首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An important cause of seismic anisotropic attenuation is the interbedding of thin viscoelastic layers. However, much less attention has been devoted to layer‐induced anisotropic attenuation. Here, we derive a group of unified weighted average forms for effective attenuation from a binary isotropic, transversely isotropic‐ and orthorhombic‐layered medium in the zero‐frequency limit by using the Backus averaging/upscaling method and analyse the influence of interval parameters on effective attenuation. Besides the corresponding interval attenuation and the real part of stiffness, the contrast in the real part of the complex stiffness is also a key factor influencing effective attenuation. A simple linear approximation can be obtained to calculate effective attenuation if the contrast in the real part of stiffness is very small. In a viscoelastic medium, attenuation anisotropy and velocity anisotropy may have different orientations of symmetry planes, and the symmetry class of the former is not lower than that of the latter. We define a group of more general attenuation‐anisotropy parameters to characterize not only the anisotropic attenuation with different symmetry classes from the anisotropic velocity but also the elastic case. Numerical tests reveal the influence of interval attenuation anisotropy, interval velocity anisotropy and the contrast in the real part of stiffness on effective attenuation anisotropy. Types of effective attenuation anisotropy for interval orthorhombic attenuation and interval transversely isotropic attenuation with a vertical symmetry (vertical transversely isotropic attenuation) are controlled only by the interval attenuation anisotropy. A type of effective attenuation anisotropy for interval TI attenuation with a horizontal symmetry (horizontal transversely isotropic attenuation) is controlled by the interval attenuation anisotropy and the contrast in the real part of stiffness. The type of effective attenuation anisotropy for interval isotropic attenuation is controlled by all three factors. The magnitude of effective attenuation anisotropy is positively correlated with the contrast in the real part of the stiffness. Effective attenuation even in isotropic layers with identical isotropic attenuation is anisotropic if the contrast in the real part of stiffness is non‐zero. In addition, if the contrast in the real part of stiffness is very small, a simple linear approximation also can be performed to calculate effective attenuation‐anisotropy parameters for interval anisotropic attenuation.  相似文献   

2.
Anisotropic material properties are usually neglected during inversions for source parameters of earthquakes. In general anisotropic media, however, moment tensors for pure-shear sources can exhibit significant non-double-couple components. Such effects may be erroneously interpreted as an indication for volumetric changes at the source. Here we investigate effects of anisotropy on seismic moment tensors and radiation patterns for pure-shear and tensile-type sources. Anisotropy can significantly influence the interpretation of the source mechanisms. For example, the orientation of the slip within the fault plane may affect the total seismic moment. Also, moment tensors due to pure-shear and tensile faulting can have similar characteristics depending on the orientation of the elastic tensor. Furthermore, the tensile nature of an earthquake can be obscured by near-source anisotropic properties. As an application, we consider effects of inhomogeneous anisotropic properties on the seismic moment tensor and the radiation patterns of a selected type of micro-earthquakes observed in W-Bohemia. The combined effects of near-source and along-path anisotropy cause characteristic amplitude distortions of the P, S1 and S2 waves. However, the modeling suggests that neither homogeneous nor inhomogeneous anisotropic properties alone can explain the observed large non-double-couple components.The results also indicate that a correct analysis of the source mechanism, in principle, is achievable by application of anisotropic moment tensor inversion.  相似文献   

3.
Bos  L.  Gibson  P.  Kotchetov  M.  Slawinski  M. 《Studia Geophysica et Geodaetica》2004,48(1):265-287
The purpose of the present article is to give a precise definition and analysis from first principals of anisotropy, as the term applies to elastic media, taking care to avoid unnecessary assumptions. Two fundamental concepts, material invariance and symmetry group of a material, are defined purely in terms of the stress-strain relation. The implications of material symmetry, or in other words, of anisotropy, for the structure of the stiffness tensor are then investigated. Using the reduced notation of Voigt, these results are presented as the well-known simplifications in the form taken by the six-by-six stiffness matrix that represents the material's stiffness tensor. A new, simple proof is given for the remarkable fact that an elastic medium cannot have rotational symmetry by an angle of less than 90° without being transversely isotropic. In addition, the mutual relation that the notions of elastic symmetry and crystal symmetry have with respect to the so-called orthogonal group is sketched. Despite the historical association between anisotropic elastic materials and the study of crystals, the given presentation shows that conceptually the notion of anisotropy in elastic media is entirely independent of that of crystal symmetry.  相似文献   

