首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In many regions, monthly (or bimonthly) rainfall data can be considered as deterministic while daily rainfall data may be treated as random. As a result, deterministic models may not sufficiently fit the daily data because of the strong stochastic nature, while stochastic models may also not reliably fit into daily rainfall time series because of the deterministic nature at the large scale (i.e. coarse scale). Although there are different approaches for simulating daily rainfall, mixing of deterministic and stochastic models (towards possible representation of both deterministic and stochastic properties) has not hitherto been proposed. An attempt is made in this study to simulate daily rainfall data by utilizing discrete wavelet transformation and hidden Markov model. We use a deterministic model to obtain large-scale data, and a stochastic model to simulate the wavelet tree coefficients. The simulated daily rainfall is obtained by inverse transformation. We then compare the accumulated simulated and accumulated observed data from the Chao Phraya Basin in Thailand. Because of the stochastic nature at the small scale, the simulated daily rainfall on a point to point comparison show deviations with the observed data. However the accumulated simulated data do show some level of agreement with the observed data.  相似文献   

2.
In recent earthquakes, a large number of reinforced concrete (RC) bridges were severely damaged due to mixed flexure-shear failure modes of the bridge piers. An integrated experimental and finite element (FE) analysis study is described in this paper to study the seismic performance of the bridge piers that failed in flexure-shear modes. In the first part, a nonlinear cyclic loading test on six RC bridge piers with circular cross sections is carried out experimentally. The damage states, ductility and energy dissipation parameters, stiffness degradation and shear strength of the piers are studied and compared with each other. The experimental results suggest that all the piers exhibit stable flexural response at displacement ductilities up to four before exhibiting brittle shear failure. The ultimate performance of the piers is dominated by shear capacity due to significant shear cracking, and in some cases, rupturing of spiral bars. In the second part, modeling approaches describing the hysteretic behavior of the piers are investigated by using ANSYS software. A set of models with different parameters is selected and evaluated through comparison with experimental results. The influences of the shear retention coefficients between concrete cracks, the Bauschinger effect in longitudinal reinforcement, the bond-slip relationship between the longitudinal reinforcement and the concrete and the concrete failure surface on the simulated hysteretic curves are discussed. Then, a modified analysis model is presented and its accuracy is verified by comparing the simulated results with experimental ones. This research uses models available in commercial FE codes and is intended for researchers and engineers interested in using ANSYS software to predict the hysteretic behavior of reinforced concrete structures.  相似文献   

3.
This paper presents the results of a shaking table study conducted on the seismic behaviour of curved reinforced concrete bridge structures of the type used in highway interchanges. A series of representational 1/30th scale models was constructed in microconcrete to study the effects of both linear and non-linear dynamic behaviour, the non-linearity including sliding and impacting at the expansion joints and ductility in the columns. Each model was subjected to a series of increasingly severe simulated earthquakes in the longitudinal and transverse directions, both with and without the vertical component. Response data were recorded in the form of selected displacement time-histories which were subsequently used as control data in a companion theoretical study. Each model was eventually taken to failure which consisted primarily of extensive damage at the expansion joints. The paper concludes with general observations on the seismic behaviour of long-span long-period curved bridges, and emphasizes the sensitivity of this behaviour to the location and design of the joints.  相似文献   

