首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magmas progressively exsolve volatiles as they ascend towards the Earth's surface, such that their volatile content is a function of pressure. Water and carbon dioxide concentrations measured in melt inclusions from degassing volcanoes rarely coincide with modelled degassing trends. I show that observed melt inclusion trends can be reproduced through mixing of magmas, either during convection within the volcanic conduit, or within a subterranean magma reservoir. No fluxing gas phase or post-entrapment loss of water need be invoked. A permeable network allowing gas transport is still required to avoid fragmentation of magma at shallow depths.  相似文献   

2.
The November 2002 eruption of Piton de la Fournaise in the Indian Ocean was typical of the activity of the volcano from 1999 to 2006 in terms of duration and volume of magma ejected. The first magma erupted was a basaltic liquid with a small proportion of olivine phenocrysts (Fo81) that contain small numbers of melt inclusions. In subsequent flows, olivine crystals were more abundant and richer in Mg (Fo83–84). These crystals contain numerous melt and fluid inclusions, healed fractures, and dislocation features such as kink bands. The major element composition of melt inclusions in this later olivine (Fo83–84) is out of equilibrium with that of its host as a result of extensive post-entrapment crystallization and Fe2+ loss by diffusion during cooling. Melt inclusions in Fo81 olivine are also chemically out of equilibrium with their hosts but to a lesser degree. Using olivine–melt geothermometry, we determined that melt inclusions in Fo81 olivine were trapped at lower temperature (1,182 ± 1°C) than inclusions in Fo83–84 olivine (1,199–1,227°C). This methodology was also used to estimate eruption temperatures. The November 2002 melt inclusion compositions suggest that they were at temperatures between 1,070°C and 1,133°C immediately before eruption and quenching. This relatively wide temperature range may reflect the fact that most of the melt inclusions were from olivine in lava samples and therefore likely underwent minor but variable amounts of post-eruptive crystallization and Fe2+ loss by diffusion due to their relatively slow cooling on the surface. In contrast, melt inclusions in tephra samples from past major eruptions yielded a narrower range of higher eruption temperatures (1,163–1,181°C). The melt inclusion data presented here and in earlier publications are consistent with a model of magma recharge from depth during major eruptions, followed by storage, cooling, and crystallization at shallow levels prior to expulsion during events similar in magnitude to the relatively small November 2002 eruption.  相似文献   

3.
Miocene volcanism in eastern Morocco is comprised of potash rich calc-alkalic and alkaline rocks. In the southern part of the area, at the base of the Guilliz massif, basic inclusions are found in latites. From a petrological, geochemical and mineralogical study of both latites and their inclusions, it appear that the inclusions represent a basic liquid quenched in the latitic magma, inside the magma chamber. As a result of the drop in pressure and crystallization, a K-rich vapour phase separated from the inclusion-forming liquid and percolated the latitic magma, increasing the K2O content of the latter and possibly triggering eruptions. The mixing process between the two magmas seems supported by density and viscosity estimations. Calculations show that for temperatures ranging from 700 °C to 1000 °C and H2O contents from 1.6 to 5%, the inclusion forming liquid is less dense than the latitic liquid and can therefore ascend into the latitic magma by interface disequilibrium and flotation.  相似文献   

4.
Silicate melt inclusions in phenocrysts are not directly representative of trapped magmatic liquid because chemical interaction between inclusions and host crystals usually occurs after melt entrapment. However, if more than one phenocryst type in a suite of rocks contains melt inclusions, the original trapped-liquid composition can be accurately fixed by the intersection of host-mineral fractionation lines in a triangular oxide plot of inclusion analyses. When plotted on a CaO—MgO—Al2O3 triangular diagram, analyses of inclusions in plagioclase, olivine, and clinopyroxene from a basalt dredged off Bouvet Island fall along crystal fractionation lines that intersect at a single point. This point represents an initial trapped liquid composition rich in CaO and MgO, and low in TiO2 and total alkalies. The composition is transitional between tholeiite and basaltic komatiite, and may be indicative of extensive melting of clinopyroxene in the mantle.  相似文献   

