首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
李晓照  邵珠山  戚承志 《岩土力学》2019,40(11):4249-4258
岩石内部细观裂纹的存在,对压缩作用下岩石剪切断裂的宏观现象有着重要的影响。然而,能够通过解析解阐释细观裂纹几何特性、围压等影响因素对压缩作用下剪切断裂面角度变化趋势的研究很少。基于Ashby模型中提出的裂纹尖端应力强度因子,提出了一种改进的考虑裂纹角度影响的应力强度因子表达式。利用该改进的应力强度因子表达式,推出了一个可以预测岩石峰值强度的裂纹扩展、应变与应力之间的本构关系。结合本构关系的峰值强度与摩尔-库仑失效准则,得到了岩石损伤与内摩擦角、黏聚力、剪切强度及失效断裂面角度之间的理论关系;讨论了围压、裂纹尺寸、角度及摩擦系数对岩石宏观剪切断裂面角度的影响,通过试验结果验证了模型合理性。结果表明:随着损伤增大,内摩擦角、黏聚力及剪切强度不断减小;随着围压增大、摩擦系数增大和初始裂纹尺寸减小,剪切断裂面角度不断增大;随着裂纹角度增大,剪切断裂纹面角度先减小后增大。  相似文献   

2.
Dual-continuum (DC) models can be tractable alternatives to explicit approaches for the numerical modelling of multiscale materials with multiphysics behaviours. This work concerns the conceptual and numerical modelling of poroelastically coupled dual-scale materials such as naturally fractured rock. Apart from a few exceptions, previous poroelastic DC models have assumed isotropy of the constituents and the dual-material. Additionally, it is common to assume that only one continuum has intrinsic stiffness properties. Finally, little has been done into validating whether the DC paradigm can capture the global poroelastic behaviours of explicit numerical representations at the DC modelling scale. We address the aforementioned knowledge gaps in two steps. First, we utilise a homogenisation approach based on Levin's theorem to develop a previously derived anisotropic poroelastic constitutive model. Our development incorporates anisotropic intrinsic stiffness properties of both continua. This addition is in analogy to anisotropic fractured rock masses with stiff fractures. Second, we perform numerical modelling to test the DC model against fine-scale explicit equivalents. In doing, we present our hybrid numerical framework, as well as the conditions required for interpretation of the numerical results. The tests themselves progress from materials with isotropic to anisotropic mechanical and flow properties. The fine-scale simulations show that anisotropy can have noticeable effects on deformation and flow behaviour. However, our numerical experiments show that the DC approach can capture the global poroelastic behaviours of both isotropic and anisotropic fine-scale representations.  相似文献   

3.
A new anisotropic poroelastic damage model is proposed for saturated brittle porous materials. The model is formulated in the framework of the continuum damage mechanics. A second‐rank symmetric tensor is used to characterize material damage due to oriented microcracks. The classic Biot poroelastic theory is then extended to include poroelastic damage coupling. Both the deterioration of elastic properties and poroelastic coefficients is taken into account. A suitable procedure for determination of model parameters from standard laboratory tests is presented. The validity of the model is tested through comparison between numerical predictions and experimental data in various loading conditions. The overall performance of the model is evaluated. The choice of relevant effective stress for the microcrack propagation criterion in saturated cohesive geomaterials is discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Coupled hydro-mechanical (HM) processes are significant in geological engineering such as oil and gas extraction, geothermal energy, nuclear waste disposal and for the safety assessment of dam foundations and rock slopes, where the geological media usually consist of fractured rock masses. In this study, we developed a model for the analysis of coupled hydro-mechanical processes in porous rock containing dominant fractures, by using the numerical manifold method (NMM). In the current model, the fractures are regarded as different material domains from surrounding rock, i.e., finite-thickness fracture zones as porous media. Compared with the rock matrix, these fractured porous media are characterized with nonlinear behavior of hydraulic and mechanical properties, involving not only direct (poroelastic) coupling but also indirect (property change) coupling. By combining the potential energy associated with mechanical responses, fluid flow and solid–fluid interactions, a new formulation for direct HM coupling in porous media is established. For indirect coupling associated with fracture opening/closure, we developed a new approach implicitly considering the nonlinear properties by directly assembling the corresponding strain energy. Compared with traditional methods with approximation of the nonlinear constitutive equations, this new formulation achieves a more accurate representation of the nonlinear behavior. We implemented the new model for coupled HM analysis in NMM, which has fixed mathematical grid and accurate integration, and developed a new computer code. We tested the code for direct coupling on two classical poroelastic problems with coarse mesh and compared the results with the analytical solutions, achieving excellent agreement, respectively. Finally, we tested for indirect coupling on models with a single dominant fracture and obtained reasonable results. The current poroelastic NNM model with a continuous finite-thickness fracture zone will be further developed considering thin fractures in a discontinuous approach for a comprehensive model for HM analysis in fractured porous rock masses.  相似文献   

