首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The Brazilian savanna (cerrado) is a large and important economic and environmental region that is experiencing significant loss of its natural landscapes due to pressures of food and energy production, which in turn has caused large increases in soil erosion. However the magnitude of the soil erosion increases in this region is not well understood, in part because scientific studies of surface runoff and soil erosion are scarce or nonexistent in the cerrado as well as in other savannahs of the world. To understand the effects of deforestation we assessed natural rainfall‐driven rates of runoff and soil erosion on an undisturbed tropical woodland classified as ‘cerrado sensu stricto denso’ and bare soil. Results were evaluated and quantified in the context of the cover and management factor (C‐factor) of the Universal Soil Loss Equation (USLE). Replicated data on precipitation, runoff, and soil loss on plots (5 × 20 m) under undisturbed cerrado and bare soil were collected for 77 erosive storms that occurred over 3 years (2012 through 2014). C‐factor was computed annually using values of rainfall erosivity and soil loss rate. We found an average runoff coefficient of ~20% for the plots under bare soil and less than 1% under undisturbed cerrado. The mean annual soil losses in the plots under bare soil and cerrado were 12.4 t ha‐1 yr‐1 and 0.1 t ha‐1 yr‐1, respectively. The erosivity‐weighted C‐factor for the undisturbed cerrado was 0.013. Surface runoff, soil loss and C‐factor were greatest in the summer and fall. Our results suggest that shifts in land use from the native to cultivated vegetation result in orders of magnitude increases in soil loss rates. These results provide benchmark values that will be useful to evaluate past and future land use changes using soil erosion models and have significance for undisturbed savanna regions worldwide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
After the Valley Complex Fire burned 86 000 ha in western Montana in 2000, two studies were conducted to determine the effectiveness of contour‐felled log, straw wattle, and hand‐dug contour trench erosion barriers in mitigating postfire runoff and erosion. Sixteen plots were located across a steep, severely burned slope, with a single barrier installed in 12 plots (four per treatment) and four plots left untreated as controls. In a rainfall‐plus‐inflow simulation, 26 mm h?1 rainfall was applied to each plot for 1 h and 48 L min?1 of overland flow was added for the last 15 min. Total runoff from the contour‐felled log (0·58 mm) and straw wattle (0·40 mm) plots was significantly less than from the control plots (2·0 mm), but the contour trench plots (1·3 mm) showed no difference. The total sediment yield from the straw wattle plots (0·21 Mg ha?1) was significantly less than the control plots (2·2 Mg ha?1); the sediment yields in the contour‐felled log plots (0·58 Mg ha?1) and the contour trench plots (2·5 Mg ha?1) were not significantly different. After the simulations, sediment fences were installed to trap sediment eroded by natural rainfall. During the subsequent 3 years, sediment yields from individual events increased significantly with increasing 10 min maximum intensity and rainfall amounts. High‐intensity rainfall occurred early in the study and the erosion barriers were filled with sediment. There were no significant differences in event or annual sediment yields among treated and control plots. In 2001, the overall mean annual sediment yield was 21 Mg ha?1; this value declined significantly to 0·6 Mg ha?1 in 2002 and 0·2 Mg ha?1 in 2003. The erosion barrier sediment storage used was less than the total available storage capacity; runoff and sediment were observed going over the top and around the ends of the barriers even when the barriers were less than half filled. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

3.
Changes in stream chemistry were studied for 4 years following large wildfires that burned in Glacier National Park during the summer of 2003. Burned and unburned drainages were monitored from December 2003 through August 2007 for streamflow, major constituents, nutrients, and suspended sediment following the fires. Stream‐water nitrate concentrations showed the greatest response to fire, increasing up to tenfold above those in the unburned drainage just prior to the first post‐fire snowmelt season. Concentrations in winter base flow remained elevated during the entire study period, whereas concentrations during the growing season returned to background levels after two snowmelt seasons. Annual export of total nitrogen from the burned drainage ranged from 1·53 to 3·23 kg ha?1 yr?1 compared with 1·01 to 1·39 kg ha?1 yr?1 from the unburned drainage and exceeded atmospheric inputs for the first two post‐fire water years. Fire appeared to have minimal long‐term effects on other nutrients, dissolved organic carbon, and major constituents with the exception of sulfate and chloride, which showed increased concentrations for 2 years following the fire. There was little evidence that fire affected suspended‐sediment concentrations in the burned drainage. Sediment yields in subalpine streams may be less affected by fire than in lower elevation streams because of the slow release rate of water during spring snowmelt. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

4.