5.
Plagioclase ultraphyric basalts in Iceland: the mush of the rift   总被引:1,自引:0,他引:1  
Glassy, plagioclase ultraphyric basalts from six locations in Iceland have bimodal phenocryst size distributions where microphenocrysts (ol+plg±cpx±mt) are in equilibrium with the matrix glass, but macrophenocrysts (ol+plg±cpx) are too primitive to be so. Matrix glass compositions are similar to those of other rift zone glasses from Iceland, and oxygen isotope variations suggest they interacted with the Icelandic crust. A lack of negative Eu-anomalies in matrix glasses precludes large amounts of plagioclase crystallisation from their parental liquids. Compositions of glass inclusions in plagioclase and olivine macrophenocrysts indicate that parental magma compositions of the macrophenocryst assemblage are similar to those of primitive, Icelandic rift zone glasses. Temperatures for plagioclase macrophenocryst crystallisation obtained from Linkam® heating stage experiments, and from glass inclusion compositions corrected for post-entrapment crystallisation, give temperatures up to 1260°C, corresponding to crystallisation at middle to deep crustal levels. Temperature differences of less than 100°C between plagioclase-hosted glass inclusions before and after post-entrapment plagioclase crystallisation show that the macrophenocrysts must have been kept at elevated temperatures prior to incorporation in their present host magmas. We suggest that the macrophenocrysts of the plagioclase ultraphyric basalts accumulated in crystal mush bodies underneath the rift zone and were picked up by their present hosts during a rifting event with increased magma supply from the mantle.  相似文献   

6.
 This work presents the results of a microthermometric and EPMA-SIMS study of melt inclusions in phenocrysts of rocks of the shoshonitic eruptive complex of Vulcano (Aeolian Islands, Italy). Different primitive magmas related to two different evolutionary series, an older one (50–25 ka) and a younger one (15 ka to 1890 A.D.), were identified as melt inclusions in olivine Fo88–91 crystals. Both are characterized by high Ca/Al ratio and present very similar Rb/Sr, B/Be and patterns of trace elements, with Nb and Ti anomalies typical of a subduction zone. The two basalts present the same temperature of crystallization (1180±20  °C) and similar volatile abundances. The H2O, S and Cl contents are relatively high, whereas magmatic CO2 concentrations are very low, probably due to CO2 loss before low-pressure crystallization and entrapment of melt inclusions. The mineral chemistry of the basaltic assemblages and the high Ca/Al ratio of melt inclusions indicate an origin from a depleted, metasomatized clinopyroxene-rich peridotitic mantle. The younger primitive melt is characterized with respect to the older one by higher K2O and incompatible element abundances, by lower Zr/Nb and La/Nb, and by higher Ba/Rb and LREE enrichment. A different degree of partial melting of the same source can explain the chemical differences between the two magmas. However, some anomalies in Sr, Rb and K contents suggest either a slightly different source for the two magmas or differing extents of crustal contamination. Low-pressure degassing and cooling of the basaltic magmas produce shoshonitic liquids. The melt inclusions indicate evolutionary paths via fractional crystallization, leading to trachytic compositions during the older activity and to rhyolitic compositions during the recent one. The bulk-rock compositions record a more complex history than do the melt inclusions, due to the syneruptive mixing processes commonly affecting the magmas erupted at Vulcano. The composition and temperature data on melt inclusions suggest that in the older period of activity several shallow magmatic reservoirs existed; in the younger one a relatively homogeneous feeding system is active. The shallow magmatic reservoir feeding the recent eruptive activity probably has a vertical configuration, with basaltic magma in the deeper zones and differentiated magmas in shallower, low-volume, dike-like reservoirs. Received: 11 March 1998 / Accepted: 14 July 1998  相似文献   

