首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Pore structure and mineral matrix elastic moduli are indispensable in rock physics models. We propose an estimation method of pore structure and mineral moduli based on Kuster-Toksöz model and Biot’s coefficient. In this technique, pore aspect ratios of five different scales from 100 to 10?4 are considered, Biot’s coefficient is used to determine bounds of mineral moduli, and an estimation procedure combined with simulated annealing (SA) algorithm to handle real logs or laboratory measurements is developed. The proposed method is applied to parameter estimations on 28 sandstone samples, the properties of which have been measured in lab. The water saturated data are used for estimating pore structure and mineral moduli, and the oil saturated data are used for testing these estimated parameters through fluid substitution in Kuster-Toksöz model. We then compare fluid substitution results with lab measurements and find that relative errors of P-wave and S-wave velocities are all less than 5%, which indicates that the estimation results are accurate.  相似文献   

2.
A method for variance component estimation (VCE) in errors-in-variables (EIV) models is proposed, which leads to a novel rigorous total least-squares (TLS) approach. To achieve a realistic estimation of parameters, knowledge about the stochastic model, in addition to the functional model, is required. For an EIV model, the existing TLS techniques either do not consider the stochastic model at all or assume approximate models such as those with only one variance component. In contrast to such TLS techniques, the proposed method considers an unknown structure for the stochastic model in the adjustment of an EIV model. It simultaneously predicts the stochastic model and estimates the unknown parameters of the functional model. Moreover the method shows how an EIV model can support the Gauss-Helmert model in some cases. To make the VCE theory into EIV model more applicable, two simplified algorithms are also proposed. The proposed methods can be applied to linear regression and datum transformation. We apply these methods to these examples. In particular a 3-D non-linear close to identical similarity transformation is performed. Two simulation studies besides an experimental example give insight into the efficiency of the algorithms.  相似文献   

3.
A 2-D boundary problem formulation in terms of pore pressure in Biot poroelasticity model is discussed, with application to a vertical contact model mechanically excited by a lunar-solar tidal deformation wave, representing a fault zone structure. A problem parametrization in terms of permeability and Biot’s modulus contrasts is proposed and its numerical solution is obtained for a series of models differing in the values of the above parameters. The behavior of pore pressure and its gradient is analyzed. From those, the electric field of the electrokinetic nature is calculated. The possibilities of estimation of the elastic properties and permeability of geological formations from the observations of the horizontal and vertical electric field measured inside the medium and at the earth’s surface near the block boundary are discussed.  相似文献   

4.
Dense networks of wireless structural health monitoring systems can effectively remove the disadvantages associated with current wire‐based sparse sensing systems. However, recorded data sets may have relative time‐delays due to interference in radio transmission or inherent internal sensor clock errors. For structural system identification and damage detection purposes, sensor data require that they are time synchronized. The need for time synchronization of sensor data is illustrated through a series of tests on asynchronous data sets. Results from the identification of structural modal parameters show that frequencies and damping ratios are not influenced by the asynchronous data; however, the error in identifying structural mode shapes can be significant. The results from these tests are summarized in Appendix A. The objective of this paper is to present algorithms for measurement data synchronization. Two algorithms are proposed for this purpose. The first algorithm is applicable when the input signal to a structure can be measured. The time‐delay between an output measurement and the input is identified based on an ARX (auto‐regressive model with exogenous input) model for the input–output pair recordings. The second algorithm can be used for a structure subject to ambient excitation, where the excitation cannot be measured. An ARMAV (auto‐regressive moving average vector) model is constructed from two output signals and the time‐delay between them is evaluated. The proposed algorithms are verified with simulation data and recorded seismic response data from multi‐story buildings. The influence of noise on the time‐delay estimates is also assessed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
One widespread problem in damping estimation of high-rise buildings is the neglect of structural modal directions, which may induce beating in measured dynamic responses along building geometric axes and thereby induce errors in damping estimations to some extent. Based on a proposed two degrees of freedom (2-DOF) simulation model, the effects of neglecting the modal directions on damping estimate are systematically investigated. The results show that the angular differences between the modal directions and the building geometric axes, as well as the frequency difference between the involved modes, both have significant effects on the damping estimate of high-rise buildings. This paper proposes a spectral method to determine the modal directions of high-rise buildings and further validate this method by an analysis of full-scale measurements from four skyscrapers. The damping ratios estimated based on the responses along the identified modal directions are more accurate than those based on those measured along the building geometric axes. Furthermore, an empirical prediction model for damping ratio of high-rise buildings with heights over 200 m is proposed based on the field measured damping results of several buildings with consideration of the modal directions. The objective of this study is to improve the accuracy of damping estimation of high-rise buildings and therefore provide useful information for the structural design of future skyscrapers.  相似文献   