Piping has been recognized as an important geomorphic, soil erosion and hydrologic process. It seems that it is far more widespread than it has often been supposed. However, our knowledge about piping dynamics and its quantification currently relies on a limited number of data for mainly loess‐derived areas and marl badlands. Therefore, this research aimed to recognize piping dynamics in mid‐altitude mountains under a temperate climate, where piping occurs in Cambisols, not previously considered as piping‐prone soils. It has been expressed by the estimation of erosion rates due to piping and elongation of pipes in the Bere?nica Wy?na catchment in the Bieszczady Mountains, eastern Carpathians (305 ha, 188 collapsed pipes). The research was based on the monitoring of selected piping systems (1971–1974, 2013–2016). Changes in soil loss vary significantly between different years (up to 27.36 t ha?1 yr?1), as well as between the mean short‐term erosion rate (up to 13.10 t ha?1 yr?1), and the long‐term (45 years) mean of 1.34 t ha?1 yr?1. The elongation of pipes also differs, from no changes to 36 m during one year. The mean total soil loss is 48.8 t ha?1 in plots, whereas in the whole studied catchment it is 2.0 t ha?1. Hence, piping is both spatially and temporally dependent. The magnitude of piping in the study area is at least three orders of magnitude higher than surface erosion rates (i.e. sheet and rill erosion) under similar land use (grasslands), and it is comparable to the magnitude of surface soil erosion on arable lands. It means that piping constitutes a significant environmental problem and, wherever it occurs, it is an important, or even the main, sediment source. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Water and nutrient fluxes were studied during a 12-month period in an alerce (Fitzroya cupressoides) forest, located in a remote site at the Cordillera de la Costa (40°05′S) in southern Chile. Measurements of precipitation, throughfall, stemflow, effective precipitation, soil infiltration and stream flow were carried out in an experimental, small watershed. Simultaneously, monthly water samples were collected to determine the concentrations and transport of organic-N, NO3-N, total-P, K+, Ca2+, Na+ and Mg2+ in all levels of forest. Concentration of organic-N, NO3-N, total-P and K+ showed a clear pattern of enrichment in the throughfall, stemflow, effective precipitation and soil infiltration. For Ca2+ and Mg2+, enrichment was observed in the effective precipitation, soil infiltration and stream flow. Annual transport of K+, Na+, Ca2+ and Mg2+ showed that the amounts exported from the forest via stream flow (K+=0·95, Na+=32·44, Ca2+=8·76 and Mg2+=7·16 kg ha−1 yr−1) are less than the inputs via precipitation (K+=6·39, Na+=40·99, Ca2+=15·13 and Mg2+=7·61 kg ha−1 yr−1). The amounts of organic-N and NO3-N exported via stream flow (organic-N=1·04 and No3-N=3·06 kg ha−1 yr−1) were relatively small; however, they represented greater amounts than the inputs via precipitation (organic-N=0·74 and NO3-N=0·97 kg ha−1 yr−1), because of the great contribution of this element in the superficial soil horizon, where the processes of decomposition of organic material, mineralization and immobilization of the nutrients occurs. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
Post‐fire rehabilitation treatments are commonly implemented after high‐severity wildfires, but few data are available about the efficacy of these treatments. This study assessed post‐fire erosion rates and the effectiveness of seeding, straw mulching, and contour felling in reducing erosion after a June 2000 wildfire northwest of Loveland, Colorado. Site characteristics and sediment yields were measured on 12 burned and untreated control plots and 22 burned and treated plots from 2000 to 2003. The size of the hillslope plots ranged from 0·015 to 0·86 ha. Sediment yields varied significantly by treatment and were most closely correlated with the amount of ground cover. On the control plots the mean sediment yield declined from 6–10 Mg ha?1 in the first two years after burning to 1·2 Mg ha?1 in 2002 and 0·7 Mg ha?1 in 2003. Natural regrowth caused the amount of ground cover on the control plots to increase progressively from 33% in fall 2000 to 88% in fall 2003. Seeding had no effect on either the amount of ground cover or sediment yields. Mulching reduced sediment yields by at least 95% relative to the control plots in 2001, 