6.
赵瑜  王超林  万文 《岩土力学》2016,37(8):2180-2186
裂隙的剪胀特性及扩展演化规律对岩体的渗流特性具有重要影响。为揭示裂隙剪胀及扩展演化对岩体渗流的影响,基于残余强度提出了一种能较好描述岩石硬化-软化特性的全剪切本构关系;结合剪切变形与裂隙开度的关系,利用最小势能原理和立方定律,建立了压剪作用下考虑裂隙剪胀特性的渗流应力耦合模型;假定压剪作用下裂隙发生Ⅰ型扩展,提出了伴有翼型裂纹的渗流模型,该模型不仅考虑了岩石的剪胀特性,更反映了裂隙扩展过程渗流的演化规律。对不同裂隙粗糙度的剪切应力-位移曲线进行分析,全剪切本构模型表现出较高的拟合精度。在剪切应力-位移关系基础上,通过剪切渗流试验数据对压剪作用下渗流模型进行验证,结果表明,该模型能较好地描述岩体剪胀阶段渗透性演化规律。利用等效裂隙简化裂隙网络,并通过试验数据进行验证,证实了裂隙扩展过程渗流-应力耦合模型的准确性与适用性。  相似文献   

7.
Summary  The mechanical and hydromechanical behaviour of isolated rock joints is of prime importance for a correct understanding of the behaviour of jointed rock masses. This paper focuses on the mechanical behaviour of a fracture under normal stress (fracture closure), using approaches based on both experimentation and modelled analysis. Experimental closure tests were carried out by positioning four displacement transducers around a fracture, leading to results which tended to vary as a function of transducer location. Such variations can be explained by the non-constant void space distribution between both walls of the fracture. The present study focuses on the importance of transducer location in such a test, and on the significant role played, in terms of mechanical response, by the morphology of the fracture surfaces. An analytical mechanical model is then developed, which takes into account the deformation of surface asperities and of the bulk material surrounding the fracture; it also includes the effects of mechanical interaction between contact points. The model is validated by simulating the behaviour which is very similar to experimental observations. Various parametric studies (scale effect, spatial distribution of contact points) are then carried out. The study of scale effects reveals a decrease in the normal stiffness with increasing fracture size. Finally, analysis of the role of various mechanical parameters has shown that the most influential of these is Young’s modulus corresponding to the bulk material surrounding the joint. Many applications, such as geothermal fluid recovery from fractures, could benefit from these results. Correspondence: Antoine Marache, Université Bordeaux 1, GHYMAC, Av. des Facultés, 33405 Talence Cedex, France  相似文献   

8.
Knowledge of shale poromechanical behavior is proven to be essential for various environmental issues such as deep geological storage of CO2, high level radioactive waste storage, oil field abandonment and so forth… This paper sets out the key points of shale experimental characterization within the framework of Biot's mechanics of fluid saturated porous solids. Shales are well known to present a more or less transverse isotropy. This paper describes a full methodology for ?dometric tests on such sensitive and weakly permeable material. To illustrate this methodology, measurements carried out on Tournemire argillite are proposed. A transverse isotropic poroelastic model is also used to give a more in depth understanding of the hydromechanical coupling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
发育于地壳浅层中的脆性断层常常由一系列次级小断层所构成。在结合岩石力学试验中“微”观特征和地质学野外观测“宏”观现象的基础上,建立了脆性断层形成由微裂纹→缝合线状裂缝→宏观断层→超大断裂的递进连通模型,并分析了裂缝递进连通的机制,解释了模型中断裂呈波状弯曲、连接分支及断裂逐渐与最大主应力夹角变小的现象。  相似文献   