4.
Hydrologic models are simplified representations of natural hydrologic systems. Since these models rely on assumptions and simplifications to capture some aspects of hydrological processes, calibration of parameters is unavoidable. However, utilizing the philosophy of a recent modelling framework proposed by Bahremand (2016), we show how calibration of most model parameters can be avoided by allocating or presetting these parameters utilizing knowledge gained from sensitivity analyses, field observations and a priori specifications as a part of a parameter allocation procedure. This paper details the simulation of daily river flow of the Shemshak-Roudak watershed performed using the Python version of the WetSpa model. The WetSpa-Python model is a distributed model of hydrological processes applied at the watershed scale. The model was applied to the Shemshak-Roudak watershed of Iran with parameter allocation. Model calibration involved only two parameters. Straightforward methods were proposed for allocating model parameters, including three baseflow-related parameters and the determination of maximum active groundwater storage using a mass curve technique. Also, the Budyko curve was used to constrain a correction factor for potential evapotranspiration. The WetSpa-Python model was extended to include the influence of snowmelt. A failure to include snow in the hydrological processes of the WetSpa-Python model creates a significant discrepancy between the observed and simulated hydrographs during the spring. The results of daily simulations for 12 years (2002–2014) are in good agreement with observations of discharge (Kling-Gupta Efficiency = 0.84). These results demonstrate that it is feasible to simulate hydrographs with limited calibration given a knowledge of hydrological processes and an understanding of relationships between catchment characteristics and model parameters.  相似文献   

5.
Two of China's highest earth-core rock-fill dams (ECRDs) and concrete-faced rock-fill dams (CFRDs) were simulated by large-scale earthquake simulation shaking table tests in this work. A series of staged tests were performed, including white noise, different types of earthquake excitations with different magnitudes etc. The seismic performance of the ECRD and CFRD models were analyzed and investigated. The test results indicated that reservoir impoundment influenced the structure and seismic characteristics of the ECRD model much more than the CFRD model. The average fundamental frequency of the CFRD decreased less than the ECRD model when subjected to strong excitation. The acceleration amplification factors decreased as the input peak acceleration increased. The maximum acceleration occurred at the top of the ECRD model, while it occurred at 0.6–0.9 dam height of the CFRD model. Seismic residual deformations of the two models were very small. When subjected to strong earthquake excitation, the residual deformation of the CFRD model was smaller than that of the ECRD model. The dominant failure pattern of the two models was shallow sliding at the height of 3/4 on the downstream slope. The above analysis indicated that seismic performance of CFRD was superior to ECRD.  相似文献   

6.
A previously published regional groundwater‐flow model in north‐central Nebraska was sequentially linked with the recently developed soil‐water‐balance (SWB) model to analyze effects to groundwater‐flow model parameters and calibration results. The linked models provided a more detailed spatial and temporal distribution of simulated recharge based on hydrologic processes, improvement of simulated groundwater‐level changes and base flows at specific sites in agricultural areas, and a physically based assessment of the relative magnitude of recharge for grassland, nonirrigated cropland, and irrigated cropland areas. Root‐mean‐squared (RMS) differences between the simulated and estimated or measured target values for the previously published model and linked models were relatively similar and did not improve for all types of calibration targets. However, without any adjustment to the SWB‐generated recharge, the RMS difference between simulated and estimated base‐flow target values for the groundwater‐flow model was slightly smaller than for the previously published model, possibly indicating that the volume of recharge simulated by the SWB code was closer to actual hydrogeologic conditions than the previously published model provided. Groundwater‐level and base‐flow hydrographs showed that temporal patterns of simulated groundwater levels and base flows were more accurate for the linked models than for the previously published model at several sites, particularly in agricultural areas.  相似文献   

7.
使用新开发岩石破裂过程分析软件(RFPA2D),通过一系列模型实验,研究岩石中预制断层面几何特征和力学非均匀性对地震前兆产生的影响。模型使用5个具有不同均质度的岩石样本进行数值模拟研究。数值模拟结果表明,不同均质度岩石破坏在地壳中会产生不同的地震前兆现象。在一些区域,可以观测到明显的前兆,而在另一些地区却很难观测到明显的前兆现象。模拟结果与实验观测和自然界实际观测结果由很好的一致性。  相似文献   