2002, and 2003, and the lower sediment yields are attributed to an immediate increase in the amount of ground cover in the mulched plots. The contour‐felling treatments varied considerably in the quality of installation, and sediment storage capacities ranged from 7 to 32 m3 ha?1. The initial contour‐felling treatment did not reduce sediment yields when subjected to a very large storm event, but sediment yields were significantly reduced by a contour‐felling treatment installed after this large storm. The results indicate that contour felling may be able to store much of the sediment generated in an average year, but will not reduce sediment yields from larger storms. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Wildfires are landscape scale disturbances that can significantly affect hydrologic processes such as runoff generation and sediment and nutrient transport to streams. In Fall 2016, multiple large drought-related wildfires burned forests across the southern Appalachian Mountains. Immediately after the fires, we identified and instrumented eight 28.4–344 ha watersheds (four burned and four unburned) to measure vegetation, soil, water quantity, and water quality responses over the following two years. Within burned watersheds, plots varied in burn severity with up to 100% tree mortality and soil O-horizon loss. Watershed scale high burn severity extent ranged from 5% to 65% of total watershed area. Water quantity and quality responses among burned watersheds were closely related to the high burn severity extent. Total water yield (Q) was up to 39% greater in burned watersheds than unburned reference watersheds. Total suspended solids (TSS) concentration during storm events were up to 168 times greater in samples collected from the most severely burned watershed than from a corresponding unburned reference watershed, suggesting that there was elevated risk of localized erosion and sedimentation of streams. NO3-N concentration, export, and concentration dependence on streamflow were greater in burned watersheds and increased with increasing high burn severity extent. Mean NO3-N concentration in the most severely burned watershed increased from 0.087 mg L−1 in the first year to 0.363 mg L−1 (+317%) in the second year. These results suggest that the 2016 wildfires degraded forest condition, increased Q, and had negative effects on water quality particularly during storm events.  相似文献   

8.
Four techniques for soil erosion assessment were compared over two consecutive seasons for bare-fallow plots and a maize-cowpea sequence in 1985 at IITA, Ibadan, Nigeria. The techniques used were: tracer (aluminium paint), nails (16 and 25), the rill method, and the Universal Soil Loss Equation (USLE). Soil loss estimated by these techniques was compared with that determined using the runoff plot technique. There was significantly more soil loss (P < 0·01) in bare-fallow than in plots under maize (Zea mays) or cowpea (Vigna unguiculata). In the first season, soil loss from plots sown to maize was 40·2 Mg ha?1 compared with 153·3 Mg ha?1 from bare-fallow plots. In the second season, bare-fallow plots lost 87·5 Mg ha?1 against 39·4 Mg ha?1 lost from plots growing cowpea. The techniques used for assessing erosion had no influence on the magnitude of soil erosion and did not interfere with the processes of erosion. There was no significant difference (P < 0·05) between soil erosion determined by the nails and the runoff plot technique. Soil loss determined on six plots (three under maize, three bare-fallow) by the rill technique, at the end of the season, was significantly lower (P < 0·05) than that determined by the runoff plot technique. The soil loss estimated by the rill method was 143·2, 108·8 and 121·9 Mg ha?1 for 11, 11, and 8 per cent slopes respectively, in comparison with 201·5, 162·0, and 166·4 Mg ha?1 measured by the runoff plot method. Soil loss measured on three bare-fallow plots on 10 different dates by the rill technique was also significantly lower (P < 0·01) than that measured by the runoff plot. In the first season the USLE significantly underestimated soil loss. On 11, 11, and 8 per cent slopes, respectively, soil loss determined by the USLE was 77, 92, and 63 per cent of that measured by the runoff plot. However, in the second season there was no significant difference between soil loss determined by the USLE and that determined by the conventional runoff plot technique.  相似文献   

9.