6.
Hybrid simulation combines numerical and experimental methods for cost‐effective, large‐scale testing of structures under simulated earthquake loading. Structural system level response can be obtained by expressing the equation of motion for the combined experimental and numerical substructures, and solved using time‐stepping integration similar to pure numerical simulations. It is often assumed that a reliable model exists for the numerical substructures while the experimental substructures correspond to parts of the structure that are difficult to model. A wealth of data becomes available during the simulation from the measured experiment response that can be used to improve upon the numerical models, particularly if a component with similar structural configuration and material properties is being tested and subjected to a comparable load pattern. To take advantage of experimental measurements, a new hybrid test framework is proposed with an updating scheme to update the initial modeling parameters of the numerical model based on the instantaneously‐measured response of the experimental substructures as the test progresses. Numerical simulations are first conducted to evaluate key algorithms for the selection and calibration of modeling parameters that can be updated. The framework is then expanded to conduct actual hybrid simulations of a structural frame model including a physical substructure in the laboratory and a numerical substructure that is updated during the tests. The effectiveness of the proposed framework is demonstrated for a simple frame structure but is extendable to more complex structural behavior and models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The Ralph M. Parsons World Headquarters building, a twelve-storey steel frame structure, was subjected to a series of forced vibration tests. The natural frequencies, three-dimensional mode shapes and damping coefficients of nine modes of vibration were determined. Other features of this investigation included the study of non-linearities associated with increasing levels of response, detailed measurements of the deformation of the first floor and the ground surrounding the structure, and measurements of strain in one of the columns of the structure during forced excitation. The dynamic characteristics of the building determined by these tests are compared to those predicted by a finite element model of the structure. The properties of primarily translational modes are predicted reasonably well, but adequate prediction of torsional motions is not obtained. The comparison between measured and predicted strains suggests that estimates of stress determined from finite element analyses of buildings might be within 25 per cent of those experienced by the structure for a known excitation.  相似文献   

8.
We analyze the properties of the scattering matrix associated with the incident and scattered electric fields used in GPR. The elements of the scattering matrix provide information produced by different polarizations of the incident wave field. Rotationally invariant quantities such as trace, determinant and Frobenius norm lead to images that combine the information contained in the four elements of the scattering matrix in a mathematically simple and sound manner. The invariant quantities remove the directional properties implicit in the dipolar field used in GPR allowing the application of standard processing techniques designed for scalar fields, such as those used in seismic data processing. We illustrate the non-directional properties of the invariants using a 3D simulation of the wavefield produced by a point scatterer. The estimation of the azimuth angle of elongated targets is also explored using rotation transformations that maximize alternatively the co-polarized or the cross-polarized responses. The angle estimation is essentially an unstable process, particularly if low amplitudes or noisy data are involved. We apply the Frobenius norm 6S6F as a criterion for selection of the best amplitudes to use for a more stable and significant angle estimation. The performance of our formulation was tested with synthetic data produced by a 3D model of an air-filled metal pipe buried in a homogeneous halfspace. The images resulting from the invariants show a clear diffraction hyperbola suitable for a scalar wavefield migration, while the azimuth of the pipe is neatly resolved for amplitudes selected with 6S6F  0.4. A field experiment conducted above an aqueduct pipe illustrates the proposed methods with real data. The images obtained from the invariants are better than those from the individual elements of the scattering matrix. The azimuth estimated using our formulation is in agreement with the probable orientation of the aqueduct. Finally, a field experiment above a buried air-filled barrel shows that combining the information in the way proposed in this work may lead to an improved image of the subsurface target, the cost to pay is the lost of directional information contained in the scattering matrix. In general, we claim that the methods proposed in this work can be useful to analyze the information acquired by multicomponent GPR surveys using standard scalar wavefield algorithms.  相似文献   

9.
基于岩石物理和地震反演理论,提出了一种同步反演储层孔隙度和含水饱和度的方法.以岩石物理为基础,建立了砂泥岩储层物性和弹性参数之间定量的关系-Simon模型,以贝叶斯理论为手段,结合不同类型的砂泥岩储层,建立了多信息联合约束的物性参数反演目标函数,并通过蒙特卡罗和遗传算法相结合的思路求解该目标函数,最终得到孔隙度和含水饱和度的同步反演结果.将该方法应用于河道砂和砂砾岩两种不同的砂泥岩储层中,孔隙度和含水饱和度数据的联合应用,进一步减少了储层预测的多解性,为石油地质综合研究提供了更加丰富准确的基础数据.  相似文献   