7.
The Niyasar plutonic complex, one of the Cenozoic magmatic assemblages in the Urumieh‐Dokhtar magmatic belt, was the subject of detailed petrographic and mineralogical investigations. The Niyasar magmatic complex is composed of Eocene to Oligocene mafic rocks and Miocene granitoids. Eleven samples, representing the major rock units in the Niyasar magmatic complex and contact aureole were chosen for mineral chemical studies and for estimation of the pressure, temperature, and oxygen fugacity conditions of mineral crystallization during emplacement of various magmatic bodies. The analyzed samples are composed of varying proportions of quartz, plagioclase, K‐feldspar, hornblende, biotite, titanite, magnetite, apatite, zircon, garnet, and clinopyroxene. Application of the Al‐in‐hornblende barometer indicates pressures of around 0.2 to 0.4 kbar for the Eocene–Oligocene mafic bodies and around 0.5 to 1.7 kbar for the Miocene granitoids. Hornblende‐plagioclase thermometry yields relatively low temperatures (661–780 °C), which probably reflect late stage re‐equilibration of these minerals. The assemblage titanite–magnetite–quartz as well as hornblende composition were used to constrain the oxygen fugacity and H2O content during the crystallization of the parent magmas in the Miocene plutons. The results show that the Miocene granitoids crystallized from magmas with relatively high oxygen fugacity and high H2O content (~5 wt% H2O). The Miocene granitoids show similar range of oxygen fugacity, H2O contents and mineral chemical compositions, which indicate a common source for their magmas. Although the crystallization pressures of the Miocene plutons discriminate various categories of plutonic bodies emplaced at depths of about 5.7–6.5 km (Marfioun pluton), about 4.2 km (Ghalhar pluton) and 1.9–2.3 km (Poudalg pluton), they were later uplifted to the same level by vertical displacement of faults. The emplacement depths of the Niyasar plutons suggest that the central part of the Urumieh‐Dokhtar magmatic belt has experienced an uplift rate of ca. 0.25–0.4 mm/yr from the Miocene onwards.  相似文献   

8.
Dacitic magma, a mixture of high-temperature (T) aphyric magma and low-T crystal-rich magma, was erupted during the 1991–1995 Mount Unzen eruptive cycle. Here, the crystallization processes of the low-T magma were examined on the basis of melt inclusion analysis and phase relationships. Variation in water content of the melt inclusions (5.1–7.2 wt% H2O) reflected the degassing history of the low-T magma ascending from deeper levels (250 MPa) to a shallow magma chamber (140 MPa). The ascent rate of the low-T magma decreased markedly towards the emplacement level as crystal content increased. Cooling of magma as well as degassing-induced undercooling drove crystallization. With the decreasing ascent rate, degassing-induced undercooling decreased in importance, and cooling became more instrumental in crystallization, causing local and rapid crystallization along the margin of the magma body. Some crystals contain scores of melt inclusions, whereas there are some crystals without any inclusions. This heterogeneous distribution suggests the variation in the crystallization rate within the magma body; it also suggests that cooling was dominant cause for melt entrapment. Numerical calculations of the cooling magma body suggest that cooling caused rapid crystal growth and enhanced melt entrapment once the magma became a crystal-rich mush with evolved interstitial melt. The rhyolitic composition of melt inclusions is consistent with this model.Editorial responsibility: H Shinohara  相似文献   

