectrum to low frequencies.  相似文献   

17.
In this paper we adopt the method of relativistic fluid dynamics to examine the number density distribution of stars around a massive black hole in the core of stellar clusters. We obtain extensive results,n(r) r –a, 3/2a9/2, which include, respectively, then(r) r –7/4 power law obtained by Bahcall and Wolf and then(r) r –9/4 power law by Peebles. Sincen(r) is not an observable quantity for star clusters, we also consider general relativity effects, i.e., the consequence of the bending of light, in calculating the projected density of stars in such a system. As an example we employ a massive black hole 103 M inlaid in the center of a globular cluster and calculate various projected densities of stars. The results show that cusp construction occurs in all cases unless the central black hole massM=0, and the polytropic index does not affect at all the position of the capture radiusr a. The obvious differences in the surface density is only embodied in the interior of the capture radius. At the outer regions of the core, the surface density of stars declines rapidly with ar –5 power law in all cases. These results can be applied to cases of unequal-mass and non-steady state.  相似文献   

18.
A static spherically-symmetric model, based on an exact solution of Einstein's equation, gives the permissible matter density 2×1014 g cm–3. If we use the change in the ratio of central density to the radiusr=a (i.e., central density per unit radius (0/a), we call it radius density) minimum, we have estimated the upper limit of the density variation parameter () and minimum mass limit of a superdense star like a neutron star. This limit gives an idea of the domain where the neutron abundance with negligible number of electrons and protons (may be treated as pure neutrons) and equilibrium in neutrons begins.  相似文献   

19.
The conditions of the excitation of ultraviolet emission lines in symbiotic stars-triple systems with white dwarf and nebular clouds are examined. A new method is suggested for the determination of effective temperatureT * of the accretion disk around of white dwarf, which is based on the balance between the summary intensitiesE e =E i of ultraviolet emission lines, escaped by nebular cloud, and a definite part of the energy of black-body radiation of accretion disk in the region shorter from the some wavelength 0. This condition brings us to the formula (9) which is used for the determination of the temperatureT * and radiusr n of nebular cloud around the symbiotic system. It is shown that practically in all cases 0=180 Å=const. The results of the application of this method in relation to the five symbiotic triple-star systems are presented in Tables III and IV.  相似文献   

20.
We present a detailed analysis of the H+3 intensity and velocity profiles crossing Saturn's auroral/polar region, as described by Stallard et al. [Stallard, T., Miller, S., Melin, H., Lystrup, M., Dougherty, M., Achilleos, N., 2007. Icarus 189, 1-13], with a view to understanding the magnetospheric processes with which they are connected. The data are not consistent with the theory that Saturn's main auroral oval is associated with corotation enforcement currents in the middle magnetosphere. This implies that the main auroral oval can be associated with the open-closed field line boundary [Cowley, S.W.H., Bunce, E.J., O'Rourke, J.M., 2004. J. Geophys. Res. 109. A05212]; a third model, by Sittler et al. [Sittler, E.C., Blanc, M.F., Richardson, J.D., 2006. J. Geophys. Res. 111. A06208] associates the main oval with centrifugal instabilities in the outer magnetosphere, but does not make predictions about ionospheric plasma flows with which we can compare our data. We do, however, tentatively identify emission at latitudes lower than the main auroral oval which may be associated with the corotation enforcement currents in the middle magnetosphere. We also find that at latitudes higher than the main auroral oval there is often a region of the ionosphere that is in rigid corotation with the planet. We suggest that this region corresponds to field lines embedded in the centre of the magnetotail which are shielded from the solar wind such that their rotation is controlled only by the neutral atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号