8.
The terms ‘downward’ and ‘upward’ (synonymous with ‘top‐down’ and ‘bottom‐up’ respectively) are sometimes used when describing methods for developing hydrological models. A downward approach is used here to develop a lumped catchment‐scale model for subsurface stormflow at the 0·94 km2 Slapton Wood catchment. During the development, as few assumptions as possible are made about the behaviour of subsurface stormflow at the catchment scale, and no assumptions are made about its behaviour at smaller scales. (In an upward approach, in contrast, the modelling would be based on assumptions about, and data for, the behaviour at smaller scales, such as the hillslope, plot, and point scales.) The model has a single store with a relatively simple relationship between discharge and storage, based on equations describing hysteretic patterns seen in a graph of discharge against storage. Double‐peaked hydrographs have been observed at the catchment outlet. Rainfall on the channel and infiltration‐excess and saturation‐excess runoff give a rapid response, and shallow subsurface stormflow gives a delayed response. Hydrographs are successfully simulated for the large delayed responses observed in 1971–1980 and 1989–1991, then a lumped model for the rapid response is coupled to the lumped hysteretic model and some double‐peaked hydrographs simulated. A physical interpretation is developed for the lumped hysteretic model, making use of information on patterns of perched saturation observed in 1982 on a hillslope at the Slapton Wood catchment. Downward and upward approaches are complementary, and the most robust way to develop and improve lumped catchment models is to iterate between downward and upward steps. Possible next steps are described. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Two different deterministic and two alternative stochastic (i.e., geostatistical) approaches to modeling the distribution of hydraulic conductivity (K) in a nonuniform (sigma2ln(K)) = 0.29) glacial sand aquifer were used to explore the influence of conceptual model selection on simulations of three-dimensional tracer movement. The deterministic K models employed included a homogeneous effective K and a perfectly stratified 14 layer model. Stochastic K models were constructed using sequential Gaussian simulation and sequential i ndicator simulation conditioned to available K values estimated from measured grain size distributions. Standard simulation software packages MODFLOW, MT3DMS, and MODPATH were used to model three-dimensional ground water flow and transport in a field tracer test, where a pulse of bromide was injected through an array of three fully screened wells and extracted through a single fully screened well approximately 8 m away. Agreement between observed and simulated transport behavior was assessed through direct comparison of breakthrough curves (BTCs) and selected breakthrough metrics at the extraction well and at 26 individual multilevel sample ports distributed irregularly between the injection and extraction wells. Results indicate that conceptual models incorporating formation variability are better able to capture observed breakthrough behavior. Root mean square (RMS) error of the deterministic models bracketed the ensemble mean RMS error of stochastic models for simulated concentration vs. time series, but not for individual BTC characteristic metrics. The spatial variability models evaluated here may be better suited to simulating breakthrough behavior measured in wells screened over large intervals than at arbitrarily distributed observation points within a nonuniform aquifer domain.  相似文献   

10.
Finite element modeling of the July 12, 1993 Hokkaido Nansei-Oki tsunami   总被引:1,自引:0,他引:1  
A fault plane model and a finite element hydrodynamic model are applied to the simulation of the Hokkaido Nansei-Oki tsunami of July 12, 1993. The joint performance of the models is assessed based on the overall ability to reproduce observed tsunami waveforms and to preserve mass and energy during tsunami propagation. While a number of observed characteristics of the waveforms are satisfactorily reproduced (in particular, amplitudes and arrival times at tidal gauges relatively close to the source, and general patterns of energy concentration), others are only marginally so (notably, wave periods at the same gauges, and wave heights along Okushiri); differences between observations and simulations are traceable to both the fault plane and the hydrodynamic models. Nonnegligible losses of energy occur throughout the simulated tsunami propagation. These losses seem to be due to a combination of factors, including numerical damping and possible deficiencies of the shallow water equations in preserving energy.  相似文献   