10.
Stochastic rainfall models are widely used in hydrological studies because they provide a framework not only for deriving information about the characteristics of rainfall but also for generating precipitation inputs to simulation models whenever data are not available. A stochastic point process model based on a class of doubly stochastic Poisson processes is proposed to analyse fine-scale point rainfall time series. In this model, rain cells arrive according to a doubly stochastic Poisson process whose arrival rate is determined by a finite-state Markov chain. Each rain cell has a random lifetime. During the lifetime of each rain cell, instantaneous random depths of rainfall bursts (pulses) occur according to a Poisson process. The covariance structure of the point process of pulse occurrences is studied. Moment properties of the time series of accumulated rainfall in discrete time intervals are derived to model 5-min rainfall data, over a period of 69 years, from Germany. Second-moment as well as third-moment properties of the rainfall are considered. The results show that the proposed model is capable of reproducing rainfall properties well at various sub-hourly resolutions. Incorporation of third-order moment properties in estimation showed a clear improvement in fitting. A good fit to the extremes is found at larger resolutions, both at 12-h and 24-h levels, despite underestimation at 5-min aggregation. The proportion of dry intervals is studied by comparing the proportion of time intervals, from the observed and simulated data, with rainfall depth below small thresholds. A good agreement was found at 5-min aggregation and for larger aggregation levels a closer fit was obtained when the threshold was increased. A simulation study is presented to assess the performance of the estimation method.  相似文献   

11.
Noise contamination of measured data greatly affects the final results of inversion. Three types of noise source — random and systematic errors and the uncertainties due to the inadequacy of the mathematical model in representing the actual physical conditions — are discussed in the framework of resistivity sounding data. Two methods are proposed for describing these uncertainties. The first possibility is to smooth the measured data by a combination of simple fitting functions that satisfies the ‘1D smoothness’ criteria and consequently simulates the behaviour of a 1D Schlumberger apparent resistivity curve. The second method is to derive weight coefficients from the differences between the measured and the smoothed data sets. Both methods are carried out under the control of the interpreter. The relative merits and drawbacks of the direct and iterative interpretation methods used for the estimation of the parameters of the layered earth model are summarized. Two variants of the combination of these methods are presented to obtain more powerful and automatic interpretation schemes. In the sequential interpretation, an initial guess supplied by the direct method is improved by the iterative method to obtain a reasonable fit between the measured data and the model response. In the simultaneous interpretation, the successive application of the direct and iterative methods is carried out, starting from the first branch of the apparent resistivity curve. The operation is then shifted to subsequent branches that represent the deeper parts of the geoelectric section. This is similar to the data acquisition applied in direct current sounding in which the depth penetration is increased by expanding the current electrode spacings. The proposed sequential and simultaneous interpretation algorithms require minimum aids and efforts of the interpreter.  相似文献   

12.
The inversion of resistivity profiling data involves estimation of the spatial distribution of resistivities and thicknesses of rock layers from the apparent resistivity data values measured in the field as a function of electrode separation. The drawbacks of using traditional curve-matching techniques to solve this inverse problem have been overcome by iterative linear techniques but these require good starting models even if the shape of the causative body is asssumed known. In spite of the recent developments in inversion techniques, no robust method exists for the inversion of resistivity profiling data for the simple model of dikes and spheres which are the classical models of geophysical prospecting. We apply three different non-linear inversion schemes to invert synthetic resistivity profiling data for the classical models embedded in a uniform matrix of contrasting resistivity. The three non-linear algorithms used are called the Metropolis simulated annealing (SA), very fast simulated annealing (VFSA) and a genetic algorithm (GA). We compare the performance of the three algorithms using synthetic data for an outcropping vertical dike model. Although all three methods were successful in obtaining optimal solutions for arbitrary starting models, VFSA proved to be computationally the most efficient.  相似文献   

13.
对一个1:1比例的多层混凝土小型空心砌块与煤矸石页岩多孔砖组合砌体模型的抗震性能进行了试验研究。对该足尺试件在抗震性能试验的不同受力阶段进行了动力测试,分别得到了结构处于弹性、开裂、屈服和破坏状态下的频率、振型、阻尼等动力参数,分析了模型动力特性的变化特点及原因,为这种结构的抗震设计及动力分析提供了依据。  相似文献   