Soil loss rates due to piping erosion   总被引:1,自引:0,他引:1  
Compared with surface soil erosion by water, subsurface erosion (piping) is generally less studied and harder to quantify. However, wherever piping occurs, it is often a significant or even the main sediment source. In this study, the significance of soil loss due to piping is demonstrated through an estimation of soil volume lost from pipes and pipe collapses (n = 560) in 137 parcels under pasture on loess‐derived soils in a temperate humid climate (Belgium). Assuming a period of 5 to 10 years for pipe collapse to occur, mean soil loss rates of 2.3 and 4.6 t ha?1 yr?1 are obtained, which are at least one order of magnitude higher than surface erosion rates (0.01–0.29 t ha?1 yr?1) by sheet and rill erosion under a similar land use. The results obtained for the study area in the Flemish Ardennes correspond well to other measurements in temperate environments; they are, however, considerably smaller than soil loss rates due to subsurface erosion in semi‐arid environments. Although local slope gradient and drainage area largely control the location of collapsed pipes in the study area, these topographic parameters do not explain differences in eroded volumes by piping. Hence, incorporation of subsurface erosion in erosion models is not straightforward. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The majority of geomorphological papers about Dartmoor have been essentially speculative, particularly when discussing weathering processes and the evolution of the Dartmoor landscape. In contrast, this article presents a synthesis of several experimental investigations aimed at studying the chemical weathering of Dartmoor granite through the systematic analysis of soil and water samples. This involved the computation of a geochemical budget to determine the amount of erosion in the catchment, as well as more detailed mineralogical investigations within a soil profile. The annual output of solutes due to weathering was 116 kg ha?1 a?1 of which the majority was silica (93 kg ha?1 a?1). From an examination of the soil mineralogy, it was calculated that these solutes were derived from the dissolution of approximately 200 kg ha?1 a?1 plagioclase, 90 kg ha?1 a?1 biotite, and 40 kg ha?1 a?1 orthoclase. As well as the weathering of granite, there was also the production of kaolinite (150 kg ha?1 a?1) and gibbsite (0.02 kg ha?1 a?1). Analysis of the soil water chemistry confirmed that kaolinite was the stable mineral phase in the regolith, although in areas where interflow was the dominant mode of water movement, the solute composition was in equilibrium with both kaolinite and gibbsite. Examination of the clay mineralogy confirmed these results. The microtexture of quartz grains was examined by the scanning electron microscope as another means of investigating the hydrochemical environment in the soil. Silica was found precipitated on all the grains examined but the maximum amount occurred in the Bs horizon. This evidence showed that, firstly, the dissolution of aluminosilicate minerals is greater than that calculated by the chemical budget and, secondly, that models of granite weathering must take localized weathering in the soil profile into account. The final part of the paper highlights the limitations of calculating denudation rates for an entire catchment and stresses the need to consider weathering as a highly localized phenomenon, particularly where there are high volumes of interflow at hill crest sites. Observations on granite decomposition in the future should be quantitative in approach and be related to the local site conditions.  相似文献   

11.