11.
12.
Forest management practices often result in significant changes to hydrologic and geomorphic responses at or near the earth's surface. A well‐known, but not fully tested, hypothesis in hillslope hydrology[sol ]geomorphology is that a near‐surface permeability contrast, caused by the surface compaction associated with forest roads, can result in diverted subsurface flow paths that produce increased up‐slope pore pressures and slope failure. The forest road focused on in this study is located in a steep forested, zero‐order catchment within the H. J. Andrews Experimental Forest (Oregon). A three‐phase modelling effort was employed to test the aforementioned hypothesis: (i) two‐dimensional (vertical slice), steady‐state, heterogeneous, saturated subsurface flow simulations at the watershed scale for establishing the boundary conditions for the catchment‐scale boundary‐value problem in (ii); (ii) two‐dimensional (vertical slice), transient, heterogeneous, variably saturated subsurface flow simulations at the catchment scale for estimating near‐surface hydrologic response and pore pressure distributions; and (iii) slope stability analyses, using the infinite slope approach, driven by the pore pressure distributions simulated in (ii), for assessing the impact of the forest road. Both observed and hypothetical rainfall events are used to drive the catchment‐scale simulations. The results reported here support the hypothesis that a forest road can have an effect on slope stability. The permeability contrast associated with the forest road in this study led to a simulated altering of slope‐parallel subsurface flow with increased pore pressures up‐slope of the road and, for a large rainfall event, a slope failure prediction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Four distinct approaches, that vary markedly in the spatial and temporal resolution of their measurement and process-level outputs, are used to investigate the daily and seasonal water vapour exchange in a 70-year-old Belgian Scots pine forest. Transpiration, canopy interception, soil evaporation and evapotranspiration are simulated, using a stand-level process model (SECRETS) and a soil water balance model (WAVE). Simulated transpiration was compared with up-scaled sap flow measurements and simulated evapotranspiration to eddy covariance measurements.

Reasonable agreement in the temporal trends and in the annual water balance between the two models was observed, however daily and weekly predictions often diverged. Most notably, WAVE estimated very low, to no transpiration during late autumn, winter and early spring when incident radiation fell below 50 W m−2 while SECRETS simulated low (0.1–0.4 mm day−1) fluxes during the same period. Both models exhibited similar daily trends in simulated transpiration when compared with sap flow estimates, although simulations from SECRETS were more closely aligned. In contrast, WAVE over-estimated transpiration during periods of no rainfall and under-estimated transpiration during rainfall. Yearly, total evapotranspiration simulated by the models were similar, i.e. 658 mm (1997) and 632 mm (1998) for WAVE and 567 mm (1997) and 619 mm (1998) for SECRETS.

Maximum weekly-average evapotranspiration for WAVE exceeded 5 mm day−1, while SECRETS never exceeded 4 mm day−1. Both models, in general, simulated higher evapotranspiration than that measured with the eddy covariance technique. An impact of the soil water content in the direct relationship between the models and the eddy covariance measurements was found.

The results suggest that: (1) different model formulations can reproduce similar results depending on the scale at which outputs are resolved, (2) SECRETS estimates of transpiration were well correlated with the empirical measurements, and (3) neither model fitted favourably to the eddy covariance technique.  相似文献   


14.
Triaxial compression experiments were performed on samples of natural granular fault gouge from the Lopez Fault in Southern California. This material consists primarily of quartz and has a self-similar grain size distribution thought to result from natural cataclasis. The experiments were performed at a constant mean effective stress of 150 MPa, to expose the volumetric strains associated with shear failure. The failure strength is parameterized by the coefficient of internal friction , based on the Mohr-Coulomb failure criterion.Samples of remoulded Lopez gouge have internal friction =0.6±0.02. In experiments where the ends of the sample are constrained to remain axially aligned, suppressing strain localisation, the sample compacts before failure and dilates persistently after failure. In experiments where one end of the sample is free to move laterally, the strain localises to a single oblique fault at around the point of failure; some dilation occurs but does not persist. A comparison of these experiments suggests that dilation is confined to the region of shear localisation in a sample. Overconsolidated samples have slightly larger failure strengths than normally consolidated samples, and smaller axial strains are required to cause failure. A large amount of dilation occurs after failure in heavily overconsolidated samples, suggesting that dilation is occurring throughout the sample. Undisturbed samples of Lopez gouge, cored from the outcrop, have internal friction in the range =0.4–0.6; the upper end of this range corresponds to the value established for remoulded Lopez gouge. Some kind of natural heterogeneity within the undisturbed samples is probably responsible for their low, variable strength. In samples of simulated gouge, with a more uniform grain size, active cataclasis during axial loading leads to large amounts of compaction. Larger axial strains are required to cause failure in simulated gouge, but the failure strength is similar to that of natural Lopez gouge.Use of the Mohr-Coulomb failure criterion to interpret the results from this study, and other recent studies on intact rock and granular gouge, leads to values of that depend on the loading configuration and the intact or granular state of the sample. Conceptual models are advanced to account for these descrepancies. The consequences for strain-weakening of natural faults are also discussed.  相似文献   