10.
Microcracks in brittle rocks affect not only the local mechanical properties, but also the poroelastic behavior and permeability. A continuum coupled hydro-mechanical modeling approach is presented using a two-scale conceptual model representing realistic rock material containing micro-fractures. This approach combines a microcrack-based continuous damage model within generalized Biot poroelasticity, in which the tensors of macroscopic elastic stiffness, Biot effective stress coefficient and of overall permeability are directly related to microcrack growth. Heterogeneity in both mechanical and hydraulic properties evolves from an initially random distribution of damage to produce localized failure and fluid transmission. A significant advantage of the approach is the ability to accurately predict the evolution of realistic fracturing and associated fluid flow in permeable rocks where pre-existing fractures exert significant control. The model is validated for biaxial failure of rock in compression and replicates typical pre- and post-peak strength metrics of stress drop, AE event counts, permeability evolution and failure modes. The model is applied to the simulation of hydraulic fracturing in permeable rocks to examine the effects of heterogeneities, permeability and borehole pressurization rate on the initiation of fracturing. The results indicate that more homogenous rocks require higher hydraulic pressure to initiate fracturing and breakdown. Moreover, both the fracturing initiation pressure and breakdown pressure decrease with permeability but increase with borehole pressurization rate, and the upper and lower limit of the initiation pressure are seen to be given by the impermeable (Hubbert–Willis) and permeable (Haimson–Fairhurst) borehole wall solutions, respectively. The numerical results are shown to be in good agreement with the experimental observations and theoretical results. This coupled damage and flow modeling approach provides an alternative way to solve a variety of complicated hydro-mechanical problems in practical rock engineering with the process coupling strictly enforced.  相似文献   

11.
A new rock mass failure criterion for biaxial loading conditions   总被引:1,自引:0,他引:1  
To simulate brittle rocks, a mixture of glastone, sand and water was used as a model material. Thin galvanized sheets of thickness 0.254 mm were used to create joints in blocks made out of the model material. To investigate the failure modes and strength, both the intact material blocks as well as jointed model material blocks of size 35.6 × 17.8 × 2.5 cm having different joint geometry configurations were subjected to uniaxial and biaxial compressive loadings. A new intact rock failure criterion is proposed at the 3-D level. This criterion is validated for biaxial loading through laboratory experimental results obtained on intact model material blocks. Results obtained from both the intact and jointed model material blocks are used to develop a strongly non-linear new rock mass failure criterion for biaxial loading. In this failure criterion, the fracture tensor component is used to incorporate the directional effect of fracture geometry system on jointed block strength. The failure criterion shows the important role, the intermediate principal stress plays on rock mass strength.  相似文献   

12.
Fluid‐driven fractures of brittle rock is simulated via a dual‐graph lattice model. The new discrete hydromechanical model incorporates a two‐way coupling mechanism between the discrete element model and the flow network. By adopting an operator‐split algorithm, the coupling model is able to replicate the transient poroelasticity coupling mechanism and the resultant Mandel‐Cryer hydromechanical coupling effect in a discrete mechanics framework. As crack propagation, coalescence and branching are all path‐dependent and irreversible processes, capturing this transient coupling effect is important for capturing the essence of the fluid‐driven fracture in simulations. Injection simulations indicate that the onset and propagation of fractures is highly sensitive to the ratio between the injection rate and the effective permeability. Furthermore, we show that in a permeable rock, the borehole breakdown pressure, the pressure at which fractures start to grow from the borehole, depends on both the given ratio between injection rate and permeability and the Biot coefficient.  相似文献   