4.
在一些地层层理发育的地区,地下介质存在显著的电各向异性,此时基于各向同性模型解释含各向异性效应的可控源音频大地电磁(CSAMT)测深观测数据会导致错误的结果.本文通过引入3×3的对称正定张量表征电导率各向异性,采用非结构四面体网格和矢量有限元方法离散电场满足的矢量Helmholtz方程,并将电磁场源等效为系列电偶极子,实现任意各向异性介质中CSAMT高效数值模拟.本文首先通过层状各向异性模型检验三维有限元算法的精度和有效性,进一步建立三维地电模型研究异常体各向异性和围岩各向异性对CSAMT响应的影响,最后使用视电阻率极性图来识别各向异性电导率主轴方向.数值模拟结果表明,各向异性电导率对CSAMT视电阻率幅值及分布规律都有很大影响,视电阻率极性图能够很好地识别各向异性主轴方向.  相似文献   

5.
For a given stiffness tensor (tensor of elastic moduli) of a generally anisotropic medium, we can estimate the extent to which the medium is transversely isotropic, and determine the direction of its reference symmetry axis. In this paper, we rotate the given stiffness tensor about this reference symmetry axis, and determine the reference transversely isotropic (uniaxial) stiffness tensor as the average of the rotated stiffness tensor over all angles of rotation. The obtained reference transversely isotropic (uniaxial) stiffness tensor represents an analytically differentiable approximation of the given generally anisotropic stiffness tensor. The proposed analytic method is compared with a previous numerical method in two numerical examples.  相似文献   

6.
When a seismic signal propagates through a finely layered medium, there is anisotropy if the wavelengths are long enough compared to the layer thicknesses. It is well known that in this situation, the medium is equivalent to a transversely isotropic material. In addition to anisotropy, the layers may show intrinsic anelastic behaviour. Under these circumstances, the layered medium exhibits Q anisotropy and anisotropic velocity dispersion. The present work investigates the anelastic effect in the long-wavelength approximation. Backus's theory and the standard linear solid rheology are used as models to obtain the directional properties of anelasticity corresponding to the quasi-compressional mode qP, the quasi-shear mode qSV, and the pure shear mode SH, respectively. The medium is described by a complex and frequency-dependent stiffness matrix. The complex and phase velocities for homogeneous viscoelastic waves are calculated from the Christoffel equation, while the wave-fronts (energy velocities) and quality factor surfaces are obtained from energy considerations by invoking Poynting's theorem. We consider two-constituent stationary layered media, and study the wave characteristics for different material compositions and proportions. Analyses on sequences of sandstone-limestone and shale-limestone with different degrees of anisotropy indicate that the quality factors of the shear modes are more anisotropic than the corresponding phase velocities, cusps of the qSV mode are more pronounced for low frequencies and midrange proportions, and in general, attenuation is higher in the direction perpendicular to layering or close to it, provided that the material with lower velocity is the more dissipative. A numerical simulation experiment verifies the attenuation properties of finely layered media through comparison of elastic and anelastic snapshots.  相似文献   