Abstract

A field experiment was conducted on a sloping grassland soil in southwest England to investigate the downslope transport of nitrogen in soil water following the application of cattle manure, slurry and inorganic fertilizer. Transport of nitrogen (N) species was monitored on hydrologically isolated plots. Manure (50 t ha?1), slurry (50 m3 ha?1) and fertilizer (250 kg N ha?1) were applied in February/March 1992. Subsurface water movement, by both matrix and preferential flow, was the dominant flow route during the experiment. Subsurface and surface nutrient flow pathways were monitored by analysing soil water and surface runoff for NO3-N, NH4-N and total N. Subsurface flow chemistry was dominated by NO3-N, with concentrations usually between 2 and 5 mg NO3 ?N dm?3. Differences between fertilizer and manure treatments and the untreated control were not significant. Significantly elevated NO3-N concentrations were observed in soil water in the buffer zone, indicating the importance of a buffer zone at least 10 m wide between manure spreading zones and an adjacent water course.  相似文献   

12.
In this study our main objective was to quantify water interrill erosion in the sloping lands of Southeast Asia, one of the most bio‐geochemically active regions of the world. Investigations were performed on a typical hillslope of Northern Laos subjected to slash and burn agriculture practiced as shifting cultivation. Situations with different periods of the shifting cultivation cycle (secondary forest, upland rice cultivation following a four‐year fallow period and three‐year continuous upland rice cultivation) and soil orders (Ultisols, Alfisols, Inceptisols) were selected. One metre square micro‐plots were installed to quantify the soil material removed by either detachment of entire soil aggregate or aggregate destruction, and the detached material transported by thin sheet flow, the main mechanisms of interrill erosion. In addition, laboratory tests were carried out to quantify the aggregate destruction in the process of water erosion by slaking, dispersion and mechanical breakdown. The average runoff coefficient (R) evaluated throughout the 2002 rainy season was 30·1 per cent and the interrill erosion was 1413 g m?2 yr?1 for sediments and 68 g C m?2 yr?1 for soil organic carbon, which was relatively high. Among the mechanisms of interrill water erosion, aggregate destruction was low and mostly caused by mechanical breakdown due to raindrops, thus leading to the conclusion that detachment and further transport by the shallow runoff of macro‐aggregates predominates. R ranged from 23·1 to 35·8 per cent. It decreased with the proportion of mosses on the soil surface and soil surface coverage, and increased with increasing proportion of structural crust, thus confirming previous results. Water erosion varied from 621 to 2433 g m?2 yr?1 for sediments and from 31 to 146 g C m?2 yr?1 for soil organic carbon, and significantly increased with increasing clay content of the surface horizon, probably due to the formation of easily detachable and transportable sand‐size aggregates, and proportion of macro‐aggregates not embedded in the soil matrix and prone to transport. In addition, water erosion decreased with increasing proportion of structural crusts, probably due to their higher hardness, and when cultivation follows a fallow period rather than after a long period of cultivation due to the greater occurrence of algae on the soil surface, which affords physical protection and greater aggregate stability through binding and gluing. This study based on simultaneous field and laboratory investigations allowed successful identification and quantification of the main erosion mechanisms and controlling factors of interrill erosion, which will give arguments to further set up optimal strategies for sustainable use of the sloping lands of Southeast Asia. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The contribution of bioturbation to downslope soil transport is significant in many situations, particularly in the context of soil formation, erosion and creep. This study explored the direct flux of soil caused by Aphaenogaster ant mounding, vertebrate scraping and tree‐throw on a wildfire‐affected hillslope in south‐east Australia. This included the development of methods previously applied to Californian gopher bioturbation, and an evaluation of methods for estimating the volume of soil displaced by tree‐throw events. All three bioturbation types resulted in a net downslope flux, but any influence of hillslope angle on flux rates appeared to be overshadowed by environmental controls over the spatial extent of bioturbation. As a result, the highest flux rates occurred on the footslope and lower slope. The overall contribution of vertebrate scraping (57.0 ± 89.4 g m?1 yr?1) exceeded that of ant mounding (36.4 ± 66.0 g m?1 yr?1), although mean rates were subject to considerable uncertainty. Tree‐throw events, which individually cause major disturbance, were limited in their importance by their scarcity relative to faunalturbation. However, tree‐throw might be the dominant mechanism of biotic soil flux on the mid‐slope provided that it occurs at a frequency of at least 2–3 events ha?1 yr?1. Although direct biotic soil flux appears to be geomorphologically significant on this hillslope, such transport processes are probably subordinate to other impacts of bioturbation at this site such as the enhancement of infiltration following wildfire. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Mesoscalic estimation of nitrogen discharge via drainage systems   总被引:2,自引:0,他引:2  
A complex approach has been developed for estimating mesoscalic nitrogen discharges via drainage systems using spatial information about land use, drainage areas, nitrogen balances and soil and site characteristics. Determining the total drainage area involves certain difficulties for larger areas, as on the one hand, the available databases are incomplete, and on the other hand the localisation and digitalisation of large subsurface drainage areas is a very time-consuming process. Knowledge of the history and causes of drainage systems in landscapes is required. To solve this problem a method has been developed to calculate the drainage areas for large catchments. In order to obtain a complete data set of subsurface drainage areas, representative areas were selected to enable the proportion of subsurface drainage area to be determined for various soil and site characteristics. These proportions were extrapolated to the entire area and the approach tested in the Mulde River Catchment Area in Germany.The rate of drained arable land is about 25.2% of the total area, which can be broken down into grassland (19.0%) and arable land (27.4%). The results differ for sandy soils with up to 8% drained areas and 57.8% for stagnant soils. This shows that the proportion of drained land is highly dependent on the nature of the soil in the catchment area, which has profound implications for approaches to nitrogen modelling.Average nitrogen discharge for the whole catchment area via drainage water was 33 kg ha−1 yr−1 in the 1980s and 10 kg ha−1 yr−1 in the 1990s. The nitrogen discharge varies from one soil type to another: in regions with sandy substrate (11,900 ha) discharge was 34 kg ha−1 yr−1 in the 1980s (14 kg ha−1 yr−1 in the 1990s), while in areas with loess lessivé soils (89,200 ha) it was about 26 kg ha−1 yr−1 in the 1980s (9 kg ha−1 yr−1 in the 1990s). The reduction can be explained by the complete change in farming strategy since the demise of the former German Democratic Republic (GDR).The approach shown is well suited to future model approaches on a regional scale. By creating and integrating new data sets derived from modern GIS operations the approach reduces the uncertainty of water and nitrogen modelling. This gives us a better understanding of nitrogen discharges into surface and groundwater and temporal discharge dynamics. The discharge data are highly valuable to predict environmental protection measurements for streams, lakes, coastal waters and groundwaters.  相似文献   

15.
Nitrogen (N) fertilization may profoundly affect soil microbial communities. In this study, a field fertilization experiment was conducted in temperate grassland in Inner Mongolia, China to examine the effect of N fertilization on soil microbial properties and the main factors related to the characteristics of soil microbial community. Soil microbial biomass carbon (MBC) and microbial functional diversity along an N gradient were measured over three months (June to August). The result showed that N fertilization significantly decreased MBC under high N treatment (N200, 200 kg N ha?1 y?1) compared with the control (N0, 0 kg N ha?1 y?1) in the three months. Microbial functional diversity in July and August were significantly increased by low N treatment (N50, 50 kg N ha?1 y?1). Among the three fertilization treatments, microbial functional diversity under N200 in the three months was significantly lower than that of N50. The decrease of MBC and functional diversity under N200 were mainly due to the significant decline of plant belowground biomass under high N treatment. The increase of functional diversity under N50 treatment was due to the higher plant aboveground biomass as a result of the higher soil moisture availability. This finding highlighted that the higher N fertilization (N200) was not suitable for the growth and improvement of functional diversity of the soil microbial community, and that site and plant community play an important role in regulating the characteristics of soil microbial community.  相似文献   

16.