9.
The Handkerchief Mesa mixed magma complex is one of several late Cenozoic volcanic complexes in the southeastern San Juan Mountains characterized by mingling and limited mixing of basalt and rhyodacite. Stratigraphy in the dissected vent complex at Handkerchief Mesa records three phases of volcanism, the first and third displaying evidence for coeruption of mafic and silicic magmas. Phases 1 and 2 erupted silicic pyroclastics and basaltic lava flows, respectively. Phase-3 eruptions were dominated by rhyodacite lava flows, rhyodacite dikes, and abundant mingled and mixed hybrid lavas.Pre- and syneruptive basalt-rhyodacite mixing of phase-3 eruptions is shown by: (1) inclusions of quenched basalt in rhyodacite; (2) partially disaggregated basalt inclusions in mixed hybrids and rhyodacites; (3) interfingering lenses of mixed hybrid lavas and rhyodacite. Whole-rock major- and trace-element analyses support a two-component mixing model whereby intermediate hybrids are produced by mixing of basalt and rhyodacite (up to 30% basalt: 70% rhyodacite). Disequilibrium phenocryst textures and mineral compositions are consistent with multistage mixing culminating in an eruptive mixing event. Protracted mixing along a boundary zone at the base of a rhyodacite magma chamber may be responsible for stabilizing Fe-rich olivine phenocrysts in some hybrids.Basalt-rhyodacite mixing is inhibited by rapid crystallization in the basalt shortly after inclusion within the lower temperature melt. The degree to which mechanical dispersion and blending ensues is a critical function of the initial temperature contrast (ΔTi) between the two magmas. Thermal models, simulating the conductive cooling histories for basalt spheres in rhyodacite reservoirs, suggest that at large ΔTi's (> 200°) rapid cooling of the inclusion leads to disequilibrium crystallization with concomitant depression of equilibrium solidi, grain boundary wetting by residual liquids, and limited disaggregation of the inclusion imposed by movement of the host. For small ΔTi's (< 100°) temperatures within the inclusion can be maintained above the solidus for prolonged time periods, enhancing the possibility of producing homogeneous mixed hybrids through mechanical blending and diffusion. Both mechanisms operated at Handkerchief Mesa and contributed to the range of observed textures and compositions.  相似文献   

10.
The El Capitan alaskite exposed in the North American Wall, Yosemite National Park, was intruded by two sets of mafic dikes that interacted thermally and chemically with the host alaskite. Comparisons of petrographic and compositional data for these dikes and alaskite with published data for Sierra Nevada plutons lead us to suggest that mafic magmas were important in the generation of the Sierra Nevada batholith. Specifically, we conclude that: (1) intrusion of mafic magmas in the lower crust caused partial melting and generation of alaskite (rhyolitic) magmas; (2) interaction between the mafic and felsic magmas lead to the observed linear variation diagrams for major elements; (3) most mafic inclusions in Sierra Nevada plutons represent chilled pillows of mafic magmas, related by fractional crystallization and granitoid assimilation, that dissolve into their felsic host and contaminate it to intermediate (granodioritic) compositions; (4) vesiculation of hydrous mafic magma upon chilling may allow buoyant mafic inclusions and their disaggregation products to collect beneath a pluton's domed ceiling causing the zoning (mafic margins-to-felsic core) that these plutons exhibit.  相似文献   

11.
Examination of glass and crystal chemistry in the Rotoiti Pyroclastics (>100 km3 of magma) demonstrates that compositional diversity was produced by mingling of the main rhyolite magma body with small volumes of other magmas that had been crystallizing in separate stagnant magma chambers. Most (>90%) of the Rotoiti deposits were derived from a low-K2O, cummingtonite-bearing, rhyolitic magma (T1) discharged throughout the eruption sequence. T1 magma is homogeneous in composition (melt SiO2=77.80±0.28 wt.%), temperature (766±13 °C) and oxygen fugacity (NNO+0.92±0.09). Most T1 phenocrysts formed in a shallow (∼200 MPa), near water-saturated (awater=0.8) storage chamber shortly before eruption. Basaltic scoria erupted immediately before the rhyolites, and glass-bearing microdiorite inclusions within the rhyolite deposits, suggest that basalt emplaced on the floor of the chamber drove vigorous convection to produce the well-mixed T1 magma. Lithic lag breccias contain melt-bearing biotite granitoid inclusions that are compositionally distinct from T1 magma. The breccias which overlie the voluminous T1 pyroclastic flow deposits resulted from collapse of the syn-Rotoiti caldera. Post-collapse Rotoiti pumices contain T1 magma mingled with another magma (T2) that is characterized by high-K glass and biotite, and was cooler and less oxidised (712±16 °C; NNO−0.16±0.16). The mingled clasts contain bimodal disequilibrium populations of all crystal phases. The granitoid inclusions and the T2 magma are interpreted as derived from high-K magma bodies of varying ages and states of crystallization, which were adjacent to but not part of the large T1 magma body. We demonstrate that these high-K magmas contaminated the erupting T1 magma on a single pumice clast scale. This contamination could explain the reported wide range of zircon U–Th ages in Rotoiti pumices, rather than slow crystallization of a single large magma body.  相似文献   