7.
Mudrocks, defined to be fine‐grained siliclastic sedimentary rocks such as siltstones, claystones, mudstones and shales, are often anisotropic due to lamination and microscopic alignments of clay platelets. The resulting elastic anisotropy is often non‐negligible for many applications in the earth sciences such as wellbore stability, well stimulation and seismic imaging. Anisotropic elastic properties reported in the open literature have been compiled and statistically analysed. Correlations between elastic parameters are observed, which will be useful in the typical case that limited information on a rock's elastic properties is known. For example, it is observed that the highest degree of correlation is between the horizontal elastic stiffnesses C11 and C66. The results of statistical analysis are generally consistent with prior observations. In particular, it is observed that Thomsen's ? and γ parameters are almost always positive, Thomsen's ? and γ parameters are well correlated, Thomsen's δ is most frequently small and Thomsen's ? is generally larger than Thomsen's δ. These observations suggest that the typical range for the elastic properties of mudrocks span a sub‐space less than the five elastic constants required to fully define a Vertical Transversel Isotropic medium. Principal component analysis confirms this and that four principal components can be used to span the space of observed elastic parameters.  相似文献   

8.
Crack damage results in a decrease of elastic wave velocities and in the development of anisotropy. Using non-interactive crack effective medium theory as a fundamental tool, we calculate dry and wet elastic properties of cracked rocks in terms of a crack density tensor, average crack aspect ratio and mean crack fabric orientation from the solid grains and fluid elastic properties. Using this same tool, we show that both the anisotropy and shear-wave splitting of elastic waves can be derived. Two simple crack distributions are considered for which the predicted anisotropy depends strongly on the saturation, reaching up to 60% in the dry case. Comparison with experimental data on two granites, a basalt and a marble, shows that the range of validity of the non-interactive effective medium theory model extends to a total crack density of approximately 0.5, considering symmetries up to orthorhombic. In the isotropic case, Kachanov's (1994) non-interactive effective medium model was used in order to invert elastic wave velocities and infer both crack density and aspect ratio evolutions. Inversions are stable and give coherent results in terms of crack density and aperture evolution. Crack density variations can be interpreted in terms of crack growth and/or changes of the crack surface contact areas as cracks are being closed or opened respectively. More importantly, the recovered evolution of aspect ratio shows an exponentially decreasing aspect ratio (and therefore aperture) with pressure, which has broader geophysical implications, in particular on fluid flow. The recovered evolution of aspect ratio is also consistent with current mechanical theories of crack closure. In the anisotropic cases—both transverse isotropic and orthorhombic symmetries were considered—anisotropy and saturation patterns were well reproduced by the modelling, and mean crack fabric orientations we recovered are consistent with in situ geophysical imaging. Our results point out that: (1) It is possible to predict damage, anisotropy and saturation in terms of a crack density tensor and mean crack aspect ratio and orientation; (2) using well constrained wave velocity data, it is possible to extrapolate the contemporaneous evolution of crack density, anisotropy and saturation using wave velocity inversion as a tool; 3) using such an inversion tool opens the door in linking elastic properties, variations to permeability.  相似文献   

9.
桂俊川  马天寿  陈平 《地球物理学报》1954,63(11):4188-4204
在龙马溪页岩微观物性特征分析的基础上,综合利用测井解释、微观测试分析资料,建立了一种适用于龙马溪页岩的横观各向同性岩石物理模型,该模型建模过程:将各向异性SCA和DEM模型联合模拟得到的黏土和干酪根混合物作为背景介质;采用SCA模型对脆性矿物混合物进行模拟,利用各向异性DEM将脆性矿物混合物添加到背景介质;进一步将空孔隙添加到页岩基质,并利用Brown-Korringa模型进行各向异性条件下的流体替换,从而得到横观各向同性页岩岩石物理模型.通过对四川盆地A井龙马溪页岩进行岩石物理建模分析,计算了孔隙纵横比、纵横波速、各向异性系数和弹性参数,检验了模型的准确性.研究结果表明:矿物颗粒和孔隙纵横比是影响模型精度的关键参数,黏土和干酪根颗粒纵横比为0.05,图像识别获得的脆性矿物颗粒纵横比主要分布于0.45~1.0(集中分布于0.5~0.85),横波波速反演获得的孔隙纵横比主要分布于0.1~0.3(平均值约为0.22);模型预测和实测纵波波速之间误差为-2.40%~2.21%(平均绝对误差仅1.20%),预测和实测横波波速之间误差为-1.93%~1.42%(平均绝对误差仅0.64%),证实了本文模型的准确性和精度.本文模型能够准确计算页岩5个独立的刚度系数,为页岩弹性参数、声波波速、各向异性和脆性分析提供了有效手段,也为后续地球物理和工程地质参数分析提供了重要依据.  相似文献   