15.
Current methods for calculation of long-term probabilities for the recurrence of large earthquakes on specific fault segments are based upon models of the faulting process that implicitly assume constant stress rates during the interval separating earthquakes and instantaneous failure at a critical stress threshold. However, observations indicate that the process of stress recovery following an earthquake involves rate variations at all time scales in addition to stress steps caused by nearby earthquakes. Additionally, the existence of foreshocks, aftershocks and possible precursory processes suggest that there may be significant time dependence of the earthquake nucleation process. A method for determining the conditional probabilities for earthquake occurrence under conditions of irregular stressing is developed that could be useful at all time scales including those pertinent to short-and intermediate-term prediction. Used with models for earthquake occurrence at a stress threshold, the addition of variable stressing introduces a simple scaling of the conditional probabilities by stress level and stress rate. A model for the time-dependent nucleation of earthquake slip has been proposed recently that is based upon laboratory observations of fault strength. This failure criterion results in large but relatively short duration changes in the probability of earthquake recurrence particularly following stress steps. Applied to populations of earthquakes the models predicts a 1/t decay of seismicity following stress steps as observed for aftershocks and for frequency of foreshock-mainshock pairs. The model suggests that variations of seismicity rates of small earthquakes in the nucleation zone of the expected earthquake directly indicate variations in probability of recurrence of the large earthquake.  相似文献   

16.
We assess the extent to which observed large-scale changes in near-surface temperatures over the latter half of the twentieth century can be attributed to anthropogenic climate change as simulated by a range of climate models. The hypothesis that observed changes are entirely due to internal climate variability is rejected at a high confidence level independent of the climate model used to simulate either the anthropogenic signal or the internal variability. Where the relevant simulations are available, we also consider the alternative hypothesis that observed changes are due entirely to natural external influences, including solar variability and explosive volcanic activity. We allow for the possibility that feedback processes, other than those simulated by the models considered, may be amplifying the observed response to these natural influences by an unknown amount. Even allowing for this possibility, the hypothesis of no anthropogenic influence can be rejected at the 5% level in almost all cases. The influence of anthropogenic greenhouse gases emerges as a substantial contributor to recent observed climate change, with the estimated trend attributable to greenhouse forcing similar in magnitude to the total observed warming over the 20th century. Much greater uncertainty remains in the response to other external influences on climate, particularly the response to anthropogenic sulphate aerosols and to solar and volcanic forcing. Our results remain dependent on model-simulated signal patterns and internal variability, and would benefit considerably from a wider range of simulations, particularly of the responses to natural external forcing.  相似文献   