12.
本文利用电子探针技术对赣中盛源盆地及邻区橄榄玄粗岩系列火山岩中黑云母的类型、化学成分及结晶时的温度和氧逸度条件等进行了研究。黑云母为镁质黑云母;结晶时温度的大致范围为1060℃~1100℃,氧逸度大致范围为10^-7bar-10^9bar。本文研究表明,黑云母的化学成分研究是揭示岩石成因类型的一种有效途径,可为研究岩体成因类型以及成岩时的物理化学条件提供依据,并对成岩具有重要的指示意义。  相似文献   

13.
Volcanoes of the Mariana arc system produce magmas that belong to several liquid lines of descent and that originated from several different primary magmas. Despite differences in parental magmas, phenocryst assemblages are very similar throughout the arc. The different liquid lines of descent are attributed to differences in degree of silica saturation of the primary liquids and in the processes of magmatic evolution (fractional crystallization vs magma mixing). Pseudoternary projections of volcanic rocks from several arc volcanoes are used to show differences between different magmatic suites. In most of the arc, parental liquids were Ol- and Hy-normative basalts that crystallized olivine, augite, and plagioclase (± iron-titanium oxide) and then plagioclase and two pyroxenes, apparently at low pressure. Eruptive rocks follow subparallel liquid lines of descent on element–element diagrams and on pseudoternary projections. Magmas at North Hiyoshi are Ne-normative and have a liquid line of descent along the thermal divide due to precipitation of olivine, augite, and plagioclase. Derived liquids are large ion lithophile element (LILE)-rich. Magmas at other Hiyoshi seamounts included an alkaline component but had more complex evolution. Those at Central Hiyoshi formed by a process dominated by mixing alkaline and subalkaline magmas, whereas those at other Hiyoshi seamounts evolved by combined magma mixing and fractional crystallization. Influence of the alkaline component wanes as one goes south from North Hiyoshi. Alkaline and subalkaline magmas were also mixed to produce magmas erupted at the Kasuga seamounts that are behind the arc front. The alkaline magmas at both Hiyoshi and Kasuga seamounts had different sources from those of the subalkaline magmas at those sites as indicated by trace element ratios and by Nd.  相似文献   

14.
A new version of COMAGMAT-3.5 model designed for computer simulations of equilibrium and fractional crystallization of basaltic magmas at low to high pressures is presented. The most important modifications of COMAGMAT include an ability to calculate more accurately the crystallization of magnetite and ilmenite, allowing the user to study numerically the effect of oxygen fugacity on basalt magma fractionation trends. Methodological principles of the use of COMAGMAT were discussed based on its thermodynamical and empirical basis, including specific details of the model calibration. Using COMAGMAT-3.5 a set of phase equilibria calculations (called Geochemical Thermometry) has been conducted for six cumulative rocks from the Marginal Border Series of the Skaergaard intrusion. As a result, initial magma temperature (1165±10°C) and trapped melt composition proposed to be parental magma to the Skaergaard intrusion were determined. Computer simulations of perfect fractionation of this composition as well as another proposed parent produced petrochemical trends opposite to those followed from natural observations. This is interpreted as evidence for an initial Skaergaard magma containing a large amount of olivine and plagioclase crystals (about 40–45%), so that the proposed and calculated parents are related through the melt trapped in the crystal–liquid mixture. This promotes the conclusion that the Skaergaard magma fractionation process was intermediate between equilibrium and fractional crystallization. In this case the classic Wager's trend should be considered an exception rather than a rule for the differentiation of ferro-basaltic magmas. A polybaric version of COMAGMAT has been applied for the genetic interpretation of a volcanic suite from the Klyuchevskoi volcano, Kamchatka, Russia. To identify petrological processes responsible for the observed suite ranging from high-magnesia to high-alumina basalts, we used the model to simulate the Klyuchevskoi suite assuming isobaric crystallization of a parental HMB magma at a variety of pressures and a separate set of simulations assuming fractionation during continuous magma ascent from a depth of 60 km. These results indicate that the Klyuchevskoi trend can be produced by 40% fractionation of Ol–Aug–Sp±Opx assemblages during ascent of the parental HMB magma over the pressure range 19–7 kbar with the rate of decompression being 0.33 kbar/% crystallized (at 1350–1110°C), with 2 wt.% of H2O in the initial melt and 3 wt.% of H2O in the resultant high-Al basalt.  相似文献   