10.
The elastic moduli and anisotropy of organic-rich rocks are of great importance to geoengineering and geoprospecting of oil and gas reservoirs. In this paper, we probe into the static and dynamic moduli of the Ghareb–Mishash chalk through laboratory measurements and new analytical approaches. We define a new anisotropy parameter, ‘hydrostatic strain ratio’ (Ω), which describes the differential contraction of anisotropic rocks consequent to hydrostatic compression. Ω depends on the C11, C12, C13 and C33 stiffness constants of a transversely isotropic material, and therefore enables a unique insight into the anisotropic behaviour of TI rocks. Ω proves more sensitive to anisotropy within the weak anisotropy range, when compared with Thomsen's ε and γ parameters. We use Ω to derive static moduli from triaxial compression tests performed on a single specimen. This is done by novel employment of a hydrostatic-deviatoric combination for transversely isotropic elastic stiffnesses. Dynamic moduli are obtained from acoustic velocities measurements. We find that the bedding-normal velocities are described well by defining kerogen as the load-supporting matrix in a Hashin–Shtrikman model (‘Hashin–Shtrikman (HS) kerogen’). The dynamic moduli of the Ghareb–Mishash chalk in dry conditions are significantly higher than the static moduli. The dynamic/static moduli ratio decreases from ∼4 to ∼2 with increasing kerogen content. Both the static and dynamic moduli decrease significantly with increasing porosity and kerogen content. The effect of porosity on them is two times stronger than the effect of kerogen.  相似文献   

11.
A generally anisotropic elasticity tensor can be related to its closest counterparts in various symmetry classes. We refer to these counterparts as effective tensors in these classes. In finding effective tensors, we do not assume a priori orientations of their symmetry planes and axes. Knowledge of orientations of Hookean solids allows us to infer properties of materials represented by these solids. Obtaining orientations and parameter values of effective tensors is a highly nonlinear process involving finding absolute minima for orthogonal projections under all three-dimensional rotations. Given the standard deviations of the components of a generally anisotropic tensor, we examine the influence of measurement errors on the properties of effective tensors. We use a global optimization method to generate thousands of realizations of a generally anisotropic tensor, subject to errors. Using this optimization, we perform a Monte Carlo analysis of distances between that tensor and its counterparts in different symmetry classes, as well as of their orientations and elasticity parameters.  相似文献   

12.
A technique allowing inversion of the shale stiffness tensor from standard logging data: sonic velocities, density, porosity and clay content is developed. The inversion is based on the effective medium theory. The testing of the technique on laboratory measurements of the elastic wave velocities in shale samples shows that the inversion makes it possible to predict the elastic wave velocities VP, VS1 and VS2 in any direction within an error of a few per cent. The technique has been applied for the stiffness tensor inversion along a well penetrating a shale formation of the Mississippian age altered by thin layers of limestone. It is demonstrated that the symmetry of a stiffness tensor inverted at the sonic frequency (2 kHz) is slightly orthorhombic and taking into account the experimental errors, can be related to the vertical transverse isotropy symmetry. For the productive interval of the shale formation, the Thomsen parameters ?, γ, and δ average, respectively, 0.32, 0.25 and 0.21, which indicate anelliptic behaviour of the velocities in this shale. The coefficients of anisotropy of this shale interval are around 24% and 20% for the compressional and shear waves, respectively. The values of the inverted velocities in the bedding plane for this interval are in good agreement with the laboratory measurements. The technique also allows inversion of the water saturation of the formation (Sw) and the inverted values are in agreement with the Sw values available for this formation. A Backus‐like upscaling of the inverted stiffness tensors is carried out for the lower and upper bounds of the frequency band used in the crosswell tomography (100 Hz and 500 Hz). These results can serve as an initial velocity model for the microearthquake location during hydrofracking of the shale formation.  相似文献   