Flow diversion terraces (FDT) are commonly used beneficial management practice (BMP) for soil conservation on sloped terrain susceptible to water erosion. A simple GIS‐based soil erosion model was designed to assess the effectiveness of the FDT system under different climatic, topographic, and soil conditions at a sub‐basin level. The model was used to estimate the soil conservation support practice factor (P‐factor), which inherently considered two major outcomes with its implementation, namely (1) reduced slope length, and (2) sediment deposition in terraced channels. A benchmark site, the agriculture‐dominated watershed in northwestern New Brunswick (NB), was selected to test the performance of the model and estimated P‐factors. The estimated P‐factors ranged from 0·38–1·0 for soil conservation planning objectives and ranged from 0·001 to 0·45 in sediment yield calculations for water‐quality assessment. The model estimated that the average annual sediment yield was 773 kg ha?1 yr ?1 compared with a measured value of 641 kg ha?1 yr?1. The P‐factors estimated in this study were comparable with predicted values obtained with the revised universal soil loss equation (RUSLE2). The P‐factors from this study have the potential to be directly used as input in hydrological models, such as the soil and water assessment tool (SWAT), or in soil conservation planning where only conventional digital elevation models (DEMs) are available. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Most studies on runoff and soil loss from olive orchards were performed on plots, despite the fact that measurements that examine a range of erosive processes on different scales are essential to evaluate the suitability of the use and soil management of this type of land. The main environmental limitations of much of the land used for olive orchards in the Mediterranean are the steep slopes and the shallow soil depth – and this was the case in the study area. Soil erosion and runoff over two hydrological years (2005–2006 and 2006–2007) were monitored in an olive orchard microcatchment of 6·1 ha under no‐tillage with spontaneous grass in order to evaluate its hydrological and erosive behaviour. Moreover, soil parameters such as organic matter (%OM), bulk density (BD) and hydraulic saturated conductivity (Ks) were also examined in the microcatchment to describe management effects on hydrological balance and on erosive processes. In the study period, the results showed runoff coefficients of 6·0% in the first year and 0·9% in the second. The differences respond to the impact of two or three yearly maximum events which were decisive in the annual balances. On the event scale, although maximum rainfall intensity values had a big influence on peak flows and runoff, its importance on mean sediment concentrations and sediment discharges was difficult to interpret due to the likely control of grass cover on volume runoff and on soil protection. In the case of annual soil erosion, they were measured as 1·0 Mg ha?1 yr?1 and 0·3 Mg ha?1 yr?1. Both are lower than the tolerance values evaluated in Andalusia (Spain). These results support the implementation of no‐tillage with spontaneous grass cover for sloping land, although the reduced infiltration conditions determined by Ks in the first horizon suggest grass should be allowed to grow not only in spring but also in autumn. In addition, specific measurements to control gullies, which have formed in the terraced area in the catchment, should be included since it is expected that they could be the main sources of sediments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The objective of this study is to investigate the effect of rainfall intensity and slope gradient on the performance ofvetiver grass mulch (VGM) in soil and water conservation.The study involved field ...  相似文献   

20.
Spatial patterns of N dynamics in soil were evaluated within two small forested watersheds in Japan. These two watersheds were characterized by steep slopes (>30°) and high stream NO3 drainage rates (8·4 to 25·1 kg N ha−1 yr−1) that were greater than bulk precipitation N input rates (7·5 to 13·5 kg N ha−1 yr−1). Higher rates of nitrification potential at near-stream zones were reflected in greater NO3 contents for soil at the near-stream zones compared with ridge zones. Both stream discharge rates and NO3 concentrations in deep unsaturated soil at the near-stream zones were positively correlated to NO3 concentrations in stream water. These relationships, together with high soil NO3 contents at the near-stream zones, suggest that the near-stream zone was an important source of NO3 to stream water. Nitrate flux from these near-stream zones was also related to the drainage of cations (K+, Ca2+ and Mg2+). The steep slope of the watersheds resulted in small saturated areas that contributed to the high NO3 production (high nitrification rates) in the near-stream zone. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号