15.
The magmatic system feeding the last eruption of the volcano La Fossa, Vulcano Island, Italy was studied. The petrogenetic mechanisms controlling the differentiation of erupted rocks were investigated through petrography, mineral chemistry, major, trace and rare earth element and Sr, Nd and Pb isotopic geochemistry. In addition, melt inclusion and fluid inclusion data were collected on both juvenile material and xenolithic partially melted metamorphic clasts to quantify the P-T conditions of the magma chamber feeding the eruption. A regular and continuous chemical zoning has been highlighted: rhyolites are the first erupted products, followed by trachytes and latites, whereas rhyolitic compositions were also found in the upper part of the sequence. The chemical and isotopic composition of the rhyolites indicates that they originated by fractional crystallization from latitic magmas plus the assimilation of crustal material; the trachytes represent hybrid magmas resulting from the mixing of latites and rhyolites, contaminated in the shallow magmatic system. The erupted products, primarily compositionally zoned from latites to rhyolites, are heterogeneous due to syn-eruptive mingling. The occurrence of magmacrust interaction processes, evidenced by isotopic variations (87Sr/86Sr=0.70474±3 to 0.70511±3; 143Nd/144Nd=0.512550±6 to 0.512614±8; 206Pb/204Pb=19.318–19.489; 207Pb/204Pb=15.642–15.782; 208Pb/204Pb=39.175–39.613), is confirmed by the presence of partially melted metamorphic xenoliths, with 87Sr/86Sr=0.71633±6 to 0.72505±2 and 143Nd/144Nd=0.51229±7, in rhyolites and trachytes. AFC calculations indicate a few percentage contribution of crustal material to the differentiating magmas. Thermometric measurements on melt inclusions indicate that the crystallization temperatures of the latites and trachytes were in the range of 1050–1100° C, whereas the temperature of the rhyolites appears to have been around 1000°C at the time of the eruption. Compositional data on melt inclusions reveal that the magmas involved in the eruption contained about 1–1.5 wt.% dissolved H2O in pre-eruptive conditions. Secondary fluid inclusions found in metamorphic xenoliths give low equilibration pressure data (30–60 MPa), giving the location of the higher portions of the chamber at around 1500–2000 m of depth.  相似文献   

16.
Erta Ale volcano, Ethiopia, erupted in November 2010, emplacing new lava flows on the main crater floor, the first such eruption from the southern pit into the main crater since 1973, and the first eruption at this remote volcano in the modern satellite age. For many decades, Erta Ale has contained a persistently active lava lake which is ordinarily confined, several tens of metres below the level of the main crater, within the southern pit. We combine on-the-ground field observations with multispectral imaging from the SEVIRI satellite to reconstruct the entire eruptive episode beginning on 11 November and ending prior to 14 December 2010. A period of quiescence occurred between 14 and 19 November. The main eruptive activity developed between 19 and 22 November, finally subsiding to pre-eruptive levels between 8 and 15 December. The estimated total volume of lava erupted is ??0.006?km3. The mineralogy of the 2010 lava is plagioclase?+?clinopyroxene?+?olivine. Geochemically, the lava is slightly more mafic than previously erupted lava lining the caldera floor, but lies within the range of historical lavas from Erta Ale. SIMS analysis of olivine-hosted melt inclusions shows the Erta Ale lavas to be relatively volatile-poor, with H2O contents ??1,300?ppm and CO2 contents of ??200?ppm. Incompatible trace and volatile element systematics of melt inclusions show, however, that the November 2010 lavas were volatile-saturated, and that degassing and crystallisation occurred concomitantly. Volatile saturation pressures are in the range 7?C42?MPa, indicating shallow crystallisation. Calculated pre-eruption and melt inclusion entrapment temperatures from mineral/liquid thermometers are ??1,150?°C, consistent with previously published field measurements.  相似文献   