13.
Solutions are presented for the problem of isothermal dessiccation shrinkage in a double‐layer porous partially saturated medium. The rheological model taken into account is linear poroelastic. Hence the analysis is mainly focused on hydromechanical coupling effects and contrasts of mechanical and hydraulic properties between two materials: a low thickness skin comprised between the outer boundary and the reference porous material. Three one‐dimensional ideal structures are taken into account: a wall of finite thickness (cartesian geometry), a thick cylinder and a thick sphere. The solution of the time‐dependent problem is arrived at by applying Laplace transforms to the field variables. Exact solutions are obtained in Laplace transform space using Mathematica© to solve the field equations whilst taking into account the continuity equations at the interface and the boundary conditions. The Talbot's modified algorithm has been performed to invert the Laplace transform solutions. A bibliographical and numerical study shows that this method is remarkably precise, stable and close to the analytical inversion. Results are presented using poroelastic data representative of a concrete material and involve a strong coupling effect between hydraulical and mechanical behaviours. A first approach elastic modelling of degradation process have been presented using a thin outer layer. Apart from emphasising the semi‐explicit solution utility due to accurate speed calculation, this paper deals with more complex problems than those which can be solved using purely analytical solutions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, a coupled constitutive model is proposed for anisotropic damage and permeability variation in brittle rocks under deviatoric compressive stresses. The formulation of the model is based on experimental evidences and main physical mechanisms involved in the scale of microcracks are taken into account. The proposed model is expressed in the macroscopic framework and can be easily implemented for engineering application. The macroscopic free enthalpy of cracked solid is first determined by approximating crack distribution by a second‐order damage tensor. The effective elastic properties of damaged material are then derived from the free enthalpy function. The damage evolution is related to the crack growth in multiple orientations. A pragmatic approach inspired from fracture mechanics is used for the formulation of the crack propagation criterion. Compressive stress induced crack opening is taken into account and leads to macroscopic volumetric dilatancy and permeability variation. The overall permeability tensor of cracked material is determined using a micro–macro averaging procedure. Darcy's law is used for fluid flow at the macroscopic scale whereas laminar flow is assumed at the microcrack scale. Hydraulic connectivity of cracks increases with crack growth. The proposed model is applied to the Lac du Bonnet granite. Generally, good agreement is observed between numerical simulations and experimental data. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Saksala  Timo 《Acta Geotechnica》2022,17(6):2079-2099

Inherent microcrack populations have a significant effect on the fracture behaviour of natural rocks. The present study addresses this topic in numerical simulations of uniaxial tension and three-point bending tests. For this end, a rock fracture model based on multiple intersecting embedded discontinuity finite elements is developed. The inherent (pre-existing) microcrack populations are represented by pre-embedded randomly oriented discontinuity populations. Crack shielding (through spurious locking) is prevented by allowing a new crack to be introduced, upon violation of the Rankine criterion, in an element with an initial crack unfavourably oriented to the loading direction. Rock heterogeneity is accounted for by random clusters of triangular finite elements representing different minerals of granitic numerical rock. Numerical simulations demonstrate the strength lowering effect of initial microcrack populations. This effect is substantially stronger under uniaxial tension, due to the uniform stress state, than in semicircular three-point bending having a non-uniform stress state with a clear local maximum of tensile stress.

  相似文献   

16.
用三维梁-颗粒模型BPM3D(beam-particlemodelinthreedimensions)对岩石类非均质脆性材料的力学性质和破坏过程进行了数值模拟。梁-颗粒模型是在离散单元法基础上,结合有限单元法中的网格模型提出的用于模拟岩石类材料损伤破坏过程的数值模型。在模型中,材料在细观层次上被离散为颗粒单元集合体,相邻颗粒单元由有限单元法中的弹脆性梁单元联结。梁单元的力学性质均按韦伯(Weibull)分布随机赋值,以模拟岩石类材料力学参数的空间变异性。材料内部裂纹通过断开梁单元来模拟。通过自动生成的非均质材料模型对岩石类材料的破坏机理进行研究。岩石类非均质脆性材料在单轴压缩状态下破坏过程细观数值模拟结果显示,岩石材料宏观破坏是由于其内部细观裂纹产生、扩展、贯通的结果。通过数值模拟结果之间的对比分析,揭示出岩石试样宏观破坏模式随细观层次上韦伯分布参数的变化而不同。与实际矿柱破坏形态的对比分析表明了模型的适用性。根据数值模拟结果对岩石类非均质材料的破坏机理进行了探讨。  相似文献   