17.
Observation of damage caused by the recent Abruzzo earthquake on April 6th 2009 showed how local interaction between infills and RC structures can lead to soft‐storey mechanisms and brittle collapses. Results of the present case study are based on observed damage caused by the earthquake in the zone of Pettino. Analytical model based on simulated design procedure was built up and time history analyses were employed to verify the causes of the structural collapse, as highlighted by observed damage. This failure mechanism was investigated taking into consideration all components of the ground motion. Nonlinear behavior of brick masonry infills was taken into account and two parametric hypotheses for infill mechanical properties were considered, given the uncertainties that typically characterize these nonstructural elements. Nonlinear modeling of infills was made by a three‐strut macro‐model aimed at considering both local and global interaction between RC frame and infills. Seismic input was characterized by the real signal registered during the mainshock near the case‐study structure. Different shear capacity models were considered in the assessment. Analytical results seem to confirm with good approximation the likely collapse scenario that damage observation highlighted; the lack of proper detailing in the columns made the local interaction between infills and RC columns and the strong vertical component of the ground motion to be the main causes of the brittle failure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Miles B  Peter A  Teutsch G 《Ground water》2008,46(5):727-742
A two-dimensional multicomponent reactive transport modeling approach was used to simulate contaminant transport and the evolution of redox processes at a large-scale kerosene-contaminated site near Berlin, Germany. In contrast to previous site-scale modeling studies that focused either on one or two contaminants or on steady-state redox conditions, multiple contaminants and electron acceptors, including mineral phase Iron (III), were considered with an evolving redox zonation. Inhibition terms were used to switch between the different electron acceptor processes in the reaction scheme. The transient evolution of redox zones and contaminant plumes was simulated for two separate transects of the site, which have different geology and ground water recharge distributions and where quite different downstream contaminant and terminal electron–accepting process (TEAP) distributions are observed. The same reaction system, calibrated to measured concentrations along one of the transects, was used in both cases, achieving a reasonable match with observed concentrations. The differences between the two transects could thus to some extent be attributed to the different hydrological and hydrogeological conditions, in particular ground water recharge distributions. Long-term simulations showed that the distribution of TEAPs evolves as Fe(III) becomes depleted, with conditions becoming increasingly methanogenic, leading to changes in contaminant plume lengths. The models were applied to assess the potential effects of planned changes in land use at the site that may affect the ground water recharge distribution. The simulated redox zonation responded strongly to changes in recharge, which in turn led to changes in the contaminant plume lengths.  相似文献   

19.
A full‐scale shake table test on a six‐story reinforced concrete wall frame structure was carried out at E‐Defense, the world's largest three‐dimensional earthquake simulation facility, in January 2006. Story collapse induced from shear failure of shear critical members (e.g., short columns and shear walls) was successfully produced in the test. Insights gained into the seismic behavior of a full‐scale specimen subjected to severe earthquake loads are presented in this paper. To reproduce the collapse process of the specimen and evaluate the ability of analytical tools to predict post‐peak behavior, numerical simulation was also conducted, modeling the seismic behavior of each member with different kinds of models, which differ primarily in their ability to simulate strength decay. Simulated results showed good agreement with the strength‐degrading features observed in post‐peak regions where shear failure of members and concentrated deformation occurred in the first story. The simulated results tended to underestimate observed values such as maximum base shear and maximum displacement. The effects of member model characteristics, torsional response, and earthquake load dimensions (i.e., three‐dimensional effects) on the collapse process of the specimen were also investigated through comprehensive dynamic analyses, which highlighted the following seismic characteristics of the full‐scale specimen: (i) a model that is incapable of simulating a specimen's strength deterioration is inadequate to simulate the post‐peak behavior of the specimen; (ii) the torsional response generated from uniaxial eccentricity in the longitudinal direction was more significant in the elastic range than in the inelastic range; and (iii) three‐dimensional earthquake loads (X–Y–Z axes) generated larger maximum displacement than any other loading cases such as two‐dimensional (X–Y or Y–Z axes) or one‐dimensional (Y axis only) excitation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
One of the most famous and studied cases of dams subjected to earthquake loading is the Koyna Dam in India. In this study, a two‐dimensional model of Koyna Dam at 1/50 scale was used on a shake table to simulate effects and serve as data for non‐linear computer model calibration. A new concrete mix was designed for the non‐linear similitude modelling. This new mix provided the correct kinematic failure of concrete at scale. Two models were tested to failure: one with an initial shrinkage crack and one monolith. Reservoir effects were not modelled. The results of both models are discussed and compared. The ability to model non‐linear effects is discussed. Published in 2000 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号