17.
 During the 1944 eruption of Vesuvius a sudden change occurred in the dynamics of the eruptive events, linked to variations in magma composition. K-phonotephritic magmas were erupted during the effusive phase and the first lava fountain, whereas the emission of strongly porphyritic K-tephrites took place during the more intense fountain. Melt inclusion compositions (major and volatile elements) highlight that the magmas feeding the eruption underwent differentiation at different pressures. The K-tephritic volatile-rich melts (up to 3 wt.% H2O, 3000 ppm CO2, and 0.55 wt.% Cl) evolved to reach K-phonotephritic compositions by crystallization of diopside and forsteritic olivine at total fluid pressure higher than 300 MPa. These magmas fed a very shallow reservoir. The low-pressure differentiation of the volatile-poor K-phonotephritic magmas (H2O<1 wt.%) involved mixing, open-system degassing, and crystallization of leucite, salite, and plagioclase. The eruption was triggered by intrusion of a volatile-rich magma batch that rose from a depth of 11–22 km into the shallow magma chamber. The first phase of the eruption represents the partial emptying of the shallow reservoir, the top of which is within the volcanic edifice. The newly arrived magma mixed with that resident in the shallow reservoir and forced the transition from the effusive to the lava fountain phase of the eruption. Received: 14 September 1998 / Accepted: 10 January 1999  相似文献   