13.
Seismoelectric coupling in an electric isotropic and elastic anisotropic medium is developed using a primary–secondary formulation. The anisotropy is of vertical transverse isotropic type and concerns only the poroelastic parameters. Based on our finite difference time domain algorithm, we solve the seismoelectric response to an explosive source. The seismic wavefields are computed as the primary field. The electric field is then obtained as a secondary field by solving the Poisson equation for the electric potential. To test our numerical algorithm, we compared our seismoelectric numerical results with analytical results obtained from Pride's equation. The comparison shows that the numerical solution gives a good approximation to the analytical solution. We then simulate the seismoelectric wavefields in different models. Simulated results show that four types of seismic waves are generated in anisotropic poroelastic medium. These are the fast and slow longitudinal waves and two separable transverse waves. All of these seismic waves generate coseismic electric fields in a homogenous anisotropic poroelastic medium. The tortuosity has an effect on the propagation of the slow longitudinal wave. The snapshot of the slow longitudinal wave has an oval shape when the tortuosity is anisotropic, whereas it has a circular shape when the tortuosity is isotropic. In terms of the Thomsen parameters, the radiation anisotropy of the fast longitudinal wave is more sensitive to the value of ε, while the radiation anisotropy of the transverse wave is more sensitive to the value of δ.  相似文献   

14.
Wide-azimuth seismic data can be used to derive anisotropic parameters on the subsurface by observing variation in subsurface seismic response along different azimuths. Layer-based high-resolution estimates of components of the subsurface anisotropic elastic tensor can be reconstructed by using wide-azimuth P-wave data by combining the kinematic information derived from anisotropic velocity analysis with dynamic information obtained from amplitude versus angle and azimuth analysis of wide-azimuth seismic data. Interval P-impedance, S-impedance and anisotropic parameters associated with anisotropic fracture media are being reconstructed using linearized analysis assuming horizontal transverse anisotropy symmetry. In this paper it is shown how additional assumptions, such as the rock model, can be used to reduce the degrees of freedom in the estimation problem and recover all five anisotropic parameters. Because the use of a rock model is needed, the derived elastic parameters are consistent with the rock model and are used to infer fractured rock properties using stochastic rock physics inversion. The inversion is based on stochastic rock physics modelling and maximum a posteriori estimate of both porosity and crack density parameters associated with the observed elastic parameters derived from both velocity and amplitude versus angle and azimuth analysis. While the focus of this study is on the use of P-wave reflection data, we also show how additional information such as shear wave splitting and/or anisotropic well log data can reduce the assumptions needed to derive elastic parameter and rock properties.  相似文献   

15.
In the case of propagation of plane elastic waves in anisotropic gyrotropic media, Christoffel tensor is complex; its real part contains stiffnesses and an imaginary part includes components of the fifth-rank gyration tensor. Inequalities relating stiffnesses and gyration constants are derived from the conditions for potential energy to be positive. The necessary and sufficient conditions for the positive definiteness of the complex matrix of stiffnesses and gyration constants are used. Sets of inequalities are obtained for two types of rocks belonging to acentric limit groups ∞∞ and ∞. These inequalities provide a possibility to carry out modelling of elastic wave propagation in the media considered, setting the values of gyration constants not arbitrarily but in accordance with physical laws.  相似文献   