14.
Reinforced concrete structure may exhibit significant inelastic hysteretic behavior when subject to strong earthquake excitation. To investigate such an inelastic behavior, in this study, a new system identification technique is applied by using the deteriorating distributed element (DDE) model to simulate the hysteretic behavior of a degrading structure. Through the advanced signal processing technique, the multiple singular spectrum analysis (SSA) and the nonlinear SSA, the recorded inelastic restoring force of a deteriorating structure can be decomposed into several independent additive components in its sequentially degrading order and with decreasing weight. With each decomposed hysteresis loop, the model parameters of the DDE model are identified. The evolutionary properties of the progressive stiffness degradation behavior of reinforced concrete structure can be observed from the identified model parameters. Finally, comparison on the physical properties of the identified DDE model with respect to the seismic response data of the deteriorating structure is also discussed. The result shows that the proposed identification technique can have a good estimation on the seismic behavior of the degrading structure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Coherent noise in land seismic data primarily consists in source‐generated surface‐wave modes. The component that is traditionally considered most relevant is the so‐called ground roll, consisting in surface‐wave modes propagating directly from sources to receivers. In many geological situations, near?surface heterogeneities and discontinuities, as well as topography irregularities, diffract the surface waves and generate secondary events, which can heavily contaminate records. The diffracted and converted surface waves are often called scattered noise and can be a severe problem particularly in areas with shallow or outcropping hard lithological formations. Conventional noise attenuation techniques are not effective with scattering: they can usually address the tails but not the apices of the scattered events. Large source and receiver arrays can attenuate scattering but only in exchange for a compromise to signal fidelity and resolution. We present a model?based technique for the scattering attenuation, based on the estimation of surface‐wave properties and on the prediction of surface waves with a complex path involving diffractions. The properties are estimated first, to produce surface?consistent volumes of the propagation properties. Then, for all gathers to filter, we integrate the contributions of all possible diffractors, building a scattering model. The estimated scattered wavefield is then subtracted from the data. The method can work in different domains and copes with aliased surface waves. The benefits of the method are demonstrated with synthetic and real data.  相似文献   

16.
Ambiguity in parameter identification represents a potentially serious limitation to the application of models of surface water acidification. Previous work has concentrated on manipulation of two of the three factors affecting model identifiability, namely model structure and estimator properties. A new technique is proposed which uses different modes of response within the data to improve parameter identification. Preliminary results, obtained using the Birkenes model of surface water acidification, appear to show promise. The technique is robust in recovering model parameters from synthetic data, with and without error, and in assimilating problems of structural error.  相似文献   

17.
To develop geosciences quantification and multi-dimensional researches will be an inevitable trend in the 21st century. The interaction between the land surface and the atmosphere not only serves as an important component in geosciences quantification, bu…  相似文献   

18.
Markov chain Monte Carlo algorithms are commonly employed for accurate uncertainty appraisals in non-linear inverse problems. The downside of these algorithms is the considerable number of samples needed to achieve reliable posterior estimations, especially in high-dimensional model spaces. To overcome this issue, the Hamiltonian Monte Carlo algorithm has recently been introduced to solve geophysical inversions. Different from classical Markov chain Monte Carlo algorithms, this approach exploits the derivative information of the target posterior probability density to guide the sampling of the model space. However, its main downside is the computational cost for the derivative computation (i.e. the computation of the Jacobian matrix around each sampled model). Possible strategies to mitigate this issue are the reduction of the dimensionality of the model space and/or the use of efficient methods to compute the gradient of the target density. Here we focus the attention to the estimation of elastic properties (P-, S-wave velocities and density) from pre-stack data through a non-linear amplitude versus angle inversion in which the Hamiltonian Monte Carlo algorithm is used to sample the posterior probability. To decrease the computational cost of the inversion procedure, we employ the discrete cosine transform to reparametrize the model space, and we train a convolutional neural network to predict the Jacobian matrix around each sampled model. The training data set for the network is also parametrized in the discrete cosine transform space, thus allowing for a reduction of the number of parameters to be optimized during the learning phase. Once trained the network can be used to compute the Jacobian matrix associated with each sampled model in real time. The outcomes of the proposed approach are compared and validated with the predictions of Hamiltonian Monte Carlo inversions in which a quite computationally expensive, but accurate finite-difference scheme is used to compute the Jacobian matrix and with those obtained by replacing the Jacobian with a matrix operator derived from a linear approximation of the Zoeppritz equations. Synthetic and field inversion experiments demonstrate that the proposed approach dramatically reduces the cost of the Hamiltonian Monte Carlo inversion while preserving an accurate and efficient sampling of the posterior probability.  相似文献   

19.
A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another “equivalent” sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [1], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers, extrapolation and post-processing techniques. The proposed method can be efficiently used in many porous media applications for problems such as stochastic homogenization/upscaling, propagation of uncertainty from microscopic fluid and rock properties to macro-scale parameters, robust estimation of Representative Elementary Volume size for arbitrary physics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号