18.
Two fundamentally different types of silicic volcanic rocks formed during the Cenozoic of the western Cordillera of the United States. Large volumes of dacite and rhyolite, mostly ignimbrites, erupted in the Oligocene in what is now the Great Basin and contrast with rhyolites erupted along the Snake River Plain during the Late Cenozoic. The Great Basin dacites and rhyolites are generally calc-alkaline, magnesian, oxidized, wet, cool (<850°C), Sr-and Al-rich, and Fe-poor. These silicic rocks are interpreted to have been derived from mafic parent magmas generated by dehydration of oceanic lithosphere and melting in the mantle wedge above a subduction zone. Plagioclase fractionation was minimized by the high water fugacity and oxide precipitation was enhanced by high oxygen fugacity. This resulted in the formation of Si-, Al-, and Sr-rich differentiates with low Fe/Mg ratios, relatively low temperatures, and declining densities. Magma mixing, large proportions of crustal assimilation, and polybaric crystal fractionation were all important processes in generating this Oligocene suite. In contrast, most of the rhyolites of the Snake River Plain are alkaline to calc-alkaline, ferroan, reduced, dry, hot (830–1,050°C), Sr-and Al-poor, and Nb-and Fe-rich. They are part of a distinctly bimodal sequence with tholeiitic basalt. These characteristics were largely imposed by their derivation from parental basalt (with low fH2O and low fO2) which formed by partial melting in or above a mantle plume. The differences in intensive parameters caused early precipitation of plagioclase and retarded crystallization of Fe–Ti oxides. Fractionation led to higher density magmas and mid-crustal entrapment. Renewed intrusion of mafic magma caused partial melting of the intrusive complex. Varying degrees of partial melting, fractionation, and minor assimilation of older crust led to the array of rhyolite compositions. Only very small volumes of distinctive rhyolite were derived by fractional crystallization of Fe-rich intermediate magmas like those of the Craters of the Moon-Cedar Butte trend. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Mafic and ultramafic xenoliths are well represented within a large basaltic lava field of Stromboli. These basalts, known as San Bartolo lavas, show a high-K calc-alkaline (HKCA) affinity and were erupted <5 ka BP. Xenoliths consist of olivin-gabbro, gabbronorite, anorthosite, dunite, wehrlite and clinopyroxenite. Thermobarometric estimates for the crystallization of gabbroic materials show minima equilibration pressures of 0.17–0.24 GPa, at temperatures ranging from 940 to 1,030°C. These materials interacted with hydrous ascending HKCA basaltic magmas (with temperatures of 1,050–1,100°C) at pressures of about 0.2–0.4 GPa. These pressure regimes are nearly identical to those found for the crystallization of phenocrystic phases within HKCA basaltic lavas. Gabbroic inclusions are regarded as cumulates and represent crystallized portions of earlier HKCA Strombolian basalts.Dunite and wehrlite show porphyroclastic-heterogranular textures, whereas the clinopyroxenite exhibit a mosaic-equigranular texture typical of mantle peridotites. These ultramafic materials are in equilibrium with more primitive basaltic magmas (under moderately hydrous and anhydrous conditions) at pressures of 0.8–1.2 GPa, which is below the crust-mantle transition, located at about 20 km depth under Stromboli.Major and trace element distributions indicate comagmatism between the host basaltic lava and the mafic and ultramafic inclusions. REE patterns for mafic nodules are relatively regular and overlap the field of basaltic lavas (HKCA). They show moderate to high LREE enrichments and moderate enrichments in HREE relative to chonrites. Spider diagrams also show significant similarities between the lavas and the mafic-ultramafic xenoliths as well.During their ascent, primitive Strombolian magmas may be stored in upper-mantle regions where they interact with peridotitic materials and partly differentiate (to give dunite and wehrlite) before migrating to upper crustal levels. In this region, hydrous basaltic magmas (with estimated water contents of 2–3.5 wt%) are stored in the subvolcanic environment, and are allowed to crystallize the gabbroic materials before reaching the surface under nearly anhydrous conditions.An erratum to this article can be found at  相似文献   

20.
Calc-alkaline intermediate rocks are spatially and temporally associated with high-Mg andesites (HMAs, Mg#>60) in Middle Miocene Setouchi volcanic belt. The calc-alkaline rocks are characterized by higher Mg# (strongly calc-alkaline trend) than ordinary calc-alkaline rocks at equivalent silica contents. Phenocrysts in the intermediate rocks have petrographical features such as: (1) coexisting reversely and normally zoned orthopyroxene phenocrysts in single rock; (2) sieve type plagioclase in which cores are mantled by higher An%, melt inclusion-rich zone; and (3) reversely zoned amphibole phenocrysts with opacite cores. In addition, mingling textures and magmatic inclusions were observed in some rocks. These petrographic features and the mineral chemistry indicate that magma mixing was the most important process in producing the strongly calc-alkaline rocks. The core composition of normally zoned orthopyroxene phenocrysts and the mantle composition of reversely zoned orthopyroxene phenocrysts have relatively high Mg# (85–90) in maximum. Although basaltic and high-Mg andesitic magmas are candidate as possible mafic end-member magmas, basaltic magma is excluded in terms of phenocryst assemblage and bulk composition. HMA magmas are suitable mafic end-member magmas that precipitated high Mg# (90) orthopyroxene, whereas andesitic to dacitic magma are suitable felsic end-members. In contrast, it is difficult to produce the strongly calc-alkaline trend through fractional crystallization from a HMA magma, because it would require removal of plagioclase together with mafic minerals from the early stage of crystallization, whereas the precipitation of plagiolase is suppressed due to the high water content of HMA magmas. These results imply that Archean Mg#-rich TTGs (>45–55), which are an analog of the strongly calc-alkaline rocks in terms of chemistry and magma genesis, can be derived from magma mixing in which a HMA magma is the mafic end-member magma, rather than by fractional crystallization from a HMA magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号