17.
18.
Hydraulic fracturing technology is being widely used within the oil and gas industry for both waste injection and unconventional gas production wells. It is essential to predict the behavior of hydraulic fractures accurately based on understanding the fundamental mechanism(s). The prevailing approach for hydraulic fracture modeling continues to rely on computational methods based on Linear Elastic Fracture Mechanics (LEFM). Generally, these methods give reasonable predictions for hard rock hydraulic fracture processes, but still have inherent limitations, especially when fluid injection is performed in soft rock/sand or other non-conventional formations. These methods typically give very conservative predictions on fracture geometry and inaccurate estimation of required fracture pressure. One of the reasons the LEFM-based methods fail to give accurate predictions for these materials is that the fracture process zone ahead of the crack tip and softening effect should not be neglected in ductile rock fracture analysis. A 3D pore pressure cohesive zone model has been developed and applied to predict hydraulic fracturing under fluid injection. The cohesive zone method is a numerical tool developed to model crack initiation and growth in quasi-brittle materials considering the material softening effect. The pore pressure cohesive zone model has been applied to investigate the hydraulic fracture with different rock properties. The hydraulic fracture predictions of a three-layer water injection case have been compared using the pore pressure cohesive zone model with revised parameters, LEFM-based pseudo 3D model, a Perkins-Kern–Nordgren (PKN) model, and an analytical solution. Based on the size of the fracture process zone and its effect on crack extension in ductile rock, the fundamental mechanical difference of LEFM and cohesive fracture mechanics-based methods is discussed. An effective fracture toughness method has been proposed to consider the fracture process zone effect on the ductile rock fracture.  相似文献   

19.
脆性颗粒材料的动态多尺度模型研究   总被引:1,自引:0,他引:1  
脆性颗粒材料的多尺度模型一般包含微观尺度的基本粒子、细观尺度的颗粒和宏观尺度的颗粒堆积体3个尺度。基于离散元方法(DEM)构建多尺度模型,并将该模型应用于动态加载。首先,对多尺度模型所涉及的两种接触模型和两种黏结模型的参数进行分析,详细讨论微细观模型参数与宏观材料常数之间的联系。然后,选用Hertz-Mindlin接触模型[1]和平行键黏结模型,建造石英砂的动态多尺度模型。通过选择合适的强度和局部阻尼参数发现,模型宏细观尺度上的动态压缩响应与对石英砂的相关试验结果吻合很好。利用多尺度模型和选定的参数,探讨与动态加载密切相关的局部阻尼机制对多尺度模型各个尺度上力学响应的影响。结果表明,阻尼越大则颗粒材料对波的衰减能力越强,但过高的阻尼会使团簇强度和模型的宏观压缩曲线都表现出异常的加载速度效应(后者实际是阻尼引起的微惯性效应)。另外,高阻尼会过度衰减颗粒破碎过程产生的应力波,从而阻碍颗粒破碎。最后,应用改进的动态多尺度模型,对脆性颗粒材料的动态破碎特性进行研究,发现该模型不但能给出与试验相吻合的颗粒级配曲线,还能揭示出颗粒破碎过程中微裂纹分布的空间不均匀性,即颗粒破碎过程中波的产生机制和衰减机制相互作用导致的微裂纹聚团分布的现象。  相似文献   

20.
In order to evaluate the fabric-dependent anisotropy of a particular gneiss type, we assessed the quartz lattice and shape preferred orientations as well as the microcrack pattern statistics. In the rock mechanics laboratory, several strength and deformability tests on drilled rock samples were run and the seismic wave propagation properties along the rock’s principal strain axes were determined. In the mechanical tests it turned out that despite a distinct stretching lineation with initially extreme grain elongation, the rock performs for the larger part as a transversely isotropic material with the schistosity as plane of isotropy. The anisotropy in seismic wave propagation within the plane of schistosity is attributed primarily to a highly anisotropic microcrack pattern, the distinct gneissose banding and to a lower degree to the LPO of quartz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号