16.
Elastic properties of saturated porous rocks with aligned fractures   总被引:4,自引:0,他引:4  
Elastic properties of fluid saturated porous media with aligned fractures can be studied using the model of fractures as linear-slip interfaces in an isotropic porous background. Such a medium represents a particular case of a transversely isotropic (TI) porous medium, and as such can be analyzed with equations of anisotropic poroelasticity. This analysis allows the derivation of explicit analytical expressions for the low-frequency elastic constants and anisotropy parameters of the fractured porous medium saturated with a given fluid. The five elastic constants of the resultant TI medium are derived as a function of the properties of the dry (isotropic) background porous matrix, fracture properties (normal and shear excess compliances), and fluid bulk modulus. For the particular case of penny-shaped cracks, the expression for anisotropy parameter ε has the form similar to that of Thomsen [Geophys. Prospect. 43 (1995) 805]. However, contrary to the existing view, the compliance matrix of a fluid-saturated porous-fractured medium is not equivalent to the compliance matrix of any equivalent solid medium with a single set of parallel fractures. This unexpected result is caused by the wave-induced flow of fluids between pores and fractures.  相似文献   

17.
Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green’s function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data.  相似文献   

18.
This paper presents a new explicit method for the estimation of layered vertical transverse isotropic (VTI) anisotropic parameters from walkaway VSP data. This method is based on Dix‐type normal moveout (NMO) inversion. To estimate interval anisotropic parameters above a receiver array, the method uses time arrivals of surface‐related double‐reflected downgoing waves. A three‐term NMO approximation function is used to estimate NMO velocity and a non‐hyperbolic parameter. Assuming the vertical velocity is known from zero‐offset VSP data, Dix‐type inversion is applied to estimate the layered Thomsen anisotropic parameters ?, δ above the receivers array. Model results show reasonable accuracy for estimates through Dix‐type inversion. Results also show that in many cases we can neglect the influence of the velocity gradient on anisotropy estimates. First breaks are used to estimate anisotropic parameters within the walkaway receiver interval. Analytical uncertainty analysis is performed to NMO parameter estimates. Its conclusions are confirmed by modelling.  相似文献   

19.
Conventional ray tracing for arbitrarily anisotropic and heterogeneous media is expressed in terms of 21 elastic moduli belonging to a fixed, global, Cartesian coordinate system. Our principle objective is to obtain a new ray-tracing formulation, which takes advantage of the fact that the number of independent elastic moduli is often less than 21, and that the anisotropy thus has a simpler nature locally, as is the case for transversely isotropic and orthorhombic media. We have expressed material properties and ray-tracing quantities (e.g., ray-velocity and slowness vectors) in a local anisotropy coordinate system with axes changing directions continuously within the model. In this manner, ray tracing is formulated in terms of the minimum number of required elastic parameters, e.g., four and nine parameters for P-wave propagation in transversely isotropic and orthorhombic media, plus a number of parameters specifying the rotation matrix connecting local and global coordinates. In particular, we parameterize this rotation matrix by one, two, or three Euler angles. In the ray-tracing equations, the slowness vector differentiated with respect to traveltime is related explicitly to the corresponding differentiated slowness vector for non-varying rotation and the cross product of the ray-velocity and slowness vectors. Our formulation is advantageous with respect to user-friendliness, efficiency, and memory usage. Another important aspect is that the anisotropic symmetry properties are conserved when material properties are determined in arbitrary points by linear interpolation, spline function evaluation, or by other means.  相似文献   

20.
各向异性介质中的AVO   总被引:15,自引:6,他引:9       下载免费PDF全文
分析了横向各向同性和方位各向异性介质的本构关系,由此讨论弹性波在两种各向异性介质中的传播特点,提出可表征这两种介质各向异性程度的广义参数.以此为基础讨论了两种各向异性介质中存在水平界面时的反射系数近似式,将Dely等人推导的横向各向同性介质中的反射系数公式推广到方位各向异性介质的主轴方向上.根据算例讨论修正的Banik和Thomsen的近似式,着重分析两种各向异性介质中的AVO关系及其对实际勘探